130
Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy

Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

  • Upload
    others

  • View
    11

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Theoretical approaches for nanoscale thermoelectric phenomena

Giuliano BenentiCenter for Nonlinear and Complex Systems,

Univ. Insubria, Como, Italy INFN, Milano, Italy

Page 2: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Quantum computation and information is a rapidly developing interdisciplinary field. It is not easy to understand its fundamental concepts and central results without facing numerous technical details. This book provides the reader with a useful guide. In particular, the initial chapters offer a simple and self-contained introduction; no previous knowledge of quantum mechanics or classical computation is required.

Various important aspects of quan-tum computation and information are covered in depth, starting from the foun-dations (the basic concepts of computational complexity, energy, entropy, and information, quantum superposition and entanglement, elementary quantum gates, the main quan-tum algorithms, quantum teleportation, and

Giuliano Benenti Giulio Casati Davide Rossini Giuliano Strini

Principles of Quantum Computation and Information

A Comprehensive Textbook

Benenti Casati Rossini Strini

Principles of Quantum

Computation and Inform

ationA

Comprehensive Textbook

World Scientific

“Thorough introductions to classical computation and irreversibility, and a primer of quantum theory, lead into the heart of this impressive and substantial book. All the topics – quantum algorithms, quantum error correction, adiabatic quantum computing and decoherence are just a few – are explained carefully and in detail. Particularly attractive are the connections between the conceptual structures and mathematical formalisms, and the different experimental protocols for bringing them to practice. A more wide-ranging, comprehensive, and definitive text is hard to imagine.”

–— Sir Michael Berry, University of Bristol, UK

“This second edition of the textbook is a timely and very comprehensive update in a rapidly developing field, both in theory as well as in the experimental implementation of quantum information processing. The book provides a solid introduction into the field, a deeper insight in the formal description of quantum information as well as a well laid-out overview on several platforms for quantum simulation and quantum computation. All in all, a well-written and commendable textbook, which will prove very valuable both for the novices and the scholars in the fields of quantum computation and information.”

–— Rainer Blatt, Universität Innsbruck and IQOQI Innsbruck, Austria

“The book by Benenti, Casati, Rossini and Strini is an excellent introduction to the fascinating field of quantum information, of great benefit for scientists entering the field and a very useful reference for people already working in it. The second edition of the book is considerably extended with new chapters, as the one on many-body systems, and necessary updates, most notably on the physical implementations. ”

–— Rosario Fazio, The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy

World Scientificwww.worldscientific.com10909 hc

ISBN 978-981-3237-22-3

S A T O R

A R E P O

T E N E T

O P E R A

R O T A S

quantum cryptography) up to advanced topics (like entanglement measures, quan-tum discord, quantum noise, quantum channels, quantum error correction, quan-tum simulators, and tensor networks).

It can be used as a broad range textbook for a course in quantum information and computation, both for upper-level undergraduate s t u d e n t s a n d f o r g r a d u a t e students. I t contains a large number of solved exercises, which

are an essential complement to the text, as they will help the student to become familiar with the subject. The book may also be useful as general education for readers who want to know the fundamental principles of quantum information and computation.

Page 3: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Outline

1) Thermoelectricity in the quantum coherent regime (scattering theory, Landauer formula, energy filtering)

2) Thermoelectricity in the Coulomb blockade regime (quantum dot model, kinetic equations)

3) Aspects of thermoelectricity in strongly interacting systems (phase transitions, power-efficiency trade-off, power-efficiency-fluctuations trade-off)

Page 4: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Traditional versus quantum thermoelectrics

Relaxation length (tens of n a n o m e t e r s a t r o o m temperature) of the order of the mean free path; inelastic s c a t t e r i n g ( p h o n o n s ) thermalizes the electrons

Structures smaller than the relaxation length (many microns at low temperature); quantum interference effects; Boltzmann transport theory cannot be applied; efficiency depends on geometry and size

[see G. B., G. Casati, K. Saito, R. S. Whitney, Phys. Rep. 694, 1 (2017)]

Page 5: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Traditional thermocouple

Quantum thermocouple

Page 6: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Noninteracting systems, Energy filtering,

Landauer scattering theory

Page 7: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 8: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Heat-to-work conversion through energy filtering

Flow of heat from hot to cold but no flow of charge

[see G. B., G. Casati, K. Saito, R. S. Whitney, Phys. Rep. 694, 1 (2017)]

Page 9: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Energy filters in a thermocouple geometry

Page 10: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

What about phonons?

