61
Theory of Quantum Dot Lasers M. Grundmann Institut für Experimentelle Physik II Fakultät für Physik und Geowissenschaften Universität Leipzig [email protected] www.uni-leipzig.de/~hlp/ Semiconductor Physics Group

Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Theory ofQuantum Dot Lasers

M. Grundmann

Institut für Experimentelle Physik IIFakultät für Physik und GeowissenschaftenUniversität Leipzig

[email protected]/~hlp/

SemiconductorPhysics Group

Page 2: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Content

SemiconductorPhysics Group

Introduction

Electronic levels, Gain

Carrier distribution function

Laser propertiesstaticdynamic

Conclusion

Page 3: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Scheme QD Laser (Edge Emitter)

SemiconductorPhysics Group

[001]

[110]

n-GaAsn-GaAsn-GaAs

p-GaAs

p-AlGaAs

p-GaAs

n-GaAs

n-AlGaAs

+

−Ni-Ge-Au

Au-Zn-Au-Ti-Pt-Au

Page 4: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Layer Sequence

SemiconductorPhysics Group

GaA

s:S

i buf

fer

with

AlG

aAs/

GaA

s S

PS

0.8

-1.0

µm

AlG

aAs:

Si

clad

ding

laye

r

0.8

- 1.

0 µm

AlG

aAs

: Zn

clad

ding

laye

r

AlG

aAs/

GaA

s S

PS

AlG

aAs/

GaA

s S

PS

70 n

m G

aAs

barr

ier

QD

s

70 n

m G

aAs

barr

ier

300

- 60

0 nm

GaA

s:Z

nco

ntac

t lay

er

700 °C 600/650 °C

505 °C( 640 °C)⇒

640 °C

quantumdot sheets

T :Gr

Page 5: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Simple Picture of Density of States

SemiconductorPhysics Group

bulk QW QD

E

D(E)

E

D(E)

EcE

D(E)

Ec Ec

|1>

EEc

|0>

|000> |010>

|011> |111>

Page 6: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Simplest Theory

SemiconductorPhysics Group

Threshold current density: j thr ~ (1 ... 2)e ×××× nQD/ττττQD

Characteristic temperature: infinite (perfect confi nement)i.e. j thr is T-independent

Page 7: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Scheme

SemiconductorPhysics Group

electronic states

strainconfinement(bi-)excitonsoscillator strength

carrier dynamics

captureinter-sublevel relaxationrecombinationthermal escapedephasing/scattering

QD ensemble effects

inhomogeneous broadeningcarrier distribution functionlateral arrangement

Threshold conditionLaser operation

Page 8: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Single Particles States

SemiconductorPhysics Group

b=13.6 nm

175.2

1359.3

1452.7

1371.4

0

1518

145.1165.1

1273.5

EcGaAs

EvGaAs

1.09

8 eV

1.19

4 eV

5 nm

V2

V3

V1

C2

C3

C1

valence bandconduction band3D strain calculation8-band kp-theory

M. Grundmann et al., PRB 52, 11969 (1995) O. Stier, MG, D. Bimberg, PRB 59, 5688 (1999)

Page 9: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Conventional Rate Equation Model (CRE)

SemiconductorPhysics Group

1

2

τ0

G

τr

τr

τ0 0→ G r< 1 / τ

f G r1 = τ f2 0=

using ensemble averagedstate populations f

incorrect results

Generation rate: GRadiative recombination: ττττrIntersublevel relaxation: ττττ0

Page 10: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Master Equations of Microstates (MEM)

SemiconductorPhysics Group

Mean field Theory Microstates

Differentsituations

are describedby identicalparameters

n =1/4n =1/4

e

h

n =1/4n =1/4

e

h

Precisedescription

of thesituation

N(0,0)=0N(1,0)=1N(0,1)=1N(1,1)=0

N(0,0)=1N(1,0)=0N(0,1)=0N(1,1)=1

Impact on

cw-spectratransients (decay)

gainthreshold

2 QD's:

Page 11: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

MEM - Dynamics within a Single Dot

SemiconductorPhysics Group

τr/2

τrτr/2

τr

τr

τ0 τrτr

τ0/2

n=2n=1

n=2n=1

Model: Excitons in ground and excited states n=1,2Radiative recombination: ττττrIntersublevel relaxation: ττττ0

Page 12: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Current - MEM vs. CRE

SemiconductorPhysics Group

Page 13: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State Filling

SemiconductorPhysics Group

Strain induced quantum dotsM. Sopanen, H. Lipsanen, J. AhopeltoAppl. Phys. Lett. 65, 1662 (1995)

