Thermal Physics Lecture Note 6

Embed Size (px)

Citation preview

  • 8/10/2019 Thermal Physics Lecture Note 6

    1/24

    6. Combined first and second laws

    First law

    dWdUdQ for all processes

    Second law

    TdSdQ= for reversible processes

    and PdVdW= for systemP-V-T

    Combined

    2

    1

    2

    1

    PdVdUTdS

    PdVdUTdS

    This is the combined first and second laws forP-V-T system

    Although we have obtained this equation by assuming reversible processes , it is actually

    generally valid for all processes between 2 equilibrium states.

    2

    1

  • 8/10/2019 Thermal Physics Lecture Note 6

    2/24

    Example: Isothermal process ofP-V-T system

    PdVdUdST

    For this system, the equation of state is given by

    =P function (V,T)

    Example of other system : dielectric

    ET

    ba

    V

    : Polarization, V: volume, T: temperature, E: electric field

  • 8/10/2019 Thermal Physics Lecture Note 6

    3/24

    6.1 Tds equation

    (a) u(T,v) s(T,v)

    1+2 law : PdvduT

    ds 1

    dvv

    udT

    T

    udu

    Tv

    =

    dvPv

    u

    TdT

    T

    u

    Tds

    Tv

    =

    11

    Also, dvv

    sdT

    T

    sds

    Tv

    =

    Compare,

    T

    c

    T

    u

    TT

    s v

    vv=

    =

    1

    =

    Pv

    u

    Tv

    s

    TT

    1

  • 8/10/2019 Thermal Physics Lecture Note 6

    4/24

  • 8/10/2019 Thermal Physics Lecture Note 6

    5/24

    vTP

    =

    PT

    v

    u

    T

    Hence,vT T

    PPP

    T

    Tv

    s

    =

    1

    dvP

    TdTcTds v

    From Lecture Note 4,

    PT

    vPT

    vP

    v

    ucc

    =

    we get

    2Tvv

    Tcc vP =

    =

    Compare with ideal gas, Rcc vP =

    T v

  • 8/10/2019 Thermal Physics Lecture Note 6

    6/24

    (b) u(T,P), s(T,P)

    Enthalpy Pvuh h(T,P)

    vdPPdvdudh

    vdPdhPdvdu

    Hence, from 1+2 law : vdPdhT

    PdvduT

    ds 11

    Write dP

    P

    hdT

    T

    hdh

    TP

    =

    dPP

    sdT

    T

    sds

    TP

    =

    =

    vdPdPPhdT

    Th

    TdP

    PsdT

    Ts

    TPTP

    1

    PP T

    h

    TT

    s

    =

    1

  • 8/10/2019 Thermal Physics Lecture Note 6

    7/24

    =

    vPh

    TPs

    TT

    1

    FromTP

    s

    PT

    s

    =

    22

    =

    =

    v

    P

    h

    TT

    v

    PT

    h

    T

    P

    s

    TPT

    s

    TP

    PT

    2

    2

    2

    11

    =

    =

    TP

    h

    TT

    s

    PTP

    s

    TP

    22 1

    Equate

    =

    TPh

    Tv

    Ph

    TTv

    PTh

    T TP

    2

    2

    2 111

    =

    vP

    h

    TT

    v

    T TP2

    11

  • 8/10/2019 Thermal Physics Lecture Note 6

    8/24

    vTvTvTv

    Ph

    PT

    andPT T

    vv

    P

    s

    P

    P

    cT

    h=

    T

    c

    T

    s P

    P

    =

    Hence, dP

    P

    sdT

    T

    sds

    TP

    =

    dPT

    vdT

    T

    cds

    P

    P

    ordPvTdTcTds

    T PP

  • 8/10/2019 Thermal Physics Lecture Note 6

    9/24

    (c) u(P,v), s(P,v)

    Similarly, using

    T

    c

    P

    s v

    v

    =

    andTv

    c

    v

    s P

    P

    =

    dPP

    Tcdv

    v

    TcTds

    v

    v

    P

    P

    =

    We get,

  • 8/10/2019 Thermal Physics Lecture Note 6

    10/24

    6.2 Examples of application of Tds equations

    (1) Adiabatic compression 0TdsdQ

    T= ? from the volume is reduced from v1v2

    From dvT

    P

    TdTcTdsv

    v

    dvc

    T

    dvT

    P

    c

    T

    dTvvv

    Hence

    dvcT

    dT

    v

    [ ] 21

    2

    1

    v

    v

    v

    T

    T v

    cnT

    l

    (2) Change of volume vwith pressurePduring adiabatic process

    0

    = dPP

    Tcdv

    v

    TcTds

    v

    v

    P

    P

    0dPc

    dvv

    c vP

  • 8/10/2019 Thermal Physics Lecture Note 6

    11/24

    =

    =

    P

    v

    s c

    c

    P

    v

    v

    1

    Define ssP

    v

    v

    1 as coefficient of adiabatic compression

    =s

  • 8/10/2019 Thermal Physics Lecture Note 6

    12/24

  • 8/10/2019 Thermal Physics Lecture Note 6

    13/24

    wherePT T

    vTvPh

    and PP

    cTh

    =

    dPT

    vTvdTcdh

    P

    P

    dPT

    vTvdPdTchh

    P

    P P

    P

    P

    T

    T

    Po

    ooo

    The experssion

    P

    P PodPT

    v

    , and

    P

    PovdP dPT

    v

    T

    P

    P Po

    can be obtained from the equation of state

    To obtain

    T

    T

    P

    odTT

    c

    and , we need the value of c

    T

    TP

    odTc Pat Po.

