36
Thermal Properties of Hot and Dense Matter Brian Muccioli Constantinos Constantinou Madappa Prakash James M. Lattimer Ohio University, Athens, OH March 10, 2015 Kent State University Thermal Properties of Hot and Dense Matter

Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Thermal Properties of Hot and Dense Matter

Brian MuccioliConstantinos Constantinou

Madappa PrakashJames M. Lattimer

Ohio University, Athens, OH

March 10, 2015Kent State University

Thermal Properties of Hot and Dense Matter

Page 2: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Outline

I Physical Settings

I The Models

I Zero Temperature Properties

I Finite Temperature Properties

I Limiting Cases

I Contribution from Leptons and Photons

I Pion Condensate (APR)

I Equation of State for a Cold Neutron Star

I Adiabatic Index

Thermal Properties of Hot and Dense Matter

Page 3: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Physical Setting: Core-Collapse SN matter

Credit: Freedman and Kaufmann: Universe 7th ed. Credit: R.J. Hall 2006

I Origin of core-collapse supernovae (SN)I In massive (8− 25M�) star nucleosynthesis until FeI Core contractsI Core bounce shock-waveI CBS accelerates to supersonic speedsI SN explosionI Core remains

Thermal Properties of Hot and Dense Matter

Page 4: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

The Physical Setting: Neutron Star (NS)

Credit: Adapted from Prakash et. al. (1997)

I t = 0sI Shock stand-offI ν’s trapped in coreI Mantle:

I AccretionI β-decay and

ν-emission

I t ∼ 0.5sI Mantle collapseI Black hole (BH)?

I → ν-signal ceases

I t ∼ 15sI ν-heatingI Deleptonization

I → ν-signal ceases

Thermal Properties of Hot and Dense Matter

Page 5: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

The Physical Setting: Binary Merger

I Binary neutron stars coalesce

I Results in single black hole

I Temperatures can reach ∼ 100 MeV

Credit: Rezzolla et. al. APJ (2011)

(n ≈ 6× 10−16ρ)

Thermal Properties of Hot and Dense Matter

Page 6: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Aims

Supernovae Proto-Neutron Star Neutron Star Binary MergerYp ∼ 0.4− 0.35 ∼ 0− 0.3 ∼ 0− 0.3 ∼ 0− 0.3nn0

∼ 1− 6 ∼ 0.5− 7 ∼ 0.5− 7 . 2

T (MeV) ≤ 50 ∼ 50 . 10−3 T (S = 4− 9)Data Luminosity, Neutrino specta Maximum mass, Gravitational waves,

Element synthesis of all flavors Radius, Neutrino spectraNeutrino spectra Surface temperatures,

Pulsar period

I Calculate Properties for:I SN, PNS, NS and binary mergers

I Use state-of-the-art modelsI Micro/Macro physics

I Predict observables

I Tabulate equation of state for use in large-scale simulations

Thermal Properties of Hot and Dense Matter

Page 7: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Skyrme Models

HSkyrme =~2

2mnτn +

~2

2mpτp

+n(τn + τp)[ t1

4

(1 +

x1

2

)+

t2

4

(1 +

x2

2

)]+(τnnn + τpnp)

[t2

4

(1

2+ x2

)− t1

4

(1

2+ x1

)]+to2

(1 +

xo2

)n2 − to

2

(1

2+ xo

)(n2

n + n2p)[

t3

12

(1 +

x3

2

)n2 − t3

12

(1

2+ x3

)(n2

n + n2p)

]nε

I Contact interactions

I Function of n, Yi and τiI Simple to use

Thermal Properties of Hot and Dense Matter

Page 8: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

The APR model

HAPR =

[~2

2m+ (p3 + Ynp5)ne−p4n

]τn

+

[~2

2m+ (p3 + Ypp5)ne−p4n

]τp

+g1(n)[1− (1− 2Yp)2)] + g2(n)(1− 2Yp)2

g1L[1− (1− 2Yp)2] + g2L(1− 2Yp)2

= g1H [1− (1− 2Yp)2] + g2H(1− 2Yp)2

I Uses nucleon-nucleon potentials that fit properties of light nuclei

I Hamiltonian density function of n, Yi (= nin ) and τi (K.E. den.)

