27
Thermal Aware Workload Scheduling with Back lling for Green Data Centers Lizhe Wang, Gregor von Laszewski, Jai Dayal, Thomas R. Furlani RIT . IU. UB

Thermal Aware Workload Scheduling with Backfilling for Green Data Centers

  • Upload
    danil

  • View
    45

  • Download
    0

Embed Size (px)

DESCRIPTION

Thermal Aware Workload Scheduling with Backfilling for Green Data Centers. Lizhe Wang, Gregor von Laszewski , Jai Dayal , Thomas R. Furlani RIT . IU. UB. Outline. Background and related work Models Research problem definition Scheduling algorithm Performance study Conclusion . - PowerPoint PPT Presentation

Citation preview

Page 1: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Thermal Aware Workload Scheduling with Backfilling for Green Data Centers

Lizhe Wang, Gregor von Laszewski, Jai Dayal, Thomas R. Furlani

RIT . IU. UB

Page 2: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Outline

• Background and related work• Models• Research problem definition• Scheduling algorithm• Performance study• Conclusion

Page 3: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

ContextCyberaide

A project that aims to make advanced

cyberinfrastructure easier to use

Future Grid

A newly NSF funded project to provide a

testbed that integrates the ability of dynamic

provisioning of resources.

(Geoffrey C. Fox is PI)

GreenIT & Cyberaide

How do we use advanced

cyberinfrastructure in an efficient way

GPGPU’s

Application use of special purpose

hardware as part of the cyberinfrastructure

Page 4: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

FutureGrid• The goal of FutureGrid is to support the research that will

invent the future of distributed, grid, and cloud computing. • FutureGrid will build a robustly managed simulation

environment or testbed to support the development and early use in science of new technologies at all levels of the software stack: from networking to middleware to scientific applications.

• The environment will mimic TeraGrid and/or general parallel and distributed systems

• This test-bed will enable dramatic advances in science and engineering through collaborative evolution of science applications and related software.

Page 5: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

University of Virginia (UV)Technical University DresdenGWT-TUD GmbH, GermanyUniversity of Tennessee – Knoxville (UTK)

Other Participant Sites

Page 6: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

FutureGrid HardwareSystem type # CPUs # Cores TFLOPS RAM (GB)

Secondary storage (TB)

Default local file system Site

Dynamically configurable systems IBM iDataPlex 256 1024 11 3072 335* Lustre IU Dell PowerEdge 192 1152 12 1152 15 NFS TACC IBM iDataPlex 168 672 7 2016 120 GPFS UC IBM iDataPlex 168 672 7 2688 72 Lustre/PVFS UCSD Subtotal 784 3520 37 8928 542 Systems not dynamically configurable Cray XT5m 168 672 6 1344 335* Lustre IU Shared memory system TBD 40** 480** 4** 640** 335* Lustre IU Cell BE Cluster 4 IBM iDataPlex 64 256 2 768 5 NFS UF High Throughput Cluster 192 384 4 192 PU Subtotal 552 2080 21 3328 10 Total 1336 5600 58 10560 552

Page 7: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

FutureGrid Partners• Indiana University• Purdue University• San Diego Supercomputer Center at University of California San

Diego• University of Chicago/Argonne National Labs• University of Florida• University of Southern California Information Sciences Institute,

University of Tennessee Knoxville• University of Texas at Austin/Texas Advanced Computing Center• University of Virginia• Center for Information Services and GWT-TUD from Technische

Universtität Dresden.

Page 8: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Green computing

• a study and practice of using computing resources in an efficient manner such that its impact on the environment is as less hazardous as possible.

– least amount of hazardous materials are used– computing resources are used efficiently in terms

of energy and to promote recyclability

Page 9: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Cyberaide Project• A middleware for Clusters, Grids and Clouds• A collaboration between IU, RIT, KIT, …• Project led by

Dr. Gregor von Laszewski

Page 10: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Objective

• Towards next generation cyberinfrastructure• Middleware for data centers, grids and clouds• Environment respect• To reduce temperatures of computing

resources in a data center, thus reduce cooling system cost and improve system reliability

• Methodology: thermal aware workload distribution

Page 11: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Model

• Data center– Node: <x,y,z>, ta, Temp(t)– TherMap: Temp(<x,y,z>,t)