    cPocan be obtained as follows :

  • 8/10/2019 Thermal Physics Lecture Note 6

    14/24

    FromPT T

    v

    P

    s

    PT

    v

    PT

    s

    2

    22

    andP

    PT

    sTc

    = T

    P

    P

    c

    TTP

    s

    =

    12

    PT

    P

    T

    v

    P

    c

    T

    2

    21

    P

    P P

    c

    c

    P

    o

    P

    po

    dP

    T

    vTdc

    2

    2

    P

    P P

    PPo

    o

    dPT

    vTcc

    2

    2

  • 8/10/2019 Thermal Physics Lecture Note 6

    15/24

    Example 1 : For ideal gas,

    P

    RTv=

    HenceP

    R

    T

    v

    P

    =

    , 02

    2

    =

    PT

    v

    PoP cc=

    =

    P

    P o

    P

    P P ooP

    PnRdP

    P

    RdP

    T

    vl dP

    P

    RTdP

    T

    vT

    P

    P

    P

    P P oo

    =

    dPP

    RTvdP

    P

    P

    P

    P oo

    =

    and

    T

    T

    Po

    o

    dTchho

    T

    T

    Po

    P

    PnRdT

    T

    css

    o

    l

    If cP is a constant for closeby temperature,

    oPo TTchh

  • 8/10/2019 Thermal Physics Lecture Note 6

    16/24

    oo

    Po

    P

    PnR

    T

    Tncss ll

    From h, internal energy RTdTchPvhuT

    T

    Po

    o

    and Rcc vP =

    o

    T

    T

    voo

    T

    T

    vo RTdTchRTTTRdTchu

    oo

    )(

    since

    T

    T

    vo

    o

    dTcuu ooo RThu

    For 2 nearby states so that cv is a constant,

    )( ovo TTcuu

  • 8/10/2019 Thermal Physics Lecture Note 6

    17/24

    Example 2 : van der Waals gas RTbv

    v

    aP =

    )(2

    Using the Tdsequation for the case of u(T,v)and s(T,v)

    dv

    T

    PdT

    T

    cds

    v

    v

    From the equation of state,bv

    R

    T

    P

    v

    Hence,

    bvbvnRdT

    Tcss

    o

    T

    T

    vo

    o

    l

    Take cvas constant,

    bv

    bvnR

    T

    Tncss

    oo

    vo ll

    Similarly, for the internal energy,

    dvv

    adTcdvP

    T

    PTdTcdu v

    v

    v 2

  • 8/10/2019 Thermal Physics Lecture Note 6

    18/24

    o

    ovovv

    aTTcuu 11)(

    From

    2Tv

    T

    vP

    v

    ucc

    PT

    vP =

    =

    PT

    PT

    v

    u

    vT

    =

    We get

    =

    =

    2

    2)(21

    RTv

    bva

    R

    T

    v

    T

    PTcc

    PvvP

    [Compare with Rcc vP = for ideal gas]

  • 8/10/2019 Thermal Physics Lecture Note 6

    19/24

    Example 3 : Liquid or solid under the effect of hydrostatic pressure

    Equation of state dPP

    vdT

    T

    vdv

    TP

    =

    For coefficient of volume expansion and coefficient of isothermal compression,

    PT

    v

    v

    =

    1 and

    TP

    v

    v

    1

    vdPvdTdv

    Integrate

    P

    P

    T

    T

    o

    oo

    vdPvdTvv

    For liquid and solid, the change in vwithPand Tis considered to be negligibly small

    This means that and is almost not change with Pand T

    Hence, ]ooo PPTTvv 1

    This is the approximate equation of state

  • 8/10/2019 Thermal Physics Lecture Note 6

    20/24

    Tdsequation : dPTvTdTcTds

    P

    P

    dPT

    vdT

    T

    css

    P

    P P

    T

    T

    Po

    oo

    1: (integrate w.r.tPo) 2: (integrate w.r.t. T)

    From the equation of state, oP

    vT

    v

    02

    2

    =

    PT

    v

    ooo

    Po

    P

    P

    o

    T

    T

    Po PPv

    T

    TncsdPvdT

    T

    css

    oo

    l

  • 8/10/2019 Thermal Physics Lecture Note 6

    21/24

    6.4 Joule and Joule-Thomson coefficients

    From the first law,

    1

    vuT u

    T

    T

    v

    v

    u

    u

    vT v

    Tc

    v

    u

    Similarly,

    h

    P

    T P

    Tc

    P

    h

    Joule Coefficient:uv

    T

    =

    Joule-Thomson Coefficient:hP

    T

    =

    PT

    v

    u

    T

    =

  • 8/10/2019 Thermal Physics Lecture Note 6

    22/24

    vvT

    P

    h

    T

    Jadi

    TP

    cv

    u

    c vTv

    11

    dan vvTcP

    hc PTP

    11

  • 8/10/2019 Thermal Physics Lecture Note 6

    23/24

    6.5 Multivariable systems

    Combined first and second laws forP, V, T system

    PdVdUTdS

    can be generalised as follows :

    Consider a system that can be described by using parameters Y, X, T

    We can write YdXdUTdS

    For system with 5 parameters, Y1X1Y2X2T,

    2211 dXYdXYdUTdS

    The state of the system can be fixed by knowing 3 parameters

  • 8/10/2019 Thermal Physics Lecture Note 6

    24/24

    Example : paramagnetic gas in an external magnetic field

    5 parameters : magnetic fieldH (intensive)

    megnetic moment -M(extensive)

    pressureP (intensive)

    volume V(extensive)

    temperature T

    HdMPdVdUTdS