Necessary both: (i) to reduce phonon transport; (ii) to have an efficient working fluid (optimize the electron dynamics)

Page 11: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Reducing thermal conductance

[Blanc, Rajabpour, Volz, Fournier, Bourgeois, APL 103, 043109 (2013)]

Page 12: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Scattering theory

Scattering region connected to N terminals (reservoirs)

Describes elastic scattering (including the effect of a disorder potential), but not electron-electron interactions beyond Hartree approximation and electron-phonon interactions

Page 13: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Transmission matrixProbability for an electron with energy E to go from (transverse) mode m of reservoir j to mode n of reservoir i:

scattering matrix elements

transmission matrix elements

probabilitiesFrom conservation of current and condition of zero current at zero bias:

From time reversal symmetry of the scatterer Hamiltonian:

Page 14: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Landauer approach

Electrical current into the scatterer from reservoir i:

Fermi function

Energy current into the scatterer from reservoir i:

heat carried by an electron leaving reservoir i

Heat current:

Page 15: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Kirkhoff’s law of current conservation for (steady state) electrical and energy currents:

Heat current not conserved:

Heat dissipated in the reservoirs: entropy production rate

Heat (not energy) current gauge invariant

Page 16: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Two-terminal (thermoelectric) power production

The upper bound to efficiency is given by the Carnot efficiency (expected only at zero power; intuitively, finite currents entail dissipation):

SLeft (L) reservoir

Right (R) reservoir

T ,L L T ,R R

P = [(µR � µL)/e]Je<latexit sha1_base64="AVVkidoGiZKGjobmFXl/ZhZ6+wk=">AAAB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO//GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JJKBs2YAw58Bg2/f5H5jQfggkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0ppG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKKUlw==</latexit><latexit sha1_base64="AVVkidoGiZKGjobmFXl/ZhZ6+wk=">AAAB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO//GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JJKBs2YAw58Bg2/f5H5jQfggkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0ppG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKKUlw==</latexit><latexit sha1_base64="AVVkidoGiZKGjobmFXl/ZhZ6+wk=">AAAB/nicbVDLSsNAFJ3UV62vqODGTbAIdWFNRFAXQtGNiIsqxhbSECbT23bo5MHMRCixC3/FjQsVt36HO//GSZuFth64l8M59zJ3jh8zKqRpfmuFmdm5+YXiYmlpeWV1TV/fuBdRwgnYJGIRb/pYAKMh2JJKBs2YAw58Bg2/f5H5jQfggkbhnRzE4Aa4G9IOJVgqydO36mdOpRUk3u1+1q/3DsC98sDTy2bVHMGYJlZOyihH3dO/Wu2IJAGEkjAshGOZsXRTzCUlDIalViIgxqSPu+AoGuIAhJuO7h8au0ppG52IqwqlMVJ/b6Q4EGIQ+GoywLInJr1M/M9zEtk5cVMaxomEkIwf6iTMkJGRhWG0KQci2UARTDhVtxqkhzkmUkVWUiFYk1+eJvZh9bRq3hyVa+d5GkW0jXZQBVnoGNXQJaojGxH0iJ7RK3rTnrQX7V37GI8WtHxnE/2B9vkDXKKUlw==</latexit>