I Includes effects of pion condensate at supra-nuclear densities

Thermal Properties of Hot and Dense Matter

Page 9: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

The MDI model

I Potential contains integralsover momentum

I Computationally tricky atfinite temperatures

HMDI =1

2m(τn + τp)

+A1

2n0(nn + np)2 +

A2

2n0(nn − np)2

+B

σ + 1

(nn + np)σ+1

nσ0

[1− y

(nn − np)2

(nn + np)2

]+

Cl

n0

∑i

∫d3pi d

3p′ifi (~ri , ~pi )f

′i (~r ′i , ~p

′i )

1 +(~pi−~p′i

Λ

)2

+Cu

n0

∑i

∫d3pi d

3pjfi (~ri , ~pi )fj(~rj , ~pj)

1 +(~pi−~pj

Λ

)2 ; i 6= j .

Thermal Properties of Hot and Dense Matter

Page 10: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Fit to Experiment

I Hamiltonians fit tosome symmetricnuclear propertiesat T=0

I Using fittedparametrizationcalculateproperties ofmatter at zero andfinite temperatures

Property Value Value Value Experiment[MDI(A)] [SkO′] [APR]

n0 (fm−3) 0.160 0.160 0.160 0.17±0.02E0 (MeV) -16.00 -15.75 -16.00 -16±1K0 (MeV) 232.0 222.3 266 230±30m∗0/m 0.67 0.90 0.70 0.8±0.1Sv (MeV) 30.0 31.9 32.6 30-35Lv (MeV) 65.0 68.9 58.5 40-70

Thermal Properties of Hot and Dense Matter

Page 11: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Zero Temperature Matter

I Nucleon energies restricted to withinthe Fermi surface

I Fermi-Dirac (FD) integrals nowanalytical:→ H = H(n,Yp)

ni =1

π2

∫ kFi

0k2i dki =

k3Fi

3π2

τi =1

π2

∫ kFi

0k4i dki =

k5Fi

5π2

I Momentum integrals in HMDI

→ Functions of kF

εk = k2∂H∂τi

+∂H∂ni

m∗i = ~2kFi

(∂εk∂k

)kF

E = H/n

P = n∂H∂n−H

µi =∂H∂ni

Thermal Properties of Hot and Dense Matter

Page 12: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Effective Mass Splitting (1)

I Experimental uncertainties→ different parameterizations

I Can produce models with mn∗ ≷ mp

I What governs mn∗ ≷ mp

∗?

εk = k2∂H∂τi

+∂H∂ni

m∗i = ~2kFi

(∂εk∂k

)kF

0 0.1 0.2 0.3 0.4 0.5 0.6 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n (fm-3

)

x = 0.1

0.3

0.5

neutron

proton

Sly4(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

m* /m

n (fm-3

)

x = 0.1

0.3

0.5

neutron

protonMDI(A)

(a)

Thermal Properties of Hot and Dense Matter

Page 13: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Effective Mass Splitting (2)

I What governs mn∗ ≷ mp

∗?I mn

∗ > mp∗ →

I MDI: Cl − Cu > 0I Skyrme: t1(1 + 2x1) > t2(1 + x2)

I Experiment to determinemn∗ ≷ mp

I Choose mn∗ > mp

0 0.1 0.2 0.3 0.4 0.5 0.6 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n (fm-3

)

0.1

0.3

x = 0.5

neutron

proton

SkO'

(b)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

m* /m

n (fm-3

)

x = 0.1

0.3

0.5

neutron

proton

MDI(B)(a)

Thermal Properties of Hot and Dense Matter

Page 14: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Effective Mass Results

0 0.1 0.2 0.3 0.4 0.5 0.6

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n (fm-3

)

Ska

proton

neutron

x = 0.1

0.3

0.5

(d)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

m*/

m

n (fm-3

)

APR proton

neutron

x = 0.1

0.3

0.5

(c)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

n (fm-3

)

0.1

0.3

x = 0.5

neutron

proton

SkO'

(b)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6

m* /m

n (fm-3

)

x = 0.1

0.3

0.5

neutron

protonMDI(A)

(a)

Thermal Properties of Hot and Dense Matter

Page 15: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Zero Temperature Matter (1)

I Smooth pressure for Skyrme andMDI(A)

I Pion condensate creates drop inpressure

I MDI(A) and SkO’ agree

I APR exhibits a pion condensate

-20

0

20

40

60

80

100

120

140

0 0.1 0.2 0.3 0.4 0.5 0.6

E (

Me

V)

n (fm-3

)