Page 14: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State-Filling: MEM vs. CRE

SemiconductorPhysics Group

0.9 1.0 1.1 1.2 1.30

1

2

3

4

5

6

12

6

2

RP, τ0=0

RE, τ0=τ

r/100

Lum

ines

cenc

e In

tens

ity (

arb.

uni

ts)

Energy (eV)

Page 15: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State-Filling of Self-Assembled QD's

SemiconductorPhysics Group

0.9 1.0 1.1 1.2 1.3 1.4 1.5

101

102

103

104 Quantum Dots Wettinglayer GaAs

0.5

5

50

500

I (W/cm2

300 KP

L-I

nte

nsi

ty (

arb

. un

its)

0.9 0.81.4 1.3 1.2 1.1 1.0

Wavelength (µm)

Energy (eV)

Page 16: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State-Filling of Self-Assembled QD's

SemiconductorPhysics Group

101

102

103

104

0.55 50 500 W/cm2

tav

T=8K

InAs/GaAs=1.0nm

PL

-In

tens

it y(a

rb.u

n it s

)

0.9 1.0 1.1 1.2 1.3 1.4 1.5Energy (eV)

125

Page 17: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State-Filling

SemiconductorPhysics Group

10-3 10-2 10-1 100 10110-5

10-4

10-3

10-2

10-1

100

101

I0 I1 I3MEM, τ0=35 ps

PL

Inte

nsity

Excitation (X/ (QD / τ))

Photoluminescence of mesa (d=30 µm)homogeneous excitation density

Page 18: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

MEM vs. CRE

SemiconductorPhysics Group

0.0 0.2 0.4 0.6 0.80.01

0.1

1

Exp. |001>MEM, τ0=30psCRE, τ0=30ps

PL

Inte

nsity

(arb

. uni

ts)

Time (ns)

Time-resolved photoluminescence

Page 19: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Ground State Gain - MEM vs. CRE

SemiconductorPhysics Group

CRE only correct in the limit ofsmall excitation

CRE overestimates gain

CRE overestimatesinter-sublevel relaxation time

Page 20: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

MEM Summary

SemiconductorPhysics Group

Master equations for the transitionsbetween micro-states are theconceptually correct model todescribe the dynamics in quantum dots

Modeling of the finite inter-levelscattering time with conventionalrate equations for the averagelevel population can lead to wrongresults, especially for t0<<tr.

Experiments on quantum dots withfast and slow inter-level relaxationhave been fitted.

Page 21: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain

SemiconductorPhysics Group

Electronic structurelevel positionsinhomogeneous broadeninghomogeneous broadeningoscillator strengthbarrier levels

Recombinationexcitonic

Carrier distribution functionpopulation of micro-statesmaster equationsthermal excitationnon-equilibrium distribution

Page 22: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain

SemiconductorPhysics Group

[ ]

g

e

m c nM

VE E f f d

rg i c v

i n

i ni

( )

( ) ( ) ( )/

( ),

h

h

ωπε ω

δ ε ε ε πω ε

ε

=

− − −− +∑∫

2

02

0

2

00 2 2

2 ΓΓ

pre-factor

homogeneousbroadening

inhomogeneousbroadening

carrierdistribution

function

DOS

oscillatorstrength

Page 23: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Saturated Gain

SemiconductorPhysics Group

L.V. Asryan, M. Grundmann et al.,J. Appl. Phys. 90, 1666 (2001) several excited transitions

Page 24: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain

SemiconductorPhysics Group

0 1 2-1

0

1

N/ND

0 1 2 3

-1

0

1

Gai

n (

g )

max

Injection current ( e N / )D rτ

e+h(eh)

Effect of correlated capture Only ground state is considered

Page 25: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain - p-doped

SemiconductorPhysics Group

Effect of static hole population Only ground state is considered

O.B. Shchekin, D.G. DeppeAppl. Phys. Lett. 80, 2758 (2002)

Page 26: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Threshold Current vs. Coverage

SemiconductorPhysics Group

Effect of correlated capture Only ground state is considered

0.01 0.1 1

101

102

103

e+h(eh)

Coverage ζζmin

Th r

esho

l dcu

r ren

t(A

/cm

)2

α=10cm-1

Page 27: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

MEM - Dynamics in an Ensemble

SemiconductorPhysics Group

QD's

barrier

τc τe τc τeτc τeE2 E3E1

E2 E3E1

Size dependentcapture time (?)escape time (!)