(TL > TR, µL < µR)<latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AAAB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOooqRnqJIIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46btt2puzeWp37jO99aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOllNEpSRSI8fyhMmaViK2/DGlBBsGITDQgLqv9q4RESCCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ==</latexit><latexit sha1_base64="1MiH6zav+sah2+m9pJXGXl8SvHs=">AAAB9HicbZBPS8MwGMbfzn9zTq1ePHgpDmHCGK0XFUQELx52mGNzg7WUNEu3sKQtSSqMsotfxYsHFT+LN7+N6baDbj6Q8ON5EpL3CRJGpbLtb6Owtr6xuVXcLu2Ud/f2zYPyo4xTgUkHxywWvQBJwmhEOooqRnqJIIgHjHSD8V2ed5+IkDSO2mqSEI+jYURDipHSlm8eVdt+46btt2puzeWp37jO99aZb1bsuj2TtQrOAiqwUNM3v9xBjFNOIoUZkrLv2InyMiQUxYxMS24qSYLwGA1JX2OEOJFeNhtgap1qZ2CFsdArUtbM/X0jQ1zKCQ/0SY7USC5nuflf1k9VeOllNEpSRSI8fyhMmaViK2/DGlBBsGITDQgLqv9q4RESCCvdWUmX4CyPvAqd8/pV3X6woQjHcAJVcOACbuEemtABDFN4gTd4N56NV+Nj3lbBWNR2CH9kfP4ATGOTVQ==</latexit><latexit sha1_base64="zDW22uEPn9Prthn+nPZd4cAl3CQ=">AAAB/3icbVDLSsNAFJ3UV62vqAsXbgaLUKGUxI0KIkU3LrqopbGFJoTJdNIOnUnCzEQopRt/xY0LFbf+hjv/xkmbhVYP3MvhnHuZuSdIGJXKsr6MwtLyyupacb20sbm1vWPu7t3LOBWYODhmsegGSBJGI+IoqhjpJoIgHjDSCUY3md95IELSOGqrcUI8jgYRDSlGSku+eVBp+42rtt+qulWXp37jMuutE98sWzVrBviX2DkpgxxN3/x0+zFOOYkUZkjKnm0lypsgoShmZFpyU0kShEdoQHqaRogT6U1mB0zhsVb6MIyFrkjBmfpzY4K4lGMe6EmO1FAuepn4n9dLVXjuTWiUpIpEeP5QmDKoYpilAftUEKzYWBOEBdV/hXiIBMJKZ1bSIdiLJ/8lzmntombdWeX6dZ5GERyCI1ABNjgDdXALmsABGEzBE3gBr8aj8Wy8Ge/z0YKR7+yDXzA+vgGw0pS7</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit><latexit sha1_base64="Kb2JlA5x3IdX0EPP99KZNN4Xg9M=">AAAB/3icbVDLSsNAFJ3UV62vqAsXboJFqFBKIoIKIkU3LrqopbGFJoTJdNIOnUzCzEQooRt/xY0LFbf+hjv/xkmbhbYeuJfDOfcyc48fUyKkaX5rhaXlldW14nppY3Nre0ff3XsQUcIRtlFEI971ocCUMGxLIinuxhzD0Ke4449uM7/ziLkgEWvLcYzdEA4YCQiCUkmeflBpe43rtteqOlUnTLzGVdZbJ55eNmvmFMYisXJSBjmanv7l9COUhJhJRKEQPcuMpZtCLgmieFJyEoFjiEZwgHuKMhhi4abTAybGsVL6RhBxVUwaU/X3RgpDIcahryZDKIdi3svE/7xeIoMLNyUsTiRmaPZQkFBDRkaWhtEnHCNJx4pAxIn6q4GGkEMkVWYlFYI1f/IisU9rlzXz/qxcv8nTKIJDcAQqwALnoA7uQBPYAIEJeAav4E170l60d+1jNlrQ8p198Afa5w+yEpS/</latexit>

