30
1 THERE ARE 6 PAGES OF DATA INPUT Estimate date 12-Nov-08 Fixed options for design of all alternatives of powerplant and conduit. 6 Currency, Canadian $ = 1, USA $ = 2. 1 7 Project design standard Industrial (1) or Utility design (2) -------- 1 Comment 8 Industrial generator (1) or utility generator (2). ---------------------- 1 Comment 9 De-sander required at intake, yes = 1, no = 0. --------------------- 0 Comment 10 Dam design for extreme flood, no = 1, yes = 2. ------------------- 1 Comment 11 12 Turbine and powerhouse characteristics. 13 Total powerplant flow, m3/s. 2.60 Comment 14 Desired number of units in powerplant. 2 Comment Comment 15 Rated head ( Iterate to = F6 ), m. 454.86 Calc head = 454.86 16 Estimated powerplant utilization factor. 0.4600 Comment 1.196 17 Normal tailwater elevation m. 317.00 Water use in m3/s per year 18 Powerhouse flood tailwater level, m. 322.00 Comment 19 Average rock level at powerhouse, m. 325.00 --- Must be > 323.87 20 21 Generator characteristics. 22 System frequency, Hz. 60.00 Comment 23 Generator power factor. (Range 0.9 to 1.0) 0.90 Comment 24 Generator inertia ratio to normal, "J". 1.00 Comment 25 26 27 28 29 Turbine type Suitability Comment Cost $M 30 Horiz. axis, 1 jet, 1 runner impulse turbine. ----YES ---- 1 9.420 31 Horiz. axis, 2 jet, 1runner impulse turbine. ----YES ---- 1 6.114 32 Horiz. axis, 1 jet, 2 runner impulse turbine. ----YES ---- 1 7.405 33 Horiz. axis, 2 jet/r, 2 run. impulse turbine. -------------- 1 0.000 34 Vert. axis, 1 jet, 1 runner impulse turbine. -------------- 1 0.000 35 Vert. axis, 2 jet, 1 runner impulse turbine. ----YES ---- 1 7.657 36 Vert. axis, 3 jet, 1 runner impulse turbine. ----YES ---- 1 7.800 37 Vert. axis, 4 jet, 1 runner impulse turbine. -------------- 1 0.000 38 Vert. axis, 5 jet, 1 run. impulse turbine. -------------- 1 0.000 39 Vert. axis, 6 jet, 1 run. impulse turbine. -------------- 1 0.000 40 Horiz. axis, 1 jet, 1 turgo runer turbine. -------------- 1 0.000 41 Horiz. axis, 2 jet, 1 turgo runner turbine. -------------- 1 0.000 42 Horiz. axis BANKI (Ossberger) turbine. -------------- 1 0.000 43 44 Project hydraulics. 45 Normal +ve waterhammer design for penstock % 15 46 Allowable negative waterhammer on penstock % 38 47 48 Side stream intakes and stream crossings. 49 Side stream intakes, ratio of flow to main intake flow. 0 Comment 50 Stream crossings under/over pipe/penstock. 0 51 Input page 1. DATA INPUT SHEET - HYDROHELP BAKER - CHIPMUNK CREEK Allowable waterhammer calculated by program. Horizontal axis, 2 jet, 1runner impulse turbine. RECOMMENDED TURBINE TYPE

THERE ARE 6 PAGES OF DATA INPUT - HydroHelphydrohelp.ca/fichiers-a-telecharger/ChipmunkCreek.pdf1 THERE ARE 6 PAGES OF DATA INPUT Estimate date 12-Nov-08 Fixed options for design of

Embed Size (px)

Citation preview

1

THERE ARE 6 PAGES OF DATA INPUT

Estimate date 12-Nov-08

Fixed options for design of all alternatives of powerplant and conduit.

6 Currency, Canadian $ = 1, USA $ = 2. 17 Project design standard Industrial (1) or Utility design (2) -------- 1 Comment

8 Industrial generator (1) or utility generator (2). ---------------------- 1 Comment9 De-sander required at intake, yes = 1, no = 0. --------------------- 0 Comment

10 Dam design for extreme flood, no = 1, yes = 2. ------------------- 1 Comment

1112 Turbine and powerhouse characteristics.13 Total powerplant flow, m3/s. 2.60 Comment14 Desired number of units in powerplant. 2 Comment Comment

15 Rated head ( Iterate to = F6 ), m. =454.86 Calc head = 454.86

16 Estimated powerplant utilization factor. 0.4600 Comment 1.19617 Normal tailwater elevation m. 317.00 Water use in m3/s per year

18 Powerhouse flood tailwater level, m. 322.00 Comment

19 Average rock level at powerhouse, m. 325.00 --- Must be > 323.8720

21 Generator characteristics.

22 System frequency, Hz. 60.00 Comment

23 Generator power factor. (Range 0.9 to 1.0) 0.90 Comment

24 Generator inertia ratio to normal, "J". 1.00 Comment25

2627

28

29 Turbine type Suitability Comment Cost $M30 Horiz. axis, 1 jet, 1 runner impulse turbine. ----YES ---- 1 9.420

31 Horiz. axis, 2 jet, 1runner impulse turbine. ----YES ---- 1 6.11432 Horiz. axis, 1 jet, 2 runner impulse turbine. ----YES ---- 1 7.405

33 Horiz. axis, 2 jet/r, 2 run. impulse turbine. -------------- 1 0.000

34 Vert. axis, 1 jet, 1 runner impulse turbine. -------------- 1 0.00035 Vert. axis, 2 jet, 1 runner impulse turbine. ----YES ---- 1 7.657

36 Vert. axis, 3 jet, 1 runner impulse turbine. ----YES ---- 1 7.80037 Vert. axis, 4 jet, 1 runner impulse turbine. -------------- 1 0.000

38 Vert. axis, 5 jet, 1 run. impulse turbine. -------------- 1 0.000

39 Vert. axis, 6 jet, 1 run. impulse turbine. -------------- 1 0.00040 Horiz. axis, 1 jet, 1 turgo runer turbine. -------------- 1 0.000

41 Horiz. axis, 2 jet, 1 turgo runner turbine. -------------- 1 0.000

42 Horiz. axis BANKI (Ossberger) turbine. -------------- 1 0.00043

44 Project hydraulics.45 Normal +ve waterhammer design for penstock % 15

46 Allowable negative waterhammer on penstock % 38

4748 Side stream intakes and stream crossings.

49 Side stream intakes, ratio of flow to main intake flow. 0 Comment50 Stream crossings under/over pipe/penstock. 0

51 Input page 1.

DATA INPUT SHEET - HYDROHELP

BAKER - CHIPMUNK CREEK

Allowable waterhammer

calculated by program.

Horizontal axis, 2 jet, 1runner impulse

turbine.RECOMMENDED TURBINE TYPE

2

52 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

53

54 Surge tank. Tank hgt, m. 0.055 Surge tank used, (1), not used (0). 0 Comment

56 Surge tank in steel =1, in rock exc. = 2 2 Comment Tank cost $M.

57 If in rock, conc lining (1), no lining, (0) 1 Comment 0.00058 Elevation rock at top of tank, if in rock, m. 800 Comment

59 Elevation at surge tank tee, meters . 710 Comment60 Tank diameter based on min for stability (1), or larger, (2) 2 0.8

61 If tank diameter is larger, select diameter, m. 3.0 Comment

6263 Main concrete weir dam.64 Design maximum (1/1000?) flood flow, m3/s. 300 Deck level, m. 847.60

65 Design weir + LL outlet flood flow (1/200?), m3/s. 300 Comment

66 Crest length between abutments at damsite, m. 100 Comment67 River bed level, m. 840.0 Comment6869 1.470 Spillway sill level, m. 845.00

71 Required depth of spill over weir, m. 2.30 Comment

72 Required number of inflatable rubber dams 2 Comment73

74 De-sander design. 2.2 Must be =< 3.4

75 Basin volume ratio. 160 Comment76 Design particle size, range 0.1mm to 0.4mm. 0.25 Comment

7778 Embankment dams - main dam.79 Normal tailwater level at dam, m. 840.00 Must be > 840.00

80 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE Comment81 River or lowest ground level at dam, m. 840.00

82 Embankment material factor for dam stability 1.20 Comment83 Foundation material factor for dam stability 1.20 Comment

84 Rip-rap design.

85 Effective fetch, km. 1 Comment86 Design wind speed, km/hour. 100 or m/sec = 27.8

87 Dam quantity calculation. Comment88 Dam crest length, m. 20 Crest El. m= 848.97

89 River width, m. 5

90 Average depth of overburden excavation, m. 291 Valley shape factor (0.5 to 1.0) 0.7 Comment

92 Length of cutoff excavation, m. 3093 Average depth of cutoff to impervious material, m. 8 Comment

94 Concrete or slurry wall length, m. 30 Comment

95 Maximum depth of concrete or slurry wall to impervious material, m. 896 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