Size distribution functionGaussian

Page 28: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Carrier Distribution Function

SemiconductorPhysics Group

-150 -100 -50 00.0

0.2

0.4

0.6

0.8

1.0

0.08

0.4 nA/QD

0.24

0.32

0.16

300 K

77 K Fermi

Pro

babi

lity

Energy (meV)excitedstate

groundstate

Low temperatures:Strong deviation fromFermi-function

Room temperature:Small deviation from

Fermi-functionShift of E F with

increasing injection

Page 29: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

State-Filling of Self-Assembled QD's

SemiconductorPhysics Group

101

102

103

104

0.55 50 500 W/cm2

tav

T=8K

InAs/GaAs=1.0nm

PL

-I n

tens

ity(a

rb.u

nits

)

0.9 1.0 1.1 1.2 1.3 1.4 1.5Energy (eV)

125

Non-thermal carrier distribution!

Page 30: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain Spectrum

SemiconductorPhysics Group

-150 -100 -50

0.0

0.5

1.0

300 K77 K

Gai

n

Energy (meV)

0.16

0.08 nA/QD

0.24

0.4 nA/QD

0.32Low temperature:

No Fermi distributionSmall shift of gain

maximumLarger gain maximum

Room temperature:Shift of wavelength

and gain maximum

Page 31: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain - Extremes: NTC vs. TC

SemiconductorPhysics Group

Gai

n

0.0

0.5

1.0

gmax

fn+fp-1=0.86 fn+fp-1=0.69 fn+fp-1=0.39

-4 -3 -2 -1 0 1 2 3 4(E-E0) / σE

-0.5

0.0

0.5

1.0

kBT=σE

µ=E0+3σE

µ=E0+2σE

µ=E0+σE

µ=E0

0 1 2 3 41.0

1.5

2.0

N/ND

µ-E0/σE

NTC

TC

Gai

n

NTC: non-thermaldistribution

all QD's have the samepopulation regardless of theground state energy

TC: thermal distribution

QD population is given byFermi function

Page 32: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Experimental Gain at Low Temperature

SemiconductorPhysics Group

12151215 12201220 12251225 12301230 12351235 12401240 12451245 12501250 12551255 12601260 12651265 12701270 12751275-15-15

-10-10

-5-5

00

55

1010

15

2020

2525

3030

3535

4040

Energy (meV)

PL (arb. units) 100 Acm 100 Acm-2

90 Acm 90 Acm-2

80 Acm 80 Acm-2

70 Acm 70 Acm-2

60 Acm 60 Acm-2

Gai

n (c

m)

-1

T=77K

NON-thermalcarrierdistributionfunction

Gain ~Gaussian × j

Page 33: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain at High Temperature

SemiconductorPhysics Group

Thermalcarrierdistributionfunction

Gain=Gaussian Fermi

×

1110 1120 1130 1140 1150 1160 1170 1180 1190 1200 1210 1220-50

-40

-30

-20

-10

0

10

20

EF

Gai

n (c

m)

-1

Energy (meV)

350 Acm-2

300 Acm-2

200 Acm-2

150 Acm-2

100 Acm-2

60 Acm-2

250 Acm-2

T=300K

QD laser emission

Page 34: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain of 2nd Excited State

SemiconductorPhysics Group

L.V. Asryan, M. Grundmann et al.,J. Appl. Phys. 90, 1666 (2001)

Page 35: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain on Excited States

SemiconductorPhysics Group

1

10

100 NTC

(a)

kBT=σE

ξ=15%ξ=10%ξ=5%

j th(A

/cm2

)

1

10

100

RT

NTC

(b)

ξ=10%

ξ=10%

kB T=2σEkB T=σEkB T=σE /2

j th(A

/cm2

)

0.01 0.1 1-2

-1

0

1

2

3kB T=2σEkB T=σEkB T=σE /2

NTC

(c)

(Em

ax-E

0)

/ E 0

Area coverageζ

For increasing losses ordecreasing gain

Shift of laser emission toexcited stateshigher energies

continouslydiscontinuously

Page 36: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Gain Saturation

SemiconductorPhysics Group

0.0

0.4

0.8

1.2

1.6

j th(k

A/c

m2) T=77K 1 Layer

6 Layers

2 1 0.5 0.25

QD

WL

Cavity Length (mm)

Page 37: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

History of Diode Laser Threshold

SemiconductorPhysics Group

1960 1970 1980 1990 2000 2010

101

102

103

104

SCH-QW

Theory

Year

strainedQW

Thr

esho

ld c

urre

nt d

ensi

ty (

A/c

m)2 Quantum

DotsDH

293 K

Page 38: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Temperature Dependence of Gain