⌘C = 1� TR

TL<latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="R99TBDumeJuZVdCYBPgayQaC/qc=">AAAB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NNOcdlJJcRxy2g5HjUnffqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKppiM8IB2jRU4pqqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mmqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG++sfll37hwowyEcwQm4cA7XcANN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit><latexit sha1_base64="R99TBDumeJuZVdCYBPgayQaC/qc=">AAAB9XicbZBNS8MwHMb/nW9zTq2eBC/BIXhxtF7UgyDs4sHDlNUN1lHSLN3C0rQkqTBKvfhVvHhQ8at489uYvRx084GEh+dJSP6/MOVMacf5tkorq2vrG+XNylZ1e2fX3qs+qCSThHok4YnshFhRzgT1NNOcdlJJcRxy2g5HjUnffqRSsUS09DilvRgPBIsYwdpEgX3gU42DxpV76kcSk7wV3Bdmuy0Cu+bUnanQsnHnpgZzNQP7y+8nJIup0IRjpbquk+pejqVmhNOi4meKppiM8IB2jRU4pqqXTyco0LFJ+ihKpFlCo2n6+0aOY6XGcWhOxlgP1WI3Cf/rupmOLno5E2mmqSCzh6KMI52gCQ7UZ5ISzcfGYCKZ+SsiQ2xIaAOtYiC4iyMvG++sfll37hwowyEcwQm4cA7XcANN8IDAE7zAG7xbz9ar9TGjVbLm2Pbhj6zPH49ilMI=</latexit><latexit sha1_base64="+oMm6VNnWuShRDNcJU9+qmq+3bY=">AAACAHicbVBNS8NAEN34WetX1IvgJVgEL5bEi3oQir148FCltYUmhM120i7dbMLuRighXvwrXjyoePVnePPfuG1z0NYHMzzem2F3XpAwKpVtfxsLi0vLK6ultfL6xubWtrmzey/jVBBokZjFohNgCYxyaCmqGHQSATgKGLSDYX3stx9ASBrzphol4EW4z2lICVZa8s19FxT265fOiRsKTLKmf5frdpP7ZsWu2hNY88QpSAUVaPjml9uLSRoBV4RhKbuOnSgvw0JRwiAvu6mEBJMh7kNXU44jkF42uSC3jrTSs8JY6OLKmqi/NzIcSTmKAj0ZYTWQs95Y/M/rpio89zLKk1QBJ9OHwpRZKrbGcVg9KoAoNtIEE0H1Xy0ywDoJpUMr6xCc2ZPnSeu0elG1b+1K7apIo4QO0CE6Rg46QzV0jRqohQh6RM/oFb0ZT8aL8W58TEcXjGJnD/2B8fkDA2yWKQ==</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit><latexit sha1_base64="CHSBymR1C+63kruInx7OWj7jfQQ=">AAACAHicbVDLSsNAFJ3UV62vqBvBzWAR3FgSEdSFUOzGhYsqjS00IUymk3boZBJmJkIJceOvuHGh4tbPcOffOG2z0NYD93I4515m7gkSRqWyrG+jtLC4tLxSXq2srW9sbpnbO/cyTgUmDo5ZLDoBkoRRThxFFSOdRBAUBYy0g2Fj7LcfiJA05i01SogXoT6nIcVIack391yikN+4tI/dUCCctfy7XLeb3DerVs2aAM4TuyBVUKDpm19uL8ZpRLjCDEnZta1EeRkSimJG8oqbSpIgPER90tWUo4hIL5tckMNDrfRgGAtdXMGJ+nsjQ5GUoyjQkxFSAznrjcX/vG6qwnMvozxJFeF4+lCYMqhiOI4D9qggWLGRJggLqv8K8QDpJJQOraJDsGdPnifOSe2iZt2eVutXRRplsA8OwBGwwRmog2vQBA7A4BE8g1fwZjwZL8a78TEdLRnFzi74A+PzBwSsli0=</latexit>

Page 17: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Scattering theory for two reservoirs

First law of thermodynamics:

Conserved currents:

Heat currents:

Page 18: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Thermoelectric efficiency (power production)

Charge current

Jq.� =1h

� �

��dE(E � µ�)�(E)[fL(E)� fR(E)]

Heat current from reservoirs:

Efficiency:

Jh,↵<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 19: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Carnot efficiency

[Mahan and Sofo, PNAS 93, 7436 (1996); Humphrey et al., PRL 89, 116801 (2002)]

Delta-energy filtering and Carnot efficiency

Carnot efficiency obtained in the limit of reversible transport (zero entropy production) and zero output power

If transmission is possible only inside a tiny energy window around E=E✶ then

Page 20: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Example: single-level quantum dot

Dot’s scattering matrix:

The Green’s function is for a non-Hermitian effective Hamiltonian taking into account coupling to the dots

operator coupling the single-level dot to reservoirs:

Page 21: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 22: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Short intermezzo: Cyclic thermal machines

The upper bound to efficiency is given by the Carnot efficiency:

Carnot efficiency obtained for quasi-static transformation (zero extracted power)

The ideal Carnot engine is a reversible machine, since there is no dissipation (no entropy production)

Page 23: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Finite-time thermodynamics I: endoreversible cyclic engines

Dissipation is due to finite thermal conductances between heat reservoirs and the ideal heat engine

Page 24: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Output power:

Optimize power with respect to

Page 25: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

The efficiency at maximum power (Curzon-Ahlborn efficiency) is independent of the heat conductances:

[Yvon, 1955; Chambadal, 1957; Novikov, 1958; Curzon and Ahlborn, Am. J. Phys. 43, 22 (1975)]

Within linear response:

Page 26: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Finite-time thermodynamics II: exoreversible cyclic engines

Irreversibility only arises due to internal dissipative processes

Time-dependent probability density

Stochastic thermodynamics

Time-dependent trapping potential

[Seifert, Rep. Prog. Phys. 75, 126001 (2012)]

Page 27: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Fokker-Planck equation:

is the mobility Gaussian distribution

Exactly solvable model

Page 28: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Schmiedl-Seifert efficiency at maximum power:

related to the ratio of entropy production during the hot and cold isothermal steps of the cycle

for the symmetric case

[Schmiedl and Seifert, EPL 81, 20003 (2008)]

Within linear response:

Page 29: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Low-dissipation enginesThe entropy production vanishes in the limit of infinite-time cycles:

Page 30: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

The CA limit is recovered for symmetric dissipation:

dots: efficiencies of various thermal power plants

[Esposito, Kawai, Lindenberg, Van den Broeck, PRL 105,

150603 (2010)]

Page 31: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Bekenstein-Pendry bound

There is an purely quantum upper bound on the heat current through a single transverse mode

[Bekenstein, PRL 46, 923 (1981); Pendry, JPA 16, 2161 (1983) ]

For a reservoir coupled to another reservoir at T=0 through a -mode constriction which lets particle flow at all energies:

Page 32: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Maximum power of a heat engine

Since the heat flow must be less than the Bekenstein-Pendry bound and the efficiency smaller than Carnot efficiency also the output power must be bounded

Within scattering theory:

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]

Page 33: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Efficiency optimization (at a given power)Find the transmission function that optimizes the heat-engine efficiency for a given output power

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]

Page 34: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Trade-off between power and efficiency

Effic

ienc

y

Carnot efficiency

Maximum possible power, P max

gen

forbidden1

2

power generated, Pgen

Result from (nonlinear) scattering theory

[Whitney, PRL 112, 130601 (2014); PRB 91, 115425 (2015)]

increase voltage

Page 35: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Power-efficiency trade-off including phonons

Power output, P

Effi

cien

cy

0

strong phonons

no phonons

weak phonons

[see Whitney, PRB 91, 115425 (2015)]

Page 36: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Boxcar transmission in topological insulators

[Chang et al., Nanolett., 14, 3779 (2014)]

Graphene nanoribbons with heavy adatoms and nanopores

Page 37: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Linear response for coupled (particle and heat) flows

Stochastic baths: ideal gases at fixed temperature

and electrochemical potential

�µ = µL � µR

�T = TL � TR

(we assume TL > TR, µL < µR)

Onsager relation (for time-reversal symmetric systems):

Positivity of entropy production:

Page 38: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Onsager and transport coefficients

Note that the positivity of entropy production implies that the (isothermal) electric conductance G>0 and the thermal conductance K>0

Page 39: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Seebeck and Peltier coefficients

Seebeck and Peltier coefficients are related a Onsager reciprocal relation (when time symmetry is not broken, we simply have )

Page 40: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Interpretation of the Peltier coefficient

entropy transported by the electron flow

Entropy current:

each electron carries an entropy of advective term in thermal transport (reversible)open-circuit term in thermal transport (by electrons and phonons, irreversible)

Page 41: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Entropy production/ heat dissipation rate

Joule heating

heat lost by thermal resistance

disappears for time-reversal symmetric systems

To minimize dissipation large G and

small K are needed

Page 42: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Linear response?

(exhaust gases)

(room temperature)

Linear response for small temperature and electrochemical potential differences (compared to the average temperature) on the scale of the relaxation length

Exhaust pipe: temperature drop over a mm scale: temperature drop of 0.003 K on the relaxation length scale (of 10 nm)

[Vining, Nat. Mater. 8, 83 (2009)]

Page 43: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Maximum efficiency

Find the maximum of η over , for fixed (i.e., over the applied voltage ΔV for fixed temperature difference ΔT)

Within linear response and for steady-state heat to work conversion:

(TL ⇡ TR ⇡ T )<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Page 44: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Thermoelectric figure of merit

ZT � L2eh

detL=

GS2

KT

Page 45: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

ZT diverging implies that the Onsager matrix is ill-conditioned, that is, the condition number diverges:

In such case the system is singular (tight coupling limit):

(the ratio Jh/Je is independent of the applied voltage and temperature gradients)

Jh � Je

Conditions for Carnot efficiency

Page 46: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Efficiency at maximum power

Find the maximum of P over , for fixed (over the applied voltage ΔV for fixed ΔT)

Output power

Maximum output power

Power factor

Pmax =T

4L2

eh

LeeF2

h =14

S2G(�T )2

Page 47: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Efficiency at maximum power

�(�max) =�C

2ZT

ZT + 2� �CA �

�C

2

ηCA Curzon-Ahlborn upper bound

P quadratic function of , with maximum at half of the stopping force:

Page 48: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

�max

�(�max)Pmax

Page 49: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Efficiency versus power

Page 50: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Maximum refrigeration efficiency

Coefficient of performance (COP)

�(r) =Jh

P

ZT is the figure of merit also for refrigeration

Cooling power (heat extracted from the cold reservoir)

(can be >1)

Page 51: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

ZT is an intrinsic material property?