T = 0 MeV

x = 0.1

0.3

0.5

APRSka

MDI(A)SkO'

0

20

40

60

80

100

120

140

160

0 0.1 0.2 0.3 0.4 0.5 0.6

P (

Me

V f

m-3

)

n (fm-3

)

T = 0 MeV

x = 0.1

0.5

APRSka

MDI(A)SkO'

Thermal Properties of Hot and Dense Matter

Page 16: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Zero Temperature Matter (2)

I Models agree atlow densities

I Differences atsupra-nucleardensities

I Pion condensate

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6

µn (

MeV

)

n (fm-3

)

x = 0.1

0.3

0.5

T = 0 MeV

APRSka

MDI(A)SkO'

Thermal Properties of Hot and Dense Matter

Page 17: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

APR and Skyrme at Finite Temperatures

I FD solved with JEL

I Find ψi given niI Derivatives of FD integrals

as functions of other FD’s

I Thermal properties nowfunctions of m∗ and FD

I (APR) Pion condensategoverned by density effects,not temperature

ni =1

2π2

(2m∗i T

~2

)3/2

F1/2i

τi =1

2π2

(2m∗i T

~2

)5/2

F3/2i

Fαi =

∫ ∞0

xαie−ψi exi + 1

dxi

xi =1

T

(k2i

∂H∂τi

)=

1

T

~2k2i

2m∗i

ψi =1

T

(µi −

∂H∂ni

)=µi − Vi

T

Thermal Properties of Hot and Dense Matter

Page 18: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

MDI at Finite Temperatures (1)

I Solve self consistentset of equations

I Iterate until µi and Ri

converge

I Use final fi and Ri forenergy, pressure ...

ni =

∫d3pi fi (~ri , ~pi )

fi (~ri , ~pi ) =2

(2π~)3

1

1 + e(εpi−µi )/T

εpi =p2i

2m+ Ui (ni , nj) + Ri (ni , nj , pi )

Ri (ni , nj , pi ) =2Cl

n0

2

(2π~)3

∫d3p′i

fp′i

1 +(~pi−~p′i

Λ

)2

+2Cu

n0

2

(2π~)3

∫d3pj

fpj

1 +(~pi−~pj

Λ

)2

Thermal Properties of Hot and Dense Matter

Page 19: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

MDI at Finite Temperatures (2)

I Convergence in 3-4 iterations

I Larger changes at high temperatures

-100

-80

-60

-40

-20

0

0 1 2 3 4

Rn (

MeV

)

MDI(A)

T = 20 MeV

x = 0.0

(a)

n = 0.5 fm-3

0.34

0.17

0.085

R(0)

R(f)

k (fm-1

)

0 1 2 3 4-100

-80

-60

-40

-20

0

MDI(A)

T = 50 MeV

x = 0.0

(b)

n = 0.5 fm-3

0.34

0.17

0.085

R(0)

R(f)

-300

-250

-200

-150

-100

-50

0

0 1 2 3 4

Rn (

MeV

)

MDI(A)

T = 20 MeVx = 0.5

(c)

n = 0.5 fm-3

0.34

0.17

0.085

R(0)

R(f)

k (fm-1

)

0 1 2 3 4-300

-250

-200

-150

-100

-50

0

MDI(A)

T = 50 MeV

x = 0.5

(d)

n = 0.5 fm-3

0.34

0.17

0.085

R(0)

R(f)

Thermal Properties of Hot and Dense Matter

Page 20: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Thermal Properties (1)

I Similar low-n behavior

I Differences at high-n

I Pion condensate effects limited to zerotemperature properties

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5

Eth

(M

eV

)

T = 20 MeV

x = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0.1 0.2 0.3 0.4 0.5 0

10

20

30

40

50

60

70

80

T = 50 MeV

x = 0.5

APRSka

MDI(A)SkO'

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0.1 0.2 0.3 0.4 0.5

Pth

(M

eV

fm

-3)

T = 20 MeVx = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0.1 0.2 0.3 0.4 0.5 0

2

4

6

8

10

12

14

16

18

T = 50 MeVx = 0.5

APRSka

MDI(A)SkO'

Thermal Properties of Hot and Dense Matter

Page 21: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Thermal Properties (2)

I Similar low-n behavior

I Differences at high-n

-50

-40

-30

-20

-10

0

10

0 0.1 0.2 0.3 0.4 0.5

µn,th (

Me

V)