97

98 Embankment dams - side dam.99 Name of side dam. 1A

100 River or lowest ground level at dam, m. 840.00101 Embankment material factor for dam stability 1.65 Comment

102 Foundation material factor for dam stability 1.60 Comment

103 Input page 2.

Weir spillway. Coefficient of discharge =

3

104 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

105

106 Rip-rap design.107 Effective fetch, km. 3 Comment

108 Design wind speed, km/hour. 100 or m/sec = 27.8

109 Side dam 1A quantity calculation.

110 Dam crest length, m. 0 Crest El. m= 849.75

111 River width at dam, m. 0112 Average depth of overburden excavation, m. 0

113 Valley shape factor (0.5 to 1.0) 0.5 Comment

114 Length of cutoff excavation, m. 0 Comment115 Average depth of cutoff to impervious material, m. 0 Comment

116 Concrete or slurry wall length, m. 0 Comment

117 Maximum depth of concrete or slurry wall to impervious material, m. 0118 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

119120 Conduit from reservoir to powerhouse. Comment

121 Number of conduits intake to powerhouse. 1 L/H ratio = 10.6

122 Automatic (1) or manual (2) optimization. 1 Comment123 Select pipe diam (m) for manual optimization. 10.000 Comment. <<< NOTE

124 Select penstock diam (m) for manual optimiz. 8.000125 Penstock steel ultimate strength, Mpa. 482.5 Comment

126 Penstock steel yield strength, Mpa. 344.7 Comment

127128 Intake.

129 Length of intake channel, meters. 5.0 Comment130 Average level of rock at intake, meters. 842.0 Should be > 840.76

131 Average depth of overburden excavation at intake, meters. 2.0

132 Normal FSL at trashracks, m. (by program) 847.30 Trashr. LSL, m 844.00133 Water cleanliness factor. ( 0.5 to 1.0 ) 0.90 Comment

134 Percentage of reservoir cleared. ( 10% to 100% ) 0 Comment135 Approach flow angle to racks. (45 to 0 degrees) 10 Comment

136 Rack inclination to horizontal. (60 to 90 deg. ) 80 Comment

137 Rack blockage ratio. ( 0.0 to 0.25) 0.2 Comment138 Intake pipeline concrete encased length, m. 5 Comment

139

140 Pipeline intake to surge tank.

141 Pipeline on surface (1) or buried (2). 2 Comment

142 Pipe length in rock sidehill, m. 1100143 Pipe length in earth sidehill, m. 2580

144 Elevation of end of pipeline, m. 660 Comment Read comment

145 Average sidehill slope in rock, hor. to 1 vert. 2.1 Comment146 Average sidehill earth slope, horiz. to 1 vert. 2.3 Comment

147 Sideslope roughness factor. (1.5 to 3.0) 1.5 Comment148

149 Low pressure tunnel size and cost calculation.

150 Low pressure tunnel length, m. 0 Min. length151 Adit length, m. 0 tunnel liner,

152 Ratio of length tunnel lined with concrete. 1 Comment meters153 Length of tunnel lined with steel, m. 0 Comment 78.8

154

155 Input page 3.

4

156 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08157

158 Conduit surge tank to powerhouse.159 Vertical bore.

160 Bore length, m. 0

161 Ratio of length bore lined with concrete. 0 Comment162 High pressure tunnel.163 Total high pressure tunnel length, m. 0164 Adit length, m. 0

165 Ratio of length tunnel lined with concrete. 1 Comment

166 Tunnel steel lined section length, m. 0 Comment167 Buried steel Penstock.168 Elevation at upper end of liner/penstock, m. 660.00 Must be <= 660.0

169 Penstock sideslope length in rock cut, m. 569170 Penstock sideslope length in earth cut, m. 569

171 Average sidehill slope in rock, hor. to 1 vert. 10.0 Comment172 Average sidehill earth slope, horiz. to 1 vert. 10.0 Comment

173 Sideslope roughness factor. (1.5 to 3.0) 1.5 Comment

174 Surface steel penstock.175 Surface penstock length, m. 0

176 Earth overburden average depth of cut, m. 1177 Average excavation depth in rock, m. 2

178

179 Tailrace.180 Tailrace channel length, meters. 50 Tailrace channel invert

181 Tailrace ch. rock level at powerhouse DT exit, m. 325 level, m. 322.33182 Tailrace channel average overburden depth, m. 5 Flow depth, m. 0.86

183 Tailrace Manning friction factor. 0.032

184185 Mechanical equipment

186 Spillway stoplogs for gate adjacent to intake.187 Sets of stoplogs. 0

188 Monorail hoists. 0 Gantries. 0

189 Spillway gate - adjacent to intake. Comment190 Type of gate, flat roller (1) tainter (2) 0 # of gates. 1

191 Intake stoplogs or bulkhead gates.

192 Sets of bulkhead gates. 1193 Sets of stoplogs. 0

194 Monorail hoists. 0 Gantries. 0195 Intake gates, guides and hoists.196 Hoist on tower (1) or on deck (0) 0

197 Trashracks.

198 Type of racks, sectioned (2) or single (1). 2 Comment

199200 Transmission.201 Transmission line length, km. 1

202 Transmission line voltage, kV 24203 Main transmission difficulty factor. 2 Comment

204 Local trans to intake, length, km. 6205 Local transmission voltage, kV. 4

206 Local transmission to intake, difficulty factor. 2 Comment

207 Input page 4.

L/H ratio 10.6

5

208 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08209

210 Site access and conditions.211 Access road length, km. 1.2

212 Main access road difficulty factor. 1.3 Comment

213 Local access road length, km. 8214 Local accsss road difficulty factor. 1.5 Comment

215 Temporary bridge over river, span, m. 0216 Frost days at site, from a world Atlas. 120 Comment

217 Union (2) or non-union (1) labour at site. 1

218219

220 Work item. Unit cost.

221222 Earthwork and clearing. Comment

223 Clearing, per hectare, $/H $7,404.09 $7,404.09224 Unit cost of overburden excavation, m3. $13.04 $13.04

225 Unit cost of rock excavation, $/m3. $52.17 $52.17

226 Unit cost of found excav in sand or gravel for cutoff, $/m3. $31.95 $31.95227 Rock excavation in tunnels, $/m3. $0.00 $0.00

228 Impervious fill in cofferdams, $/m3. $0.00 $0.00229 Rock fill in cofferdams, $/m3. $73.85 $73.85

230 Impervious fill in dams, $/m3. $33.43 $33.43

231 Filter material in dams, $/m3. $44.16 $44.16232 Rock or embankment material in dams, $/m3. $58.81 $58.81

233 Rock rip-rap, $/m3. $182.01 $182.01234 Sidehill rock excavation for pipeline, $/m3. $39.22 $39.22

235 Sidehill overburden excavation for pipeline, $/m3. $13.04 $13.04

236 Side creek crossing, cost per crossing. $0.00 $0.00237

238 Concrete work.239 Concrete including forms and re-bars, $/m3. $1,022.64 $1,022.64

240 Concrete only, excluding forms and re-bars, $/m3. $670.25 $670.25

241 Concrete formwork, $/m2. $94.77 $94.77242 Reinforcing bars, $/kg. $7.99 $7.99

243 Concrete in tunnel linings, $/m3. $0.00 $0.00

244 Dental concrete on rock in dam foundations, $/m3. $0.00 $0.00245 Concrete or slurry wall, $/m3. $1,870.58 $1,870.58

246247 Steelwork and powerhouse superstructure.248 Trashrack steel cost, $/kg. $6.32 $6.32

249 Pipeline steel cost, $/ton. $5,492.57 $5,492.57250 Tunnel steel lining cost, $/ton. $0.00 $0.00

251 Powerhouse superstructure steel cost $/ton. $7,038.09 $7,038.09252 Powerhouse siding, $/m2. $157.67 $157.67

253 Powerhouse roofing, $/m2. $222.99 $222.99

254 Temporary steel pile bridge over river, cost per m. $0.00 $0.00255

256 Ratio of Sclairpipe cost to equivalent steel pipe cost. 0.50 Comment

257

258 Inflation factor, 2008 to present. 1.001

259 Input page 5.

Suggested unitcost, based on

quantity of

work.

6

260 BAKER - CHIPMUNK CREEK Estimate date 12-Nov-08

261

262 Indirect costs. Estimated indirect263 Cost $M.

264 Feasibility studies and site investigations. 2.0 0.501

265 Environmental work. 2.0 0.511266 Detailed designs and contract documents. 2.0 0.522

267 Site supervision work. 4.0 1.064268 Contingencies on civil and overheads. 20.0 4.059

269 Contingencies on electromechanical work. 8.0 0.590

270271 Interest rate % 6 Interest = 1.035

272

273 Value of generation in cents/kWh. 8.0274 Operating staff manhour cost per hour, $. 80 Comment

275276

277

278 Turbine output at rated head and flow, MW. 5.13279 Powerplant output at rated head and flow, MW. 9.83

280 Turbine rated net head, m. 454.86281 Conduit average diameter, m. 0.92 Number of generating282 Powerplant average annual generation, GWh. 42.34 units = 2

283 Overburden excavation, cubic meters. 28,907284 Rock excavation, m3. 5,459

285 Rock tunnel excavation, cubic meters. 0286 Steel penstock and tunnel liner weight, tonnes. 689

287 Total concrete volume, cubic meters. 2,630288 Powerhouse footprint, width and length, m. 8.1 Length, m 22.4289 Overall turbine + generator + transformer + conduit efficiency at full load, %. 71.07

290 Average overall project efficiency, excl transmission, for energy calc. % 78.76291 Head loss in conduit as a % of rated net head on turbine. ------------------------- > 14.98

292 Speed regulation on an isolated system. Absolutely no speed regulation capability.293 Estimated time required for construction, months. ----------------------------------- > 14294

295

296297

298299

300

301302

303304

305

306307

308309

310

311 Input page 6.

Worth further analysis, but proceed cautiously.