SemiconductorPhysics Group

0 50 100 150 200 250 300 350 4000.5

0.6

0.7

0.8

0.9

1.0

Current e/QD/τ 2 4

Temperature (K)

Gai

n (

scal

ed u

nits

)

-80K: negative T80-150K: very high T>150K: positive T 0

0

0

Page 39: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Temperature Dependence of Threshold

SemiconductorPhysics Group

0 50 100 150 200 250 300 350 4001.5

2.0

2.5

3.0

Master equationsfor micro-statesincl. thermal emission

T0 =500KT0 =-500K

T0~∞∞∞∞Thresholdcurrent(e/QD/) T

hres

hold

curr

ent(

e/Q

D/τ

)

g= 0.7 gmax

No T-dependentcarrier loss in the barrier!ττττbarr=ττττQD

Small T 0 values at RTLeakage current!

Temperature (K)

Page 40: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Temperature Dependence of Threshold

SemiconductorPhysics Group

Reduction of T 0 due toT-dependent quantumefficiency ηηηηbarr in the barrier

ττττQD=1 ns

0 50 100 150 200 250 300 35010

100

RT:τbarr=τ

QD

ηbarr=37%

ηbarr=5%

Thr

esho

l dc u

rre n

tde n

s ity

(A/c

m)

2

Temperature (K)

T ~500K0

T=5

4K0

T =114K

0

Page 41: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

High Power Laser Performance

SemiconductorPhysics Group

8 x j thr

Page 42: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

High Power Lasing Spectra

SemiconductorPhysics Group

Spe

ctra

l pow

er d

ensi

ty (

W/n

m)

1070 1080 1090 1100 1110 1120

10-5

10-4

10-3

10-2

10-1

18.210.5 4.7

1.3

1.0

0.8

0.5

QD laser3×InAs/GaAs

Wavelength (nm)

Increasing width of modespectrum with power dueto inhomogeneous broadening

Saturation value:12.5 nW per QD

refill time < 14ps

Page 43: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

High Power Simulation

SemiconductorPhysics Group

Inhomogeneousbroadeningdominates

"Hat"-like spectral shape> finally all QDs participate for which

the gain is larger than the losses

Saturation at high injection current> dependent on relaxation bottleneck

-240 -230 -220 -210 -200 -190 -180 -170 -16010

10

10

10

10

10

10

10

10

10

10

-10

-9

-8

-7

-6

-5

-4

-3

-2

-1

0

1.2×Ithr

0.8×Ithr

0.4×Ithr

Lase

r in

tens

ity (

arb.

uni

ts)

Energy (meV)

σ=20 meVΓ=0

Page 44: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

High Power Simulation

SemiconductorPhysics Group

-240 -220 -200 -180 -16010-10

10 -9

10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

0.96 I× thr

Lase

r in

tens

ity (

arb.

uni

ts)

1.04 I× thr

Energy (eV)

σ=20 meVΓ=20 meV

Inhomogeneousbroadening

Homogeneousbroadening ofsimilar size

Sharp spectral shape in the center of thegain spectrum> off-resonant QDs participate in lasing> collective action of the QD ensemble

Page 45: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Principle of bipolar MIR QD Laser

SemiconductorPhysics Group

Lasing on inter-subleveltransition in the MIR

Pumping of upper levelfrom barrier

Depletion of lower levelby interband lasing

Page 46: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Polarization: NIR and FIR

SemiconductorPhysics Group

[001]

C1-V1

Band edge(1.12 eV, 1100nm)

C1-C2 C1-C3×5

FIR Inter-sublevel transitions(90 meV, 13.8 µm)

Page 47: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Simulation of MIR-Laser - Population

SemiconductorPhysics Group

-1.0

-0.5

0.0

0.5

1.00.0

0.2

0.4

0.6

0.8

1.0

f1f2

E1E2MIR

Gai

n( g

)m

axP

opul

a tio

n

αα12=8cm, =44 cm-1-1αα12=14cm, =14 cm-1-1

0 5 10 15 20 25 0 5 10 15 20 25Injection current (e/ )τrInjection current (e/ )τr

Page 48: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Simulation of MIR-Laser - Emission

SemiconductorPhysics Group

0

5

10

15

0 5 10 15 20 250

5

10

15

20

0 5 10 15 20 25

0 5 100.0

0.5

Current

MI R

10×6

0 5 100.0

0.5

Current

MI R

10×6

Spo

ntan

eous

MIR

Lase

ro u

tput

( N/e

)ph

Injection current (e/ )τ rInjection current (e/ )τr

NIR

MIR

NIRNIR

α α1 2=8cm , =44 cm-1 -1α α1 2=14cm , =14 cm-1 -1

Page 49: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Relaxation Oscillations