T = 20 MeV

x = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0 0.1 0.2 0.3 0.4 0.5-200

-150

-100

-50

0

50

T = 50 MeV

x = 0.5

APRSka

MDI(A)SkO'

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5

S (

kB)

T = 20 MeV

x = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0.1 0.2 0.3 0.4 0.5 0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T = 50 MeV

x = 0.5

APRSka

MDI(A)SkO'

Thermal Properties of Hot and Dense Matter

Page 22: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Thermal Properties (3)

CV =∂E

∂T

∣∣∣∣n

I Similar trends

CP = CV +T

n2

(∂P∂T

∣∣n

)2

∂P∂n

∣∣T

(1)

I Peak due to ∂P∂n → 0

0

0.5

1

1.5

2

0.1 0.2 0.3 0.4 0.5

Cv (

kB)

T = 20 MeV

x = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0.1 0.2 0.3 0.4 0.5 0.5

1

1.5

2

2.5

T = 50 MeV

x = 0.5

APRSka

MDI(A)SkO'

0

0.5

1

1.5

2

2.5

3

3.5

4

0.1 0.2 0.3 0.4 0.5

Cp (

kB)

T = 20 MeV

x = 0.5

n (fm-3

)

APRSka

MDI(A)SkO'

0.1 0.2 0.3 0.4 0.5 0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T = 50 MeV

x = 0.5

APRSka

MDI(A)SkO'

Thermal Properties of Hot and Dense Matter

Page 23: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Limiting Cases

I Degenerate Limit (low-T, high-n)I Landau’s Fermi Liquid Theory

I Non-degenerate (high-T, low-n)I Taylor expand FD integralsI Invert series F 1

2 ito find zi (ni ,T )

I Both:I Model dependence through m∗

I Provides check for resultsI Simple expressions

a =π2

2

m∗

kF2

S = 2aT

Eth = aT 2 (2)

Fαi ' Γ(α + 1)

(zi −

z2i

2α+1+ . . .

)zi =

niλ3i

γ+

1

23/2

(niλ

3i

γ

)2

λi =

(2π~2

m∗i T

)1/2

γ = 2 (the spin orientations) (3)

Thermal Properties of Hot and Dense Matter

Page 24: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Limiting Cases

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5

Eth

(M

eV

)

T = 20 MeV

x = 0.5

0.0

Deg.

Exact

MDI(A)

n (fm-3

)

Non-

(a)

Deg.

0.2 0.4 0.6 0.8 0

20

40

60

80

T = 50 MeV

0.5

x = 0

Deg.

Exact

MDI(A)

Non-

(b)

Deg.

0

5

10

15

20

25

30

0.1 0.2 0.3 0.4 0.5E

th (

MeV

)

T = 20 MeV

0.5

x = 0

Deg.

Exact

SkO'

n (fm-3

)

Non-

(c)

Deg.

0.2 0.4 0.6 0.8 0

20

40

60

80

T = 50 MeV

0.5

x = 0

Deg.

Exact

SkO'

Non-

(d)

Deg.

Thermal Properties of Hot and Dense Matter

Page 25: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Leptons and Photons

I Leptons:I Electromagnetic interactions

negligibleI Treat as free Fermi gasI FD integrals solved with JEL

I Photons:I Described adequately as a blackbodyI Constant with baryon density

εγ =π2

15

T 4

(~c)3

Pγ =εγ3

sγ =4

3

εγT

(4)

0

50

100

150

200

250

300

350

400

450

0 0.1 0.2 0.3 0.4 0.5

µe (

Me

V)

n (fm-3

)

T = 0 MeV

x = 0.5

x = 0.1

50 MeV

Rel.JEL

0

20

40

60

80

100

120

140

160

180

0 0.1 0.2 0.3 0.4 0.5

Ee (

Me

V)

n (fm-3

)

T = 50 MeV

T = 50 MeV

x = 0.5

x = 0.1

0 MeV

0 MeV

Rel.JEL

Thermal Properties of Hot and Dense Matter

Page 26: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

EOS with a Pion Condensate (1)

I Drop in pressure ⇒Mechanical instability

dP

dn≤ 0

I Maxwell construction toestablish mixed-phaseregion where

dP

dn= 0

I Solve system for nL and nH :

P(nL) = P(nH)

µ(nL) = µ(nH)