Head iterated OK in auto

mode.

Estimated project payback in years 12.0

Turbine type selected by program.Horizontal axis, 2 jet, 1runner impulse

turbine.

Total project cost, including interest during

construction, $M.$33.4

% of directcost

Change % to

suit, based on

estimated

costs in

Column F

Summary of program output.

END OF DATA INPUT

7

OUTPUT STARTS WITH A COVER PAGE

Cost from intake to high voltage end of transmission line, including interest.

Powerplant average annual generation, GWh.

42.34

Power conduit and powerhouse generation, costs and dimensions developed with

$33.3

CAN $

BAKER - CHIPMUNK CREEK

12-Nov-08

HydroHelp 3 Impulse

An EXCEL program for optimizing hydro powerhouse capacity and conduit size.

Powerplant output at rated head and flow, MW.

9.8

8

FOLLOWED BY A SUMMARY PAGE

BAKER - CHIPMUNK CREEK Date -- 12-Nov-08

6 Project parameters determined by program.

7 Turbine output at rated head and flow, MW. 5.13

8 Powerplant output at rated head and flow, MW. 9.83

9 Turbine rated net head, m. 454.86

10 Conduit average diameter, m. 0.922

11 Powerplant average annual generation, GWh. 42.3

12 Estimated cost, in millions of dollars. $33.3 CAN $1314 Summary of input data for project.

15 Number of turbines and flow in m3. 2 Flow, m3 2.60

16 Access road and transmission lengths, km. 1.2

17 Headpond full supply level, m. (FSL) 847.30 LSL = 844.00

18 Normal tailwater level at powerhouse, m. 317.00 Trans. km. 1

19 Number of water conduits to powerhouse. 1 Length to head20 Conduit length, intake to powerhouse, m. 4,823 ratio ------ > 10.6

2122 Summary of program output for some parameters. Powerplant utilization

23 Overburden excavation, cubic meters. 28,907 factor, % 46.0

24 Rock tunnel excavation, cubic meters. 0 Rock Ex. m3. 5,459

25 Steel penstock and tunnel liner weight, tonnes. 689 Turbine runner outside

26 Total concrete volume, cubic meters. 2,630 diameter, m. 1.19

27 Turbine type selected by program.28

29Turbine type eliminated from consideration during

operation of program.30 Powerhouse footprint, width and length, m. 8.1 Length, m 22.4

31 Overall turbine + generator + transformer + conduit efficiency at full load, %. 71.07

32 Average overall project efficiency, excluding transmission, for energy calc. % 78.76

33 Head loss in conduit as a % of rated net head on turbine --------- > 14.98 Comment

34 Speed regulation on an isolated system. Absolutely no speed regulation capability.

35 Estimated time required for construction, months. -------------------------------------- > 14

3637 Data input and options selected during data input, may vary for each alternative.

38 Surge tank on conduit. No Diam., m. 0.00

39 Turbine equipped with inlet valve. Yes Diam., m. 0.395

40 Conduit optimization option. By program

4142 Fixed options for design of all alternatives of powerplant and conduit.

43 Currency, Canadian $ = 1, USA $ = 2. -------------------------------- 144 Industrial design (1) or Utility design (2) -------------------------------- 1 Comment

45 Industrial generator (1) or utility generator (2). ---------------------- 1

46 De-sander required at intake, yes = 1, no = 0. --------------------- 047 Dam design for extreme flood, no = 1, yes = 2. ------------------- 1

Page 1.

None.

An EXCEL program for optimizing hydro powerhouse capacity and conduit size.

Executive summary

HydroHelp 3 Impulse

Horizontal axis, 2 jet, 1runner impulse

turbine.

9

THERE ARE 22 PAGES OF DETAILED OUTPUT

2

3 Input data4 Total powerplant flow, m3/s. = 2.60 Comment

5 Desired number of units in powerplant. = 2.00 Comment6 Rated head ( Iterate to = F6 ), m. =454.86 Calc head = 454.86

7 System frequency, Hz. = 60.00 Comment

8 Generator power factor. (Range 0.9 to 1.0) = 0.90 Comment9 Generator inertia ratio to normal, "J". 1.00 Comment

10 Estimated powerplant utilization factor. 0.46

11 Normal tailwater elevation m. 317.0012 Powerhouse flood tailwater level, m. 322.00

13 Average rock level at powerhouse, m. 325.00 --------- Must be > 323.914

1516

17

18 TOTAL POWERPLANT RATED OUTPUT, MW. 9.819 Rated flow per unit ( cubic meters / sec. ) 1.30

20 Number of runners per unit 1.00 Runner CL El. 323.19

21 # jets per turbine 2.00 Draft tube22 System frequency ( Hz ) 60.00 sill Elev. 320.13

23 Calculated flow per jet, cubic meters/sec. 0.6524 Turbo-generator shaft alignment. HORIZONTAL Runaway

25 Calculated synchronous rotational speed ( rpm ) 900.00 speed, rpm = 1620

26 Turbine inlet spherical valve diameter, m. 0.40 Unit spacing, m. 8.5627 Calculated runner pitch circle diameter ( m ) 0.93 0.00

28 Calculated outside runner diameter ( m ) 1.19

29 Calculated jet diameter ( m ) 0.09 0.0030 Calculated peak efficiency, all jets operating, %. 0.89

31 Peak efficiency flow/jet. m3/s. 0.9832 Peak efficiency flow as % of full load flow. 75.00

33 Turbine full load efficiency, % 88.51

34 Calculated turbine full load output ( MW ) 5.1335 Calculated generator full load efficiency, %. 95.78

36 Calculated generator full load output ( MW ) 4.92

37 Calculated water to wire cost, excluding substation, millions. 6.1138

39 GENERATOR DATA40 Generator inertia, metric GD2. 7.48 Tonnes meters squared.41 Generator inertia, Imperial WR2. 44,373 Pounds feet squared.

42 Generator electrical "H" value. 1.52 kW-secs/kVA

43 Generator MVA 5.4644 Mechanical start time for unit, secs. ( Tm.) 3.38

45 Generator full load efficiency, % 0.964

46 Generator speed, rpm. 900.047 Page 2

Absolutely no speed

regulation capability.

BAKER - CHIPMUNK CREEK

RECOMMENDED TURBINE

Horizontal axis, 2 jet, 1runner impulse turbine.

TURBINE SELECTION

10

48 BAKER - CHIPMUNK CREEK # of units 2

49

5051 Powerhouse crane capacity, tonnes. 20.86 # of cranes 1

52 Powerhouse crane span, with crane over valve, m. 7.42

53 Powerhouse length, m. 22.4054 Powerhouse width, m. 8.14 Walls, m2 401

55 Powerhouse height, repair bay floor to roof, m. 6.57 Roof, m2. 182

56 Powerhouse roof elevation, m. 329.0757 Powerhouse concrete volume, m3. 265.78 PH Vol, m3. 1198

58 Powerhouse formwork, m2. 318.9459 Powerhouse structural steel weight, tonnes. 53.41

60 Powerhouse repair bay floor level, m. 322.50

61 Distance between unit centerlines, m. 8.56

6263 Comment on water to wire cost estimate. Total W/W Total generator Peak turbine64 Turbine axis, jet and runner configuration. Cost US$m. capacity, MW efficiency65 Comment Comment

66 Horiz. axis, 1 jet, 1 runner impulse turbine. 9.420 9.879 0.895

67 Combination of capacity, head and flow is suitable for this type of turbine. Reject68 Horiz. axis, 2 jet, 1runner impulse turbine. 6.114 9.833 0.890

69 Combination of capacity, head and flow is suitable for this type of turbine. SELECT70 Horiz. axis, 1 jet/r, 2 run. impulse turbine. 7.405 11.744 0.899

71 Combination of capacity, head and flow is suitable for this type of turbine. Reject

72 Comment73 Horiz. axis, 2 jet/r, 2 run. impulse turbine. 0.000 9.976 0.903

74 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

75 Vert. axis, 1 jet, 1 runner impulse turbine. 0.000 9.862 0.89376 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

77 Vert. axis, 2 jet, 1 runner impulse turbine. 7.657 9.854 0.89278 Combination of capacity, head and flow is suitable for this type of turbine. Reject

79 Vert. axis, 3 jet, 1 runner impulse turbine. 7.800 11.900 0.911

80 Combination of capacity, head and flow is suitable for this type of turbine. Reject81 Vert. axis, 4 jet, 1 runner impulse turbine. 0.000 9.992 0.912

82 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject83 Vert. axis, 5 jet, 1 run. impulse turbine. 0.000 9.982 0.911

84 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

85 Vert. axis, 6 jet, 1 run. impulse turbine. 0.000 9.975 0.91086 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

87 Horiz. axis, 1 jet, 1 turgo runer turbine. 0.000 8.309 0.85488 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject

89 Horiz. axis, 2 jet, 1 turgo runner turbine. 0.000 9.517 0.803

90 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject91 Horiz. axis BANKI (Ossberger) turbine. 0.000 97.369 0.586

92 Combination of capacity, head and flow NOT suitable for this type of turbine. Reject93 Comment

94 Vertical axis Francis turbine. 0.000 10.168 0.912

95 Combination of capacity, head and flow NOT suitable for this type of turbine. -----------------96

97 Page 3

Powerhouse and crane data.

