29
Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere 2 1 currently with Ankug E&C, Korea 2 Department of Fire Protection Engineering, Univ. of Maryland, USA ANKUG E&C CO., LTD.

Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Thermochemical Flammability Model

for Thin Materials

Mekyoung Kim1 and James G. Quintiere2

1currently with Ankug E&C, Korea

2Department of Fire Protection Engineering, Univ. of Maryland, USA

ANKUG E&C CO., LTD.

Page 2: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Outline

� Objective

� Background

� TGA Analysis

� DSC Analysis

� Modeling

� Results of Modeling

� Conclusions

Page 3: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Objective

� The goal of this research is to predict the

burning of thermally thin materials by modeling.

� To provide the needed data for the model, TGA

and DSC analysis have been performed

� The materials and the data of Liu with pure

nylon and nylon with 5% clay additive, conducted

in the Cone Calorimeter will be used for

comparison

Page 4: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Background-1

� Burning behavior

differs according to

thickness & heat flux.

� Thermally thick burning

� Thermally thin burning

� Material flammability of nano-clay loading

� Ignition time

increased

� The burning

rate greatly

reduced

Nylon 3.2mmNylon 3.2mmNylon 3.2mmNylon 3.2mm

0

10

20

30

40

50

60

70

80

0 100 200 300 400time(sec)

MLR(

g/m2

sec)

19kW/m232kW/m254kW/m2

Fig.1 Thermally thick & thin burning

Thermally

thin burningSteady

burning

Partially thin

burning

Page 5: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Background-2

� For modeling

� It’s very important to understand the decomposition effects in the burning of thermally thin material

� Is it possible to use TGA/DSC for predicting the burning

behavior?

� The heating rate(β) of TGA & DSC : 0.1~30 K/min

The heating rate of fires :100 K/min or greater

� Ea & ap derived from TGA change with heating rate.

TGA’s relevance to fires has been questioned. Hence, this study will attempt to examine the use of TGA and DSC data in the thermally thin model for fire

application

Page 6: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Definition and TGA data

� A technique in which the mass of a substance is measured as a function of temperature while the substance is subjected to a controlled temperature program

Figure 2. TGA curves of Nylon obtained from experiment

Mass Loss Rate

0

20

40

60

80

100

120

300 350 400 450 500 550

Temperature(oC

NIST/

1K/minNIST/

2K/min

VTEC/

5K/min

NIST/

5K/min

VTEC/

10K/min

FAA/

5K/min

β = 1−10 K/min

Page 7: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

The Kinetics

� The thermal decomposition of the solid is

assumed to follow first-order Arrhenius reaction

This is the basic equation needed in our TGA

analysis to determine the kinetic parameters,

Ea and ap� Conversion factor,

� Char fraction,

11

−−=−

aERT

pc

( )d a edt ( X )

αααααααα

1

1

−−−−−−−−= == == == =

−−−− −−−−i i

cf i

mm m m

m m Xαααα

==== fc

i

mX

m

Page 8: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

TGA analysis method

� Eqn (2.19)

(((( ))))(((( ))))

1

1 p

C

ln aX

αααα −−−−

−−−−

1 11

−−−−= × −= × −= × −= × −−−−−

ap

c

E( )dln ln aR Tdt ( X )

αααααααα

� Ea changes with heating

rate and α

The trend: as α ↑, Ea ↑� Slope=- Ea /R,

� Intercept=

� Kinetic parameter

determined Figure 3. Determining Ea and ap of Nylon

y = - 21725x + 28.757

R2 = 0.9939

y = - 24723x + 32.673

R2 = 0.9449

y = - 31005x + 40.98

R2 = 0.9994

- 5

- 4.5

- 4

- 3.5

- 3

- 2.5

- 2

- 1.5

- 1

0.00135 0.0014 0.00145 0.0015 0.00155

α=0.25

α=0.5

α=0.75

ln(dα

/dt)

1/T(1/K)

Page 9: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Results of TGA modeling

Figure 4. Comparing the model to the experiment

2.1×1014 s-1223 kJ/molNylon+5%

1.5×1014 s-1223 kJ/molNylon

Pre-Exponential factor (ap)Activation energy (Ea)Material

Table 2-4. Kinetic parameters

NYLON

0

10

20

30

40

50

60

70

80

90

100

300 320 340 360 380 400 420 440 460 480 500

Temperature(oC)

10K/min(NIST)

m/m

i (%

)

10K/min(VTEC)

10K/min(model)

5K/min(FAA)

5K/min(NIST)

5K/min(model)

5k/min(VTEC)

2K/min(NIST)

2K/min(model)

1K/min(NIST)

1K/min(model)

Page 10: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Definition and use of DSC

� DSC measures the difference in energy inputs into substance

and reference material as a function of temperature while these are subjected to a controlled temperature program