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3

P (

MeV

fm

-3)

T = 20 MeV

APR

n (fm-3

)

Yp = 0.1

0.3

0.5

0.1 0.2 0.3 0

10

20

30

40

50

60

T = 50 MeV

APR

Yp = 0.1

0.3

0.5

Thermal Properties of Hot and Dense Matter

Page 27: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

EOS with a Pion Condensate (2)

I Maxwell construction toestablish mixed-phaseregion where

dP

dn= 0

I Solve system for nL and nH :

P(nL) = P(nH)

µ(nL) = µ(nH)

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0 0.1 0.2 0.3 0.4 0.5

n (

fm-3

)

Yp

nc

nH

nL

T = 0 MeV

50 MeV

APR

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3

P (

MeV

fm

-3)

T = 20 MeV

APR

n (fm-3

)

Yp = 0.1

0.3

0.5

0.1 0.2 0.3 0

10

20

30

40

50

60

T = 50 MeV

APR

Yp = 0.1

0.3

0.5

Thermal Properties of Hot and Dense Matter

Page 28: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

EOS with a Pion Condensate (3)

I No drop in pressure ⇒Mechanical stability

dP

dn≥ 0

0.15

0.17

0.19

0.21

0.23

0.25

0.27

0.29

0.31

0.33

0.35

0 0.1 0.2 0.3 0.4 0.5

n (

fm-3

)

Yp

nc

nH

nL

T = 0 MeV

50 MeV

APR

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3

P (

MeV

fm

-3)

T = 20 MeV

APR

n (fm-3

)

Yp = 0.1

0.3

0.5

0.1 0.2 0.3 0

10

20

30

40

50

60

T = 50 MeV

APR

Yp = 0.1

0.3

0.5

0

5

10

15

20

25

30

35

40

0.1 0.2 0.3

P (

MeV

fm

-3)

T = 20 MeV

APR

n (fm-3

)

Yp = 0.1

0.3

0.5

0.1 0.2 0.3 0

10

20

30

40

50

60

T = 50 MeV

APR

Yp = 0.1

0.3

0.5

Thermal Properties of Hot and Dense Matter

Page 29: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

EOS of a Cold Pure Neutron Star

Model Mmax ( M�) Rmax ( km) ncent ( fm−3)APR 2.20 10.15 1.11Ska 2.24 11.35 0.96

MDI(A) 2.00 10.51 1.15

SkO′ 1.99 10.47 1.16

PSR M( M�) Ref.J1614-2230 1.97± 0.04 [14]J0348+0432 2.01± 0.04 [15]

I T = 0 MeV and Yp = 0 obtain E (n) and P(n)

I Solve Tolman-Oppenheimer-Volkoff (TOV)equations and extract M(R) and ncent

0e+00

2e-04

4e-04

6e-04

8e-04

1e-03

0 0.2 0.4 0.6 0.8

ε (

MO•

km

-3)

x = 0

APR

Ska

MDI(A)

SkO'

0 0.2 0.4 0.6 0.8 10e+00

1e-04

2e-04

3e-04

4e-04

5e-04

6e-04

7e-04

P (

MO•

km

-3)

x = 0

n (fm-3

)

APR

Ska

MDI(A)

SkO'

0

0.5

1

1.5

2

2.5

8 10 12 14 16 18 20

MG

/MO•

R (km)

APR

Ska

x = 0

MDYIN

SkO’

Thermal Properties of Hot and Dense Matter

Page 30: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Adiabatic Index at Zero Temperature (1)

ΓS =∂ lnP

∂ ln n

∣∣∣∣S

=n

P

∂P

∂n

∣∣∣∣S

I Spinodalinstability when∂P∂n → 0

I Does not occurwhen leptons areincluded

1

2

3

4

0.001 0.01 0.1 1

Yp,e = 0

(d)

1

2

3

4

0.001 0.01 0.1 1

Yp,e = 0.1

(c)

1

2

3

4

0.001 0.01 0.1 1

Yp,e = 0.3

(b)

1

2

3

4

0.001 0.01 0.1 1

MDI(A)

T = 0 MeV

Γ

Yp,e = 0.5

n (fm-3

)

(a)

0.001 0.01 0.1 1

1

2

3

4

Ye = 0

(h) 0.001 0.01 0.1 1

1

2

3

4

Ye = 0.1

(g) 0.001 0.01 0.1 1

1

2

3

4

Ye = 0.3

(f) 0.001 0.01 0.1 1

1

2

3

4

SkO'