11

9899

100

101102

103104

105 Turbine type Suitability

106 Horiz. axis, 1 jet, 1 runner impulse turbine. ----YES ---- 1107 Horiz. axis, 2 jet, 1runner impulse turbine. ----YES ---- 1

108 Horiz. axis, 1 jet, 2 runner impulse turbine. ----YES ---- 1109 Horiz. axis, 2 jet/r, 2 run. impulse turbine. -------------- 1

110 Vert. axis, 1 jet, 1 runner impulse turbine. -------------- 1

111 Vert. axis, 2 jet, 1 runner impulse turbine. ----YES ---- 1112 Vert. axis, 3 jet, 1 runner impulse turbine. ----YES ---- 1

113 Vert. axis, 4 jet, 1 runner impulse turbine. -------------- 1114 Vert. axis, 5 jet, 1 run. impulse turbine. -------------- 1

115 Vert. axis, 6 jet, 1 run. impulse turbine. -------------- 1

116 Horiz. axis, 1 jet, 1 turgo runer turbine. -------------- 1117 Horiz. axis, 2 jet, 1 turgo runner turbine. -------------- 1

118 Horiz. axis BANKI (Ossberger) turbine. -------------- 1119

120

121122 Selected Selected

123 LV/gHTe Tm/Te

124 Deflector close 2.09 1.69125 Valve open 0.24 0.19

126127

128

129130

131132

133

134135 Overall project efficiency 78.76

136137 20 9.27 83.4

138 30 9.25 83.3

139 40 9.17 82.5140 50 8.99 80.9

141 60 8.84 79.6142 70 8.67 78.0

143 80 8.45 76.1

144 90 8.20 73.8145 100 7.92 71.2

146 0 0.000

147 0 0.000148 Page 4

BAKER - CHIPMUNK CREEK

If the recommended turbine is not satisfactory, a second recommendation (based on cost) can be

obtained by eliminating the recommended turbine from consideration with a zero (0) placed oppositethe recommended turbine in Column D. Suitable turbines are shown in Column E

SPEED REGULATION CHARACTERISTIC

0.0

0.2

0.4

0.6

0.8

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Mechanical start time / governor timePensto

ckst

art

tim

e/go

vern

or

tim

e

Good above 1.0, poor below.

.

Rapid load off with

deflector, slow load onwith spear valves.

OVERALL PROJECT EFFICIENCY

60

70

80

90

20 30 40 50 60 70 80 90 100

FLOW RATIO %

EFF

ICIE

NC

Y%

12

149

150 Powerhouse plan dimensions.151 Total length, m. 22.40

152 Full width including piping and control rooms, m. 8.14

153 Length of repair bay, m. 4.28154 Distance between unit centerlines, m. 8.56

155 Powerhouse height, above repair bay floor, m. 13.51

156 Vertical axis unit Crane span. 0.00 0.00

157 Crane capacity in tonnes. 0.0

158159 0.00

160 0.00

161 El.162 0.00

163

164 0.00 0.00165

166 El. 0.00167

168 0.00

169 Repair170 bay floor

171 0.00 El. 0.00172

173 0.00

174 El. 0.00175

176 Flood TWL177 elevation

178 0.00

179 322.71180 TWL. El, m.

181 0.00182

183 0.00

184 0.000185 0.00

186

187188 Runner removal passage width, m. 0.00

189190

191

192193 Powerhouse superstructure perimeter, m. 61.08

194 Powerhouse wall area, m2. 825195 Powerhouse roof area, m2. 182

196 Powerhouse clearing, Ha. 0.2

197198

199 Page 5

BAKER - CHIPMUNK CREEK

Note - Impulse units MUST be set above flood level. They cannot operate submerged, unless

tailwater depressed by compressed air, and this is very expensive due to high demand for air.

Air demand is high due to loss from enrtainment as water falls off runner.

Unit shaft alignment is

HORIZONTAL

As selected by program.

oTop ofgenerator

Valve diameter, m.

13

200

201202

203 Crane capacity in tonnes. 21.9

204 1.63

205 3.07

206 El., m. 336.44

207208 7.14

209 4.49

210 8.14

211 4.02212 El., m. 323.19

213214 6.19 El., m. 322.93

215

216217 Flood TWL

218 m. 322.00219

220 El., m. 317.00

221222 El., m. 320.13

223

224225 Valve diameter, m. 0.40

226 Turbine runner pitch circle diameter, m. 0.935227

228 Site access and transmission. Comment

229 Access road length, km. 1.2 Cost, $M. 1.018

230 Access road difficulty factor. 1.3231

232 Local access road length, km. 8 Cost, $M. 6.805

233 Local accsss difficulty factor. 1.5234

235 Temporary steel pile bridge over river, total length, m. 0 Cost, $M. 0.000236

237 Transmission line length, km. 1 Transmission kV 24

238 Transmission line difficulty factor. 2 Cost, $M. 0.415239

240 Local transmission to intake, length, km.. 6 Local Trans kV 4241 Local transmission to intake, difficulty factor. 2 Cost, $M. 0.895

242

243 Calculated switchyard cost $M 0.124

Page 6

BAKER - CHIPMUNK CREEK

Horizontal axis unit.

Crane span

14

If there are side stream intakes, ratio of flows to main intake flow. 0 Comment

Main Dam.7 Design maximum (1/1000) flood flow, m3/s. 300 Deck level, m. 847.60

8 Design weir flood (1/200) flow, m3/s. 3009 Required height of dam to accommodate low level sluice below trashracks, m. 7.70

10 Crest length between abutments at damsite, m. 100 Comment 81.111 River bed level, m. 840

12 Low level sluice capacity, m3/s. 2.6 Comment

13 Spillway sill level, m. 845.0014 Required depth of spill over weir, m. 2.30 Comment

15 Required number of inflatable rubber dams 2 Comment16

17 Inflatable rubber Dam.18 Selected flood for weir design, m3/s. 300 From cover, line 4719 Length of one rubber dam, including sloped section, m. 34.8 Maximum ----- > 45.1920 Rubber dam cost, installed. $millions. 0.78321

22 Concrete weir. Coefficient of discharge = 1.4 Total crest length, dams23 Length of flat weir crest (upstream-downstream) , m. 12.8 and weirs, m. 10124 Low level sluice sill elev. Top just at trashrack sill, m. 840.20

25 Low level sluice width and height, m. 0.5 Height, m 0.6

26 Total length of spillway including end piers, m. 7627 Total length of weir and intake, between abutments, m. 81.1

28 Concrete volume, m3. 224029 Normal flood level for 1/200 flood, m. 847.3

30 Approximate extreme flood level, 1/1000 flood. 847.3 2.3

3132 De-sander design.33 Design flow, m3/s. 2.600 Head loss, m. 0.7134 Basin volume ratio. 160 Iterate until

35 Basin volume, m3. 416

36 Basin water depth, m. (semi-circular basin section) 2.2 Must be < 3.437 Basin length, m. 43.6 Basin width, m. 4.4

38 Design particle size, range 0.1mm to 0.4mm. 0.2539 Particle transit time, secs. 125 Clearing for desander,

40 Sander weir crest width upstream of trashracks, m. 3.1 Ha. ------------ > 0.09

41 Low level sluice from de-sander, width, height, m. 0.00 Height, m. 0.0042 Average depth of excavation at intake/weir, m. 0.1

43 Particle drop distance in basin, m. 3.444 Flow Velocity, m/s. 0.3

45 Part drop rate, m/s. 0.027

46 Concrete volume, m3. 047 Flow depth,m 0.7

48 Height, m= 0.00

49 Exc. vol, m3. 050 Page 7

BAKER - CHIPMUNK CREEK

Depth of flow overweir at extreme

flood, m. --- >

A desander is very

expensive. Would be located

downstream of dam.

Arrangement depends on

topograpy, and is not shown.

Dam weir, de-sanding chamber and access roads.

15

51 BAKER - CHIPMUNK CREEK Dam and weir

52 Schematic showing arrangement of dam, weir and low level sluice.

53 Elevation top of gate hoist tower, m. 851.67 Number rubber dams.

54 Extreme flood (1/1000) level, m. 847.30 2

55 Total length spillway including piers, m. 75.67 Dam crest elevation, m.56 847.60

57 Flood level, m.58 847.30 Rubber dam crest elevation, m.

59 847.30

60 Full supply61 level, m. Rubber dam sill elevation, m.

62 847.30 845.00

63 Low supply64 level, m. 34.8

65 844.00 2.3066 Trashrack 30.23

67 top elev, m.