�The difference of power supplies

between two cups shows that Cp, Qm, and Qp

�The interpretation ultimately

relies on a careful procedure

involving the establishment of a

“baseline” signal for no sample,

�and a special procedure to

evaluate the heat loss between

the heater-cup system and flowing

gas

�Big help from FAA

Figure5. Schematic of heat

transfer in DSC

Page 11: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

DSC data

Figure 6. Power supplies to the sample

Page 12: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Results of DSC analysis-1

Figure 7. Sample signal of Nylon+5% clay

Nylon + 5% clay

0

2

4

6

8

10

12

50 100 150 200 250 300 350 400 450

Temperature(oC)

mw

1

−−−−

−−−−p

C

dm / dtQ

( X )

−−−− s

m

dmQ

dt

eff i

dTC m

dti

dTcm

dt

effc dT∫1 ( )

(1 )

f

i

m

pm

i C

dmQ cdT

m X

−= +

−∫ ∫

pQ cdT= + ∫

Temperature

Ce

ff

Region1

Region2

Figure 8. The effective cp

ceff =Ý q

miβ

Page 13: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Results of DSC analysis-2

-79 +0.21(T-T

∞)

-82 + 0.22(T-T

∞)

2.5 - 42.5 - 4Specific Heat of Melt, J/g-K

220 – 400 ºC(decomposition 400 –

450 ºC)

1.21 +0.0073(T-T∞)

1.12 +0.0075(T-T∞)

1.5 – 2.51.6 – 2.5Specific Heat of Solid, J/g-K

50 – 220 ºC

670550522, 557,618, 671

388, 549Heat of Decomposition, kJ/g active

733535, 7332, 35Heat of Melting, kJ/g

Nylon+5 % Clay

NylonNylon+5 % Clay

Nylon

Values selected in

modeling

Values measured

Page 14: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Theory of the modeling

� With kinetic and thermodynamic properties from TGA/DSC, the burning rate of thin polymers under radiant heat can be formulated.

The model results will be compared with the data from Cone Calorimeter experiments carried out by Xiu Liu

� The transient exposure and response of the thin material is divided into 4 phases�Pre-heating to melt�Melting phase�Decomposing to ignition�Flaming phase

Page 15: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Formulation of the model-1

iq′′&

, ,mhT

C,V

δ

cq′′&,r rq′′&( )g gm h′′&

bq′′&

T∞

: Re-radiative heat flux to surroundings

: Thickness of a materialδ

: Incident heat flux from the cone heateri

q′′&

: Flame heat flux after flaming f

q′′&

: Convective heating flux when no flamec

q′′&

,r rq′′& T∞

: Conductive heating flux to the insulator

on the bottombq′′&

Cone calorimeter assembly & heating of material in C.V

� The general equation is

p m p

m

dT dc q Q Q

dt t dt

ρδ ρρ δ δ′′= + +&

�∆

Page 16: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Formulation of the Model-2

� The model is formulated from the conservation laws� Energy, mass, species(kinetics) conservation

1. Pre-heating

2. Melting : Tm is constant

3. Decomposing

� Energy conservation

4 44

& ∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞′ ′ ′′ ′ ′′ ′ ′′ ′ ′

= − − − − − −= − − − − − −= − − − − − −= − − − − − −′′′′′′′′p

cP i

k cdTc q (T T ) h (T T ) (T T )dt t

π ρπ ρπ ρπ ρρ δ α εσρ δ α εσρ δ α εσρ δ α εσ

4 44

& ∞ ∞∞ ∞∞ ∞∞ ∞′ ′ ′′ ′ ′′ ′ ′′ ′ ′

= − − − − − −= − − − − − −= − − − − − −= − − − − − −′′′′′′′′p

p c mi

k c ddTc q (T T ) h (T T ) Qdt t dt

π ρπ ρπ ρπ ρ ρρρρρ δ α εσ δρ δ α εσ δρ δ α εσ δρ δ α εσ δ

4 44

& ∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞∞ ∞ ∞′ ′ ′′ ′ ′′ ′ ′′ ′ ′

= − − − − − − += − − − − − − += − − − − − − += − − − − − − +′′′′′′′′p

c pP i

k c ddTc q (T T ) h (T T ) (T T ) Qdt t dt

π ρπ ρπ ρπ ρ ρρρρρ δ α εσ δρ δ α εσ δρ δ α εσ δρ δ α εσ δ

Page 17: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Formulation of the Model-3

� Kinetics of decomposition

� Mass conservation

4. Flaming burning

� Energy conservation

� Decomposition Kinetics

� Mass conservation

exp( )aa p

d EaR Tdt

ρ ρ= − −⋅

(1 ) aC

ddX

dt dtρρ = −

4 44

& & ∞ ∞∞ ∞∞ ∞∞ ∞′ ′ ′′ ′ ′′ ′ ′′ ′ ′

= + − − − − += + − − − − += + − − − − += + − − − − +′′ ′′′′ ′′′′ ′′′′ ′′p

pP i f

k c ddTc q q (T T ) (T T ) Qdt t dt

π ρπ ρπ ρπ ρ ρρρρρ δ α εσ δρ δ α εσ δρ δ α εσ δρ δ α εσ δ

� These equations were solved by Mathematica.