T = 0 MeV

Γ

Ye = 0.5

n (fm-3

)

(e)

Thermal Properties of Hot and Dense Matter

Page 31: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Adiabatic Index at Zero Temperature (2)

I Leptons dominate the totalpressure at low densities

-1

-0.5

0

0.5

1

0.001 0.01 0.1 1

P (

MeV

fm

-3)

MDI(A)T = 0 MeV

0.10.3

x = 0.5

(a)

NucleonLepton

0.01 0.1 1-1

-0.5

0

0.5

1

SkO'T = 0 MeV

0.10.3

x = 0.5

(b)

n (fm-3

)

NucleonLepton

Thermal Properties of Hot and Dense Matter

Page 32: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Adiabatic Index at Finite Entropies

I Interpolate to find T(n,S)

I Single ΓS crossing

I Interesting combination of (n,T)

1

10

100

0.001 0.01 0.1 1

T (

MeV

)

n (fm-3

)

Ye = 0.5

MDI(A)SkO'

S = 0.25

0.5

1

2

3

4

5

1.5

2

2.5

0.01 0.1 1

SkO'

(c)

Ye = 0.5

S = 2

3 4

ExactDeg

0.01 0.1 1

1.5

2

2.5

SkO'

(d)

Ye = 0.5

S = 2

3 4

ExactND

1.5

2

2.5

0.01 0.1 1

MDI(A)

(a)

Ye = 0.5

S = 2

34

ExactDeg

0.01 0.1 1

1.5

2

2.5

MDI(A)

(b)

Ye = 0.5

S = 2

34

n (fm-3

)

ΓS

ExactND

Thermal Properties of Hot and Dense Matter

Page 33: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

ΓS Limiting Cases

I Degenerate→ (high-T, low-n)

I Non-Degenerate→ (low-T, high-n)

1.2

1.6

2

2.4

0.001 0.01 0.1 1

S = 2

1.2

1.6

2

2.4

0.001 0.01 0.1 1

S = 3

1.2

1.6

2

2.4

0.001 0.01 0.1 1

MDI(A)

S = 4

ΓS

Yp = 0.5

n (fm-3

)

ExactDegND

1.2

1.6

2

2.4

0.001 0.01 0.1 1

S = 2

1.2

1.6

2

2.4

0.001 0.01 0.1 1

S = 3

1.2

1.6

2

2.4

0.001 0.01 0.1 1

SkO'

S = 4

ΓS

Yp = 0.5

n (fm-3

)

ExactDeg.Non-Deg.

Thermal Properties of Hot and Dense Matter

Page 34: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Photon Entropies

I Photon entropynegligible at lowStotal

I Photons play arole at highStotal and n

I Sγ has T 3

dependence

0

0.3

0.6

0.9

1.2

0.001 0.01 0.1 1

Ye = 0.5 STot = 1

SkO'Nucleons

LeptonsPhotons

0.01 0.1 1 0

0.3

0.6

0.9

1.2Ye = 0.1 STot = 1

SkO'Nucleons

LeptonsPhotons

1

2

3

4

0.001 0.01 0.1 1

Ye = 0.5 STot = 4

SkO'Nucleons

LeptonsPhotons

0.01 0.1 1

1

2

3

4Ye = 0.1 STot = 4

n (fm-3

)

S (

kB)

SkO'Nucleons

LeptonsPhotons

Thermal Properties of Hot and Dense Matter

Page 35: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Future Work

Credit: Matthew W. Carmell, Stony Brook dissertation

Credit: Newton, William G. (2013)

I The Inhomogeneous PhaseI Low density structures and nucleiI Effects of nuclear deformationI Pasta phases

Thermal Properties of Hot and Dense Matter

Page 36: Thermal Properties of Hot and Dense Mattermstrick6/qcdseminar/spring15/muccioli.pdf · I Thermal properties now functions of m and FD I (APR) Pion condensate governed by density e

Summary

I Hamiltonians fit to nuclear matter properties

I Effective mass splitting

I Models have similar properties for T=0

I APR distinguished by pion condensate

I Finite temperature properties governed byeffective mass

I Both leptons and photons play significant roles

I Limiting cases provide compact equations thatgive physical insight

Thermal Properties of Hot and Dense Matter