68 842.45 Low level outlet gate top, m.69 1.55 840.76

70 Trashrack71 sill level, m. Low level outlet gate sill, m.

72 840.76 840.20

73 0.5774 Right angle at blue line. Expanded elevation to show intake at right angle to dam-weir centerline.

75

76 Total length of desander basin, m. 87.2 Width, m. 5.3

77

78

79

80

81

82

83

8485

8687

88 43.6

89 Number of desander basins. 190

91 Radius R, m. Nominal wall thickness, m. 0.4892 2.2

93 Concrete area in section, m2 7.63

9495 Concrete volume in desander,

96 cubic meters. 66697

98 De-sander required at intake. No

99100 Page 8

Plan typical double desander. If industrial design, 1

basin, if utility design, there should be 2 basins.

2m

Active settling

length.

Typical section through

desander. Section B - B

16

BAKER - CHIPMUNK CREEK MAIN DAM

Dam design.Flood level at dam, meters. 847.30

5 Normal full supply level at trashracks, m. 847.30

6 Normal low supply level at trashracks, m. 844.007 Normal tailwater level at dam, m. 840.00 Must be > 317.00

8 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE9 River or lowest ground level at dam, m. 840.00

10 Embankment material factor for dam stability 1.20 Comment

11 Foundation material factor for dam stability 1.20 Comment12 Dam type - rock fill central core (1) or homogeneous (2) 2 Comment

13 Dam crest elevation, m. 848.97 Dam downstream14 Dam slope (x)/1 Upstream. x = 2.14 slope (x)/1 1.64

15 Dam height, crest to river/lowest bed level, m. =8.97 Crest

16 Dam base width at river level, m. 38 width, m. 5.317

18 Rip-rap design.

19 Effective fetch, km. 1 Comment20 Design wind speed, km/hour. 100 or m/sec = 27.8

21 Max. wave height, m. And period, secs. 1.1 Secs = 2.622 Wave length, m. And slope a/l 10.8 a/l = 0.11

23 Wave run-up on dam. 1.20

24 Minimum freeboard, m. 1.6725 Weight D50kg rip-rap and average size, Dm. D50kg = 144 Dm = 0.38

26 Rip-rap thickness (m). 0.727

28 Dam quantity calculation.

29 Dam crest length, m. 2030 River width, m. 5

31 Valley shape factor (0.5 to 1.0) 0.7 Comment32 Average depth of overburden excavation, m. 2

33 Length of cutoff excavation, m. 30

34 Average depth of cutoff to impervious material, m. 8 Comment35 Concrete or slurry wall length, m. 30 Comment

36 Maximum depth of concrete or slurry wall to impervious material, m. 837 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

38 Total embankment vol. above river bed level, m3 = 2,519 excluding cutoff

39 Rip-rap volume (m3) and average size, (m). 158 d50, m. 0.3840 Cutoff excavation and fill volume, m3. 4,725 Cutoff excavation

41 Compacted rock fill 189 slope = 1.4

42 Filter transition zone A 83 Filt. Zone B 8343 Rip - rap bedding gravel, m3. 79 Clearing for dam,

44 Till core 2,007 Hectares= 0.245 Foundation rock excavation for core contact, m3. 0 Overburden excavation

46 Dental concrete for core contact, m3. 6 vol, m3. 757

4748 Slurry or concrete cut-off wall. Elev. Top of wall, m. 842.00 Bottom El 834.00

49 Concrete or slurry wall area, m2. 120 Width, m. 0.6050 Concrete or slurry wall volume, m3. 72

51 Page 9

17

52 BAKER - CHIPMUNK CREEK MAIN DAM

5354 Crest elevation, m. 0.00 Width, m. 0.055 Upstream and downstream slopes Height, m. 0.0

56 0.00 0.00 Wall top El 842.0057 0.00 0.0 Wall bot El 834.005859

60

6162

63

6465

6667

68

6970

7172

73

74 Slurry wall option Cut-off depth, m. 0.075 Cut-off slope, x:1 = 0.076 0.0 <--Width at impervious contact, m.77

78 Crest elevation, m. 848.97 Width, m. 5.30

79 Upstream and downstream slopes Height, m. 8.9780 2.14 1.64 845.9881 842.86 5.3082

83

8485

86

8788

8990

91

9293

9495

96

9798 Slurry wall option. For level, see above. Cut-off depth, m. 8.099 8.5 <-- Width at impervious contact, m.

100 11.2 Height of rock fill toe, m. 2.99101

102 Page 10

Upstream cofferdam - option.Dam type 1 - rock fill with central core.

Dam type 2 ------------- homogeneousUpstream cofferdam option

not shown, see above.

18

BAKER - CHIPMUNK CREEK SIDE DAM # 1A

Dam design.Flood level at dam, meters. 847.30

5 Normal full supply level at trashracks, m. 847.306 Normal low supply level at trashracks, m. 844.00

7 Normal tailwater level at dam, m. 840.008 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE

9 River or lowest ground level at dam, m. 840.00

10 Embankment material factor for dam stability 1.65 Comment11 Foundation material factor for dam stability 1.60 Comment

12 Dam type - rock fill central core (1) or homogeneous (2) 2 Comment

13 Dam crest elevation, m. 849.75 Dam downstream14 Dam slope (x)/1 Upstream. x = 2.84 slope (x)/1 2.34

15 Dam height, crest to river/lowest bed level, m. =9.75 Crest16 Dam base width at river level, m. 55 width, m. 5.4

17

18 Rip-rap design.19 Effective fetch, km. 3 Comment

20 Design wind speed, km/hour. 100 or m/sec = 27.821 Max. wave height, m. And period, secs. 1.9 Secs = 3.6

22 Wave length, m. And slope a/l 19.9 a/l = 0.10

23 Wave run-up on dam. 1.1224 Minimum freeboard, m. 2.45

25 Weight D50kg rip-rap and average size, Dm. D50kg = 507 Dm = 0.5826 Rip-rap thickness (m). 1.0

27

28 Dam quantity calculation.29 Dam crest length, m. 0

30 River width, m. 031 Valley shape factor (0.5 to 1.0) 0.5 Comment

32 Average depth of overburden excavation, m. 0

33 Length of cutoff excavation, m. 034 Average depth of cutoff to impervious material, m. 0 Comment

35 Concrete or slurry wall length, m. 0 Comment

36 Maximum depth of concrete or slurry wall to impervious material, m. 037 Slurry wall valley shape factor (0.25 to 0.75). 0.5 Comment

38 Total embankment vol. above river bed level, m3 = 0 excluding cutoff39 Rip-rap volume (m3) and average size, (m). 0 d50, m. 0.58

40 Cutoff excavation and fill volume, m3. 0 Cutoff excavation

41 Compacted rock fill 0 slope = 2.042 Filter transition zone A 0 Filt. Zone B 0

43 Rip - rap bedding gravel, m3. 0 Clearing for dam,44 Till core 0 Hectares= 0.0

45 Foundation rock excavation for core contact, m3. 0 Overburden excavation

46 Dental concrete for core contact, m3. 0 vol, m3. 047

48 Slurry or concrete cut-off wall. Elev. Top of wall, m. 0.00 Bottom El 0.0049 Concrete or slurry wall area, m2. 0 Width, m. 0.60

50 Concrete or slurry wall volume, m3. 0

51 Page 11

19

52 BAKER - CHIPMUNK CREEK SIDE DAM # 1A

5354 Crest elevation, m. 0.00 Width, m. 0.055 Upstream and downstream slopes Height, m. 0.0

56 0.00 0.00 Wall top El 0.0057 0.00 0.0 Wall bot El 0.005859

60

6162

63

6465

6667

68

6970

7172

73

74 Slurry wall option Cut-off depth, m. 0.075 380.13 Cut-off slope, x:1 = 0.076 0.0 <--Width at impervious contact, m.77

78 Crest elevation, m. 849.75 Width, m. 5.42

79 Upstream and downstream slopes Height, m. 9.7580 2.84 2.34 846.5081 842.09 5.4282

83

8485

86

8788

8990

91

9293

9495

96

9798 Slurry wall option. For level, see above. Cut-off depth, m. 0.099 4.9 <-- Width at impervious contact, m.

100 0.0 Height of rock fill toe, m. 3.25101

102 Page 12

Upstream cofferdam - option.Dam type 1 - rock fill with central core.

Dam type 2 ------------- homogeneousUpstream cofferdam option

not shown, see above.

Upstream cofferdam - option.Dam type 1 - rock fill with central core.

Dam type 2 ------------- homogeneousUpstream cofferdam option

not shown, see above.

Upstream cofferdam - option.Dam type 1 - rock fill with central core.

Dam type 2 ------------- homogeneousUpstream cofferdam option

not shown, see above.