SemiconductorPhysics Group

0 1 2 31

2

3

4

5

6

T=293 KL=265µm

√Power (√mW)0 1000 2000

0

5

10

15

20

25

P (mW)2.902.411.981.491.01

Timet (ps)

3dB cutoff: 8.2 GHz

L=265 µm laserI =40 A/cm2

= 91%tr

iηMOCVD3 InAs/GaAs×

Coupling ofcarrier densityphoton density

Page 50: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Relaxation Oscillations

SemiconductorPhysics Group

Homogeneous broadening leads to collective behavior

σ τ=20 meV, =100ps0

M. Grundmann,APL 77, 1428 (2000)

Page 51: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Relaxation Oscillations

SemiconductorPhysics Group

Homogeneous broadening leads to collective behavior

-30 0 300.5

1.0

1.5

2.0

Tim

e (n

s)

Γ=30 meVΓ=5 meVΓ=0.5 meV

-30 0 30-30 0 30

Energy (meV) Energy (meV)

0.6

0.7

0.8

0.9

1.0

0.5

Energy (meV)

Gro

und

stat

e fil

ling

σ τ=20 meV, =100ps0

Page 52: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Relaxation Oscillations

SemiconductorPhysics Group

30 40 50 60 70 802

3

4

5

6

7

σ=20 meVI=1nA/QD

0.5 meV 30 meV

RO

Fre

quen

cy (

GH

z)

Gain (cm-1)

Impact of time constants Impact of gain

M. Grundmann,Electr. Lett. 36, 1851 (2000)

Page 53: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Chirp - Simple Picture

SemiconductorPhysics Group

0

10

20

1.20 1.25 1.30-1

0

1

2

symmetric QD Ensemble

asymmetric QD Ensemble

α

dn (

%)

r

α=0

-0.2

0.0

0.2

Energy (eV)

gain

(cm

)-1

Ig

I

LNn

Nn

neti

r

∆∆∆∆⋅

⋅−≈

∂∂∂∂

≡/

/2

/

/ λδλ

πα

αααα is also calledlinewidthenhancement factor

Page 54: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Absorption - QD vs. QW

SemiconductorPhysics Group

J. Oksanen, J. Tulkki,J. Appl. Phys. 94, 1963 (2003)

QD

QW

Page 55: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

LinewidthEnhancement Factor

SemiconductorPhysics Group

Smaller for QD than for QW

can be zero for QD laser

temperature effects!

Page 56: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Linewidth Enhancement Factor

SemiconductorPhysics Group

J. Oksanen, J. Tulkki,J. Appl. Phys. 94, 1963 (2003)

Impact of Fermi level

Page 57: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Spatio-Temporal Dynamics

SemiconductorPhysics Group

E. Gehrig, O. Hess,Phys. Rev. A 65, 033804 (2002)

Mesoscopic theory

QD fluctuations

spatially inhomogeneouslight propagation

dynamic scattering

Maxwell + QD-Blochequations

Page 58: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Spatio-Temporal Dynamics

SemiconductorPhysics Group

E. Gehrig, O. Hess et al.Appl. Phys. Lett. 84, 1650 (2003)

Th.

Exp.

Near fieldcharacteristicsshow lessfilamentationfor QD laser

due to smallamplitude-phasecoupling

60mW

Page 59: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Beam Quality M 2

SemiconductorPhysics Group

E. Gehrig, O. Hess et al.Appl. Phys. Lett. 84, 1650 (2003)

Smaller M 2 for QD laserfor same stripegeometry

andfor same injectionconditions

Page 60: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Summary

SemiconductorPhysics Group

Single QD properties and dynamics

QD fluctuations, ensemble average

at room-T: Fermi is a good approximationotherwise: non-thermal carriers

Spatially dependent light field

Realistic description of QD laser propertiesand agreement with experimental results

Page 61: Theory of Quantum Dot Lasers - Nanoparticle · describe the dynamics in quantum dots Modeling of the finite inter-level scattering time with conventional rate equations for the average

Thanks to...

SemiconductorPhysics Group

the many colleagues I enjoy(ed) working withon quantum dot lasers over the last 10 years,in particular:(in alphabetical order)

M.-H. MaoCh. RibbatA. SchliwaO. StierV. UstinovA. Weber

Zh.I. AlferovL.V. AsryanD. BimbergF. HeinrichsdorffR. HeitzN. KirstaedterN.N. Ledentsov