• Workload– Job ={jobj}, jobj=(p,tarrive,tstart,treq,Δtemp(t))

Page 12: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

t

RC-thermal model

Online task-temperature

Nodei.Temp(t)

Temp(Nodei.<x,y,z>,t)PR+

Nodei.Temp(0)

task-temperature profilenodei

<x,y,z>

ambient temperature:TherMap=Temp(Nodei.<x,y,z>,t)

Nodei.Temp(t)

P C R

Nodei.Temp(t)

Temp(Nodei.<x,y,z>,t)

Thermal model

Page 13: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Research issue definition

• Given a data center, workload, maximum temperature permitted of the data center

• Min Tresponse

• Min Temperature

Page 14: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Workload model

Data center model

TASA-B

Cooling system control

Workload placement

online task-temperature

input

schedule

input

input

Conceptframework

Page 15: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

task-temperature profile

RC-thermal model

Workload model

Thermal map

Data center model

TASA-B

Cooling system control

Workload placement

calculation

online task-temperature

input

schedule

input

input

Conceptframework

Page 16: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

task-temperature profile

RC-thermal model

Workload model

Thermal map

Data center model

TASA-B

Cooling system control

Workload placement

Control

calculation

online task-temperature

input

schedule

input

input

Conceptframework

Page 17: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

task-temperature profile

RC-thermal model

Workload model

Thermal map

Data center model

TASA-B

Profiling tool

Cooling system control

Workload placement

Control

profiling

calculation

online task-temperature

input

schedule

input

input

Conceptframework

Page 18: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

task-temperature profile

RC-thermal model

Workload model

Thermal map

Data center model

TASA-B

Profiling tool monitoring service

Cooling system control

Workload placement

Control

profiling

calculation

online task-temperature

CFD model

provide information Calculate thermal map

input

schedule

input

input

Conceptframework

Page 19: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Scheduling framework

Job submission

Jobs Job queue

Update data centerInformation periodically

Job scheduling Rack

Data center

TASA-B

Page 20: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Task scheduling algorithm with backfilling (TASA-B)

• Sort all jobs with decreased order of task-temperature profile

• Sort all resource with increased order of predicted temperature

• Hot jobs are allocated to cool resources• Predict resource temperature based on

online-task temperature• Backfill possible jobs

Page 21: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Node

Available time

t0

Time backfilling holes

nodek.tbfsta , backfilling start time of nodek

nodem

ax1

nodem

ax2

nodek.tbfend , end time for backfilling

Backfilling

Page 22: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

nodem

ax1

Temperature

Tempbfmax

Node

Temperature backfilling holes

nodek.Tempbfsta, start temperature for backfilling of nodek

nodem

ax2

nodek.Tempbfend, end temperature for backfilling

Backfilling

Page 23: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Simulation

• Data center:– Computational Center for Research at UB – Dell x86 64 Linux cluster consisting 1056 nodes– 13 Tflop/s

• Workload:– 20 Feb 2009 – 22 Mar. 2009– 22385 jobs

Page 24: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Simulation resultMetrics TASAReduced average temperature 16.1 FReduced maximum temperature 6.1 FIncrease job response time 13.9%Saved power 5000 kWReduced CO2 emission 1900kg /hour

1 25 49 73 97 121 145 169 193 217 241 265 289 313 337 361 385 409 433 457 481 505 529 553 577 601 625 649 673 69770

80

90

100

110

FCFSTASA

Time (hour)

Aver

age

tem

pera

tue

(F)

Page 25: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Simulation resultMetrics TASA-BReduced average temperature 14.6 FReduced maximum temperature 4.1 FIncrease job response time 11%Saved power 4000 kWReduced CO2 emission 1600kg /hour

1 27 53 79 105131157183209235261287313339365391 417 443469495521 547573 599625651 6777030

20

40

60

80

100

120

FCFSTASA-B

Aver

age

tem

pera

ture

Page 26: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Our work on Green data center computing

• Power aware virtual machine scheduling (cluster’09)

• Power aware parallel task scheduling (submitted)

• TASA (i-SPAN’09)• TASA-B (ipccc’09) • ANN based temperature prediction and task

scheduling (submitted)

Page 27: Thermal Aware Workload Scheduling with  Backfilling  for Green Data Centers

Final remark

• Green computing• Thermal aware data center computing• TASA-B• Justification with a simulation study