20

2 Project hydraulics.

3 Flood level at dam, meters. 847.304 Normal full supply level at trashracks, m. 847.30

5 Low supply level at trashracks, m. 844.006 Design reservoir level for turbine rating, m. 846.2

7 Number of conduits intake to powerhouse. 1 L/H ratio = 10.6

8 Number of turbines on each conduit. 2 L = Total conduit length, m.9 Calculated rated flow per conduit, m3/s. 2.60 H = turbine rated head, m.

10 Automatic (1) or manual (2) optimization. 1 Comment11 Target automatic conduit head loss ratio % 15.85 Comment

12 Calculated head loss % 14.98 Comment

13 Calculated average diam of upstream and downstream steel pipes, m. 0.89 Comment14 Select pipe diam (m) for manual optimization. 10.000 Comment. <<< NOTE15 Program nominal pipe diam for manual optimize, m. 10.000 Penst. Diam,m 8.0016 Penstock steel ultimate strength, Mpa. 482.5 Comment

17 Penstock steel yield strength, Mpa. 344.7

18 Calculated conduit head loss at rated flow, meters. 68.2 Comment19 Rated net head (m) - must equal calc. net head. =454.86 <--- iterated cell.20 Calculated net head on turbine, m. 454.86 Comment21

22 Intake. ooooooooooooooooooooooooooooooooo23 Length of intake channel, meters. 5.0 Intake channel clearing,24 Average level of rock at intake, meters. 842.0 Ha. ----- > 0.01

25 Average depth of overburden excavation at intake, meters. 2.0

26 Intake and channel overburden excavation, m3. 6527 Intake and channel rock excavation volume. m3. 13

28 Intake gate width and height, meters. Width = 1.021 Gate height 1.27629 Head on intake gate to mid-point, m. 6.535 Intake deck

30 Intake gate flow velocity, m/sec. 2.00 elevation, m. 847.60

31 Submergence to top of intake gate, meters. 0.9932 Intake gate sill elevation, meters. (maximum elev.) 840.76

33 Bulkhead gate width and height, m. Width = 1.123 Gate height 1.53134 Head on bulkhead gate, to mid-point, m. 6.535

35 Water cleanliness factor. ( 0.5 to 1.0 ) 0.90 Comment

36 Percentage of reservoir cleared. ( 10% to 100% ) 037 Trashrack gross flow velocity, m/sec. 1.00 Intake clearing,

38 Trashrack area, square meters. 2.60 Ha ------- > 0.0139 Trashrack height, meters. 1.68

40 Total trashrack width, meters. Per intake. 1.55 Comment

41 Trashrack width between piers, meters. 1.55 Clear spacing between rack42 Total trashrack weight, kg, all intakes. 398 bars, mm. = 19

43 Maximum unsupported bar length, meters. 0.593 Comment44 Approach flow angle to racks. (45 to 0 degrees) 10 Comment

45 Rack inclination to horizontal. (60 to 90 deg. ) 80 Comment

46 Rack blockage ratio. ( 0.0 to 0.25) 0.2 Comment47 Head loss through racks, meters. 0.97 Trashrack sill

48 Head loss through intake, meters. 0.03 elevation, m. 840.76

49 Intake height, gate sill to deck, m. 7.5450 Total intake(s) concrete volume, cubic meters. 114

51 Page 13

BAKER - CHIPMUNK CREEK

21

52 BAKER - CHIPMUNK CREEK53 Side stream total cost, included in intake and equipment costs. 0.00054

55 Conduit intake to surge tank. ooooooooooooooooooooooooooooooooo56 Intake pipeline concrete encased length, m. 5 Note - pipeline steel cost57 Pipeline on surface (1) or buried (2). 2 has been reduced to58 Pipe length in rock sidehill, m. 1100 72 % based on59 Pipe length in earth sidehill, m. 2580 use of some Sclairpipe.

60 Elevation of end of pipeline, m. 66061 Total pipeline length, meters. 3685 Comment Pipe vel, m/s.

62 Pipeline diameter, meters. 0.974 Comment 3.4963 Pipeline steel thickness, millimeters. 7.0 Comment

64 Pipeline(s) steel weight, kg. 468,838

65 Pipeline(s) total conc casing pier+anchor volume, m3. 466 Length of Sclairpipe used instead of steel, m. 2,031

67 Average sidehill slope in rock, hor. to 1 vert. 2.1 Comment68 Average sidehill earth slope, horiz. to 1 vert. 2.3 Comment

69 Sideslope roughness factor. (1.5 to 3.0) 1.5 Comment

70 Rock excavation for pipeline(s), m3. 2,590 Slope fact= 0.5471 Overburden excavation for pipeline(s), m3. 20,040 Slope fact= 0.77

72 Pipeline and penstock clearing width. Pipe, m. 5 Penstock, m. 373 Pipeline and penstock(s) clearing hectares. 48.2

74

75 Low pressure tunnel size and cost calculation. ooooooooooooooooooooooooooooooooo76 Low pressure tunnel length, m. 0 Adit L, m = 0

77 Tunnel rock diameter, m. 2.400

78 Ratio of length tunnel lined with concrete. 1 Conc lined 079 Length of tunnel lined with steel, m. 0

80 Tunnel(s) excavation volume, including adit, m3. 0 Adit vol m3= 081 Tunnel(s) concrete lining volume incl. Adit plug, m3. 0 Adit plug m3 0

82 Tunnel lined section diameter, m. 1.824

83 Liner min. thickness for buckling/handling, mm. 8.2 Steel liner, kg. 084

85 Surge tank size and cost calculation. ooooooooooooooooooooooooooooooooo86 Surge tank used, (1), not used (0). 0 Comment

87 Design acceleration for earthquake, g. 0.25 = 1/1000 DBE

88 Surge tank in steel =1, in rock exc. = 2 289 If in rock, conc lining (1), no lining, (0) 1

90 Elevation rock at top of tank, if in rock, m. 800 Comment91 Elevation of surge tank tee, or conduit "knee", m. 710 Comment IMPORTANT92 Tank diameter based on min for stability (1), or larger, (2) 2

93 Tank min. diam for stability, m. 0.8 Tank cost $M 0.00094 If tank diameter is larger, select diameter, m. 3.0 Comment

95 Turbine rated head, m. 454.9 NOTE96 Upstream conduit length, meters. 3685

97 Acceleration head loss to tank, m. 47.98 Surge in tank as a % of

98 Retardation head loss to tank, m. 32.85 turbine head 0.099 Elevation of top of tank, meters. 848.3 Should be less than 8%.

100 Elevation of bottom of tank, meters. 749.8 Preferably less than 5%.

101 Tank height, top to bottom, and T to roof, meters. 98.5 T to roof, m= 138.3

102 Page 14

PVC pipe is suitable for this

application.

22

103 BAKER - CHIPMUNK CREEK

104 Conduit surge tank to powerhouse. ooooooooooooooooooooooooooooooooo105 Vertical bore size and quantity calculation.106 Bore length, m. 0 Bore diam, m. 1.171107 Ratio of length bore lined with concrete. 0

108 Bore excavation volume, m3. 0 Bore lined section

109 Bore concrete lining volume, m3. 0 diameter, m. 0.890110

111 High pressure tunnel. ooooooooooooooooooooooooooooooooo112 Total high pressure tunnel length, m. 0

113 Adit L, m = 0

114 Tunnel diameter, m. 2.300115 Ratio of length tunnel lined with concrete. 1

116 Tunnel excavation volume, including adit, m3. 0 Adit vol m3= 0117 Tunnel concrete lining volume incl. adit plug, m3. 0 Adit plug m3 0

118 Tunnel concrete lined section diameter, m. 1.748

119 Tunnel steel lined section length, m. 0 Tunnel d. m 2.748120 Calc. liner thickness ups. end for buckling, mm. 15.1 Liner d. m.= 1.748

121 Tunnel lined section excavation volume, m3. 0

122 Concrete around liner, m3. 0 Steel liner kg. 0123

124 Buried steel Penstock. ooooooooooooooooooooooooooooooooo125 Elevation at upper end of liner/penstock, m. 660.00

126 Penstock length and sideslope in rock cut, m. 569.00

127 Penstock length and sideslope in earth cut, m. 569.00128 Average sidehill slope in rock, hor. to 1 vert. 10.00 Slope fact= 0.1

129 Average sidehill earth slope, horiz. to 1 vert. 10.00 Slope fact= 0.1130 Sideslope roughness factor. (1.5 to 3.0) 1.50 Comment

131 Penstock rock excavation, m3. 724 Earth exc, m3. 1,358

132 Surface steel penstock. ooooooooooooooooooooooooooooooooo133 Surface penstock length, m. 0

134 Earth overburden average depth of cut, m. 1135 Average excavation depth in rock, m. 2

136 Penstock rock excavation, m3. 0 Earth exc, m3. 0

137 Conc. anchor & ring girder pier volume, m3. Anchor = 0 Pier vol, m3 0138 Penstock data. ooooooooooooooooooooooooooooooooo139 Total penstock/tunnel liner length, meters. 1,138 Comment140 Penstock diameter, meters. 0.798

141 Maximum penstock steel thickness, millimeters. 11.9 Comment

142 Penstock steel weight, kg. 220,148143

144 Tailrace. ooooooooooooooooooooooooooooooooo

145 Tailrace channel length, meters. 50 Tailrace channel invert146 Tailrace ch. rock level at powerhouse DT exit, m. 325 level, m. = 322.33

147 Tailrace channel average overburden depth, m. 5 Flow depth 0.86148 Tailrace channel overburden excavation volume, m3. 3,222

149 Tailrace rock excavation volume, m3. 177

150 Tailrace Manning friction factor. 0.032151 Approximate head loss in tailrace channel, m. 0.36 Note - not in conduit losses.