Page 18: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Modeling: ignition and burning

� Flash-point using the criteria, 13 kW/m2

=0.46 g/m2s, at Tflash� Fire-point using the criteria, 50 kW/m2

=1.79 g/m2s, at Tfire

� Flame heat fluxes coming from Cone Calorimeter data

& ′′′′′′′′g

m

& ′′′′′′′′g

m

18kW/m230 kW/m23.2mm

20kW/m220 kW/m21.6mm

Nylon+5%clayNylon

Page 19: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Heating Rates

� The heating rates employed by TGA were 1, 2, 5, 10°C/min whereas the heating rates in the Cone

Calorimeter experiments are relatively high. It is relevant to real fire

Figure 9. The heating rates in the TGA, and Cone Calorimeter

Heating rates

0.1

1

10

100

0 100 200 300 400

time(sec)

oC

/se

c

60kW/m2

10oC/min

20kW/m2

39kW/m2

TGA

Page 20: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

The criteria of thermally thin

� What is the criteria of thermally thin burning?

� A criteria for thermally thin ignition :

� A criteria for thermally thin Burning :

( )2

&

ig o

thin

i

k T Tl

q

−=

′′

2 ( )p

s

net

k T T

qδ ∞−

=′′&

Nylon+5%

0

2

4

6

8

10

12

14

16

18

0 20 40 60 80 100

kW/ m2

thic

kn

es

s(m

m)

Thermally

Thick Regime

Thermally

Thin Regime

Theory for ignition

using fire point

Theory for ignition

using flash point

▪ exp. data ( thin behavior)

*exp. data (thick behavior)

Theory for burning

Page 21: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Prediction of Ignition

cone

model(fire pt)

model(flash pt)

exp.

critical heat

fluxes

(model)

Page 22: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Ignition-2

cone (tig)

model (fire pt)

model (flash pt)

exp.

critical heat

fluxes (model)

Page 23: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Comparing the model to the cone calorimeter data

Flaming initiated at the fire point

Mass loss rate of Nylon+5% 1.6mm

0102030405060

0 100 200 300 400 500 600time(sec)

ML

R(g

/m2s

ec

) 19kW/m2

23.5kW/m233kW/m2

39kW/m254kW/m2

model▪ exp. data

Page 24: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Comparing the model to the cone calorimeter data

Flaming initiated at the flash point

Mass loss rateNylon+5% 1.6mm

0102030405060

0 100 200 300 400 500 600time(sec)

ML

R(g

/m2s

ec

) 19kW/m223.5kW/m2

33kW/m2

39KW/m254kW/m2

model▪ exp. data

Page 25: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Modeling Result: Peak Average Burning RateNylon1.6mm

0

10

20

30

40

50

60

15 20 25 30 35 40 45 50 55 60

( kW/ m2

)

ML

R(g

/m2s

ec

)

model

cone

Nylon 3.2mm

0

10

20

30

40

50

60

15 20 25 30 35 40 45 50 55 60

( kW/ m2 )

ML

R(g

/m2s

ec

)

conemodelNylon+5% 1.6mm

0

10

20

30

40

50

60

15 20 25 30 35 40 45 50 55 60

( kW/ m2)

ML

R(g

/m

2s

ec

)

cone

model

Nylon+5% 3.2mm

0

10

20

30

40

50

60

15 20 25 30 35 40 45 50 55 60

( kW/ m2sec)

ML

R(g

/m2s

ec

)

conemodel

Page 26: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Tflash & Tfire

� The flash point and fire point calculated by the model are found to be nearly constant over

the heat flux range: 19 kW/m2 to 54 kW/m2.

388 ℃403 ℃394 ℃406 ℃Fire-point

367 ℃378 ℃372 ℃383 ℃Flash-point

Nylon+5% clay 3.2 mm

Nylon+5% clay 1.6 mm

Nylon

3.2 mm

Nylon

1.6 mm

Page 27: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Decomposition temperature

� In contrast, the temperature(Tp) on the peak

burning rate increases with the radiation heat

flux.

Nylon 1.6mm

Nylon 3.2mm

Nylon+5% 1.6mm

Nylon+5% 3.2mm

Page 28: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

Conclusions

� The theoretical results for thermally thin ignition and

burning yield good agreement with data for 1.6 mm

samples of Nylon and Nylon with 5 % nano-clay.

� TGA and DSC data provide a good basis for the theory, but reveal no distinct differences between the pure Nylon and the nano-clay Nylon within the accuracy of the data.

� Hence, the inhibiting nature of the nano-clay appears to be solely that of the insulating char layer that is more significant for thick samples.

� The Nylon sample is thermally thin up to about 3.2 mm.

Page 29: Thermochemical Flammability Model for Thin Materials › 2007conference › files › ... · Thermochemical Flammability Model for Thin Materials Mekyoung Kim 1 and James G. Quintiere

END