152153 Number of side stream crossings over penstock. 0

Page 15

23

154 Dam and spillway.155 Minimum elevation top of hoisthouse, m. 851.67

156 Flood level, m. Deck level, m.157 847.30 847.60

158 Total height of159 Full supply concrete intake

160 level, m. rock to deck, m

161 847.30 7.59162 Low supply

163 level, m. Intake gate164 844.00 lintel elev, m.

165 Rack top, m. 842.04

166 842.45167 Rack height, m. Intake gate

168 1.68 sill elev, m,.169 Stoplog height, m. 840.76

170 1.53

171 Gate height, m.172 1.28

173 Rack sill elev, m.174 840.76

175

176177 Section elevation through center of intake and pipe.178

179 Rack width, m. 1.55180 Tunnel or

181 Stoplog width, m. 1.12 pipe diam, m.182 0.974

183 Gate width, m. 1.02

184185

186187 Total rack width 1.55

188 Plan through intake at pipe level A - A

189190 Minimum distance racks to Deck width, m. 2.88 (minimum)

191 gate, m. 2.50 Deck length, m 3.95 (minimum)192 Pier width, m. 0.00

193

194195

196197

198

199200

201

202203

204 Page 16

BAKER - CHIPMUNK CREEK

Plan at deck level C - CPlan section B - B

24

205 BAKER - CHIPMUNK CREEK

206

207 Surge tank dimensions. 0.0208 El, m. Surge tank diameter, m. 0.00 m. Tank top, m.

209 0.0 El, m. 0.0

210

211 FSL Surge rise, m.212 El, m. 0.0

213 0.0214 Friction drop, m.

215 LSL 0.0

216 El, m.217 0.0 Surge drop, m.

218 0.0219

220 Tank bottom, m.

221 El, m. 0.0222

223 Upstream Riser diam, m.

224 conduit length, m. 0.0225 0

226 Level surge227 tank T, m.

228 0.0

229230

231 Penstock and conduit hydraulics.232 Allowable waterhammer at turbine on valve closure, %. 15

233 Upstream pipeline or tunnel LV, m2/s. 3588

234 Penstock pipe or tunnel LV, m2/s. 5917 Surge tank used on235 Average velocity in conduit intake to turbine, m/s. 3.89 conduit ---------- >No236 Valve times in seconds. Close (total) --> 130.4 Open (total) --- >29.1237

238 Top of tank or Maximum waterhammer

239 FSL at dam. level at turbine, m.240 0.0 925.92

241 Bottom of tank or Max waterhammer head, m.242 LSL at dam. 602.73

243 0.0

244 Minimum waterhammer245 level at turbine, m.

246 670.53

247 Min waterhammer head, m.248 347.34

249250 Turbine inlet elevation, m.

251 323.19

252 Maximum tailwater elev, m.253 322.00

Page 17

Surge tank height, from

pipe/riser "T" to roof, m.

Schematic

showing

waterhammer

conditions on

penstock or

pipeline.

Negative waterhammergradient

25

BAKER - CHIPMUNK CREEK

5 Frost days at site, from a world Atlas. 120 Frost factor. 0.72

6 Union (2) or non-union (1) labour at site. 1 Labor factor. 1.007 Site installation work cost factor ---------> 0.72

89

10 Gates, gantries, monorail hoists, stoplogs,1112 0.413

14 Spillway stoplogs for gate adjacent to intake. Width, = 0.45 Height, = 0.5715 Number of openings. 1 W^2Hh = 0

16 Sets of stoplogs. 0 Monorail hoists. 017 Hoist capacity, tonnes. 0.500 Gantries. 0

18 Supply. Install.

19 Stoplogs. 0.000 0.00020 Guides. 0.000 0.000

21 Hoist. 0.000 0.00022 Total. 0.000 0.000

23 Total cost of spillway stoplog equipment. 0.000

2425 Spillway gate - adjacent to intake. Width, = 0.45 Height, = 0.57

26 Number of openings. 1 W^2Hh = 0.032834927 Type of gate, flat roller (1) tainter (2) 0

28 Supply. Install.

29 Gates guides and hoists. 0.000 0.00030 Total cost of spillway gate equipment. 0.0003132 Intake stoplogs or bulkhead gates. Width = 1.123 Height = 1.531

33 Number of openings. 1

34 Head to sill for stoplogs/bulkhead. 6.535 W^2Hh = 1335 Sets of bulkhead gates. 1 Monorail hoists. 0

36 Sets of stoplogs. 0 Gantries. 0

37 Hoist capacity for bulkheads. 3.3 Hoist cap. for stoplogs. 0.038 Supply. Install.

39 Stoplogs or bulkhead gates. 0.010 0.00140 Guides. 0.000 0.000

41 Hoist. 0.000 0.000

42 Total. 0.010 0.00143 Total cost of intake stoplog and/or bulkhead gate equipment. 0.0114445 Intake gates, guides and hoists. Width, = 1.021 Height, = 1.276

46 Number of openings. 1 W^2Hh = 9

47 Head to sill. 6.53548 Hoist on tower (1) or on deck (0) 0

49 Supply. Install.

50 Total cost of intake gate equipment. 0.013 0.003

51 Total cost of intake gate guides and hoist equipment. 0.01652 Page 18

If there are side stream intakes, sum of ratio of flows to main intake

Mechanical equipment cost.

26

53 BAKER - CHIPMUNK CREEK54 Powerhouse crane. Number of cranes. 1

55 Capacity of main hook. 21 Nominal capacity = 21.956 Capacity of auxiliary hook. 2.1

57 Span. 7.4 WL1.5 = 443

58 Supply. Install.59 Total. 0.231 0.017

60 Total cost of powerhouse crane. 0.24861

62 Trashracks. Width = 1.546 Height = 1.68

63 Number of openings. 1 WH = 364 Height to sill 7.54 W2Hh = 27

65 Type of racks, sectioned (2) or single (1). 2 Wt. factor 1

66 Estimated weight of racks in tonnes. 0.467 Supply. Install.

68 Total. 0.003 0.00069 Total cost of trashrack equipment. 0.003

70

71 De-sander sluice gate.72 Low level outlet gates. Width, = 0.00 Height, = 0.00

73 Head to sill. 3.27 W^2Hh = 0.0074 Supply. Install.75 Total. 0.000 0.000

76 Total cost of low level outlet gate equipment. 0.00077

78 Powerhouse ancillary mechanical and electrical systems.79 Rated flow per unit, m3/s. 1.30 Number of units. 2

80 Generator rated MVA. 5.5 Generator rpm. 900.0

81 Supply. Install.82 Dewatering pumps and piping. 0.000 0.000

83 Cooling water pumps, filters and piping. 0.024 0.01184 Compressed air, 100psi. 0.020 0.009

85 Heating, ventilating, lighting. 0.011 0.009

86 Total. 0.045 0.01987 Total powerhouse ancilliary mechanical systems. 0.06488

8990

9192 In millions of CAN $

93 Total cost of spillway stoplog equipment. 0.000

94 Total cost of spillway gate equipment. 0.00195 Total cost of trashrack equipment. 0.00496 Total cost of intake stoplog and/or bulkhead gate equipment. 0.01597 Total cost of intake gate guides and hoist equipment. 0.022

98 Total cost of low level de-sander gate. 0.000

99 Total cost of powerhouse crane. 0.248100 Total powerhouse ancilliary mechanical systems. 0.064101 Total cost of major mechanical equipment,102 except turbines.----- ---------------------------------------------> $0.353

103

104 Page 19

Cost of major mechanical equipment, summary.

27

Work item. Unit cost.Estimated

quantity.

Earthwork and clearing. Comment

10 Clearing, per hectare, $/H $7,404.09 48.6 $7,404.0911 Unit cost of overburden excavation, m3. $13.04 7,509 $13.0412 Unit cost of rock excavation, $/m3. $52.17 2,145 $52.1713 Unit cost of found excav in sand or gravel for cutoff, $/m3. $31.95 4,725 $31.9514 Rock excavation in tunnels, $/m3. $0.00 0 $0.0015 Impervious fill in cofferdams, $/m3. $0.00 0 $0.00

16 Rock fill in cofferdams, $/m3. $73.85 189 $73.8517 Impervious fill in dams, $/m3. $33.43 2,007 $33.4318 Filter material in dams, $/m3. $44.16 244 $44.1619 Rock or embankment material in dams, $/m3. $58.81 189 $58.8120 Rock rip-rap, $/m3. d50 size, m. = 0.38 $182.01 158 $182.01

21 Sidehill rock excavation for pipeline, $/m3. $39.22 3,314 $39.2222 Sidehill overburden excavation for pipeline, $/m3. $13.04 21,399 $13.0423 Side creek crossing, cost per crossing. $0.00 0 $0.0024

25 Concrete work.

26 Concrete including forms and re-bars, $/m3. $1,022.64 2,358 $1,022.6427 Concrete only, excluding forms and re-bars, $/m3. $670.25 266 $670.2528 Concrete formwork, $/m2. $94.77 319 $94.7729 Reinforcing bars, $/kg. $7.99 19,770 $7.9930 Concrete in tunnel linings, $/m3. $0.00 0 $0.0031 Dental concrete on rock in dam foundations, $/m3. $0.00 0 $0.00

32 Concrete or slurry wall, $/m3. $1,870.58 72 $1,870.58

33

34 Steelwork and powerhouse superstructure.35 Trashrack steel cost, $/kg. $6.32 458 $6.3236 Pipeline steel cost, $/ton. $5,492.57 689 $5,492.5737 Tunnel steel lining cost, $/ton. $0.00 0 $0.00

38 Powerhouse superstructure steel cost $/ton. $7,038.09 53 $7,038.0939 Powerhouse siding, $/m2. $157.67 825 $157.6740 Powerhouse roofing, $/m2. $222.99 182 $222.9941 Temporary steel pile bridge over river, cost per m. $0.00 0 $0.0042

43 Ratio of overburden excavation to dam impervious fill -------- > 0.0044 Ratio of Sclairpipe cost to equivalent steel pipe cost. 0.50

Inflation factor, 2008 to present. 1.001Page 20

BAKER - CHIPMUNK CREEK

Unit prices used in cost estimate.

Suggested

unit cost,based on

quantityof

work.

Fill in unit prices (blue column) before entering data in other pages. Return to this page after

completing all data entry to see if unit prices are compatible with quantities shown in column

F.

28

1 BAKER - CHIPMUNK CREEK2

3 Approximate cost by quantities in millions $. CAN $4 Civil work item and unit of measure. Cost $/unit. Quantity. Cost $ Millions

5 Clearing for all structures. Ha. $7,404.09 48.6 0.3606 Access roads and bridge cost. 7.8237

8 Embankment dam.9 Damsite and spillway overburden exc. cost. (m3) $13.04 757 0.010

10 Damsite(s) rock excavation cost. (m3) $52.17 0 0.000

11 Cutoff trench sand/gravel excavation cost. (m3) $31.95 4,725 0.15112 Impervious fill dam and cofferdam from borrow. (m3) $33.43 2,007 0.067

13 Filter material cost. (m3) processed from exc. $44.16 244 0.011

14 Rock embankment material cost. (m3) from exc. $58.81 189 0.01115 Rip-rap cost. (m3) selected from excavations $182.01 158 0.029

16 Dental concrete for core contact, m3. $0.00 6 0.00017 Concrete or slurry wall volume, m3. $1,870.58 72 0.135

18 Sub-total cost of embankment dam. ----------------------------------------------> 0.413

1920 Side stream approx. total cost, including intake and equip. costs 0.00021 Intake, de-sander and weir spillway.22 Intake and channel overburden excavation cost. (m3) $13.04 65 0.001

23 Intake and channel rock excavation cost. (m3) $52.17 13 0.001

24 Intake+weir+desander structure concrete cost. (m3) $1,022.64 2,354 2.40725 Trashrack supports and guides cost, kg. $6.32 60 0.000

26 Sub-total intake civil work cost. ------------------------------------------------------------ > 2.40927

28 Tunnels and vertical bore.29 Tunnel rock excavation cost. (m3) $0.00 0 0.00030 Tunnel concrete lining cost. (m3) $0.00 0 0.000

31 Bore rock excavation cost. (m3) $0.00 0 0.00032 Bore concrete lining cost. (m3) $0.00 0 0.000

33 Low pressure tunnel steel lining cost, installed, ton. $0.00 0 0.000

34 High pressure tunnel steel lining cost, installed, ton. $0.00 0 0.00035 Sub-total underground work cost. --------------------------------------------------------- > 0.00036

37 Surge tank cost, if required. Lump sum. 0.00038

39 Steel pipelines and penstocks.40 Number of side creek crossings, cost per crossing. $0.00 0 0.000

41 Pipeline rock excavation cost. (m3) $52.17 3,314 0.173

42 Pipeline earth excavation cost. (m3) $13.04 21,399 0.27943 Pipeline concrete casing cost. (m3) $1,022.64 4 0.004

44 Penstock anchor and pier concrete, m3. $1,533.96 0 0.00045 Pipeline/penstock steel cost, installed, ton. $5,492.57 689 3.784

46 Sub-total pipelines and penstocks. -------------------------------------------------------- > 4.240

4748 Tailrace.49 Tailrace overburden excavation cost. (m3). $13.04 3222 0.04250 Tailrace rock excavation cost. (m3). $52.17 177 0.009

51 Sub-total tailrace excavation work. ------------------------------------------------------- > 0.05152 Page 21

29

53 BAKER - CHIPMUNK CREEK54

55 Powerhouse.56 Overburden excavation, m3. $13.04 3,464 45

57 Rock excavation, m3. $52.17 1,955 102

58 Concrete, m3. (Excluding forms, re-bar) $670.25 266 17859 Formwork, m2. $94.77 319 30

60 Reinforcing, kg. $7.99 19,770 15861 Powerhouse superstructure steel weight, tonnes. $7,038.09 53 376

62 Wall area, m2. $157.67 825 130

63 Roof area, m2. $222.99 182 4164 Total powerhouse civil work cost. ---------------------------------------------------------- > 1.06065

66 Total civil work cost, millions $ ------------------------------------------------------- > $16.35767

68 Cost of major mechanical equipment, summary.69 Total cost of trashrack equipment. 0.004

70 Total cost of intake stoplog and gate equipment. 0.037

71 Total cost of spillway low level gate and bulkhead equipment. 0.00172 Total cost of low level de-sander gate. 0.000

73 Total cost of powerhouse crane. 0.24874 Total cost rubber dams. 0.783

75 Total powerhouse ancilliary mechanical systems. 0.064

76 Sub-total cost of major mechanical equipment, except generators and valves. 1.13677

78 Generating equipment, transmission and substation at powerplant.79 Substation cost, disconnects and transformer. 0.124

80 Transmission lines cost. 1.309

81 Station service. 0.02882 6.114

83 Sub-total cost of W/W equipment, including valve(s) and transmission. 7.57584

85 Total electromechanical+transmission work cost, millions $ ---------- > $8.7118687 Total direct cost, millions $ ------------------------------------------------------------ > $25.06888

89 Indirect costs. % of direct Sub-total90 cost for %

91 Feasibility studies and site investigations. 2.0 25.068 0.50192 Environmental work. 2.0 25.570 0.511

93 Detailed designs and contract documents. 2.0 26.081 0.522

94 Site supervision work. 4.0 26.603 1.06495 Civil contingencies and unforseen cost allowance. 20.0 20.293 4.059

96 Electromechanical contingencies 8.0 7.374 0.59097 Sub-total indirect costs. 7.24798

99

100

101

102 Page 22

W/W cost of generating equipment, inlet valve, switchgear and controls.

Cost of development including transmission, no interest $32.3

30

103 BAKER - CHIPMUNK CREEK104

105 Estimated construction time, months. 14106 Interest rate % 6

107 Interest during construction, $M. 1.035108109

110111

112

113 Summary of principal project statistics.114 Total installed capacity, MW 9.8115 Estimated annual generation, GWh. 42.3

116 Manhours per annum for operation. 879117 Total overheads as % of total cost. 22.4

118

119 Summary of principal civil work quantities.120 Total length of conduit from intake to powerhouse, m. 4,823

121 Length of pipe substituted with PVC pipe, m. Type Sclairpipe 2031

122 Overburden excavation, cubic meters. 28,907123 Rock excavation, cubic meters. 5,459

124 Rock tunnel excavation, cubic meters. 0

125 Concrete, cubic meters. 2,630126 Steel penstock and tunnel liners, tonnes. 689

127 Powerhouse superstructure steel, tonnes. 53128

129

130

131 Site revenue calculation.132 Operating staff manhours. 879

133 Operating staff manhour cost per hour, $. 80

134 Annual manhour cost $M. 0.070135 Total generation capacity (from page 1) --- MW. 9.8

136 Estimated plant annual average load factor. 0.46137 Average overall project efficiency, excluding transmission, for energy calc. % 78.76

138 Calculated annual generation. (GWh) 42.3

139 Value of generation in cents/kWh. 8.0140 Calculated annual value of generation $(m) 3.2

141 Calculated opearation & maintenance cost $(m) 0.401142 Calculated annual net revenue before taxes, interest and amortization. $(m) 2.769

143144 Estimated project payback in years 12.0145

146147

148149150

Page 23

$33.4

Worth further analysis, but proceed cautiously.

Project screening - calculation to determine whether project worthfurther analysis.

Comments on whether project worth further investigation:-

Total project cost, including interest during

construction, $M.

Head iterated OK in auto

mode.

END OF DETAILED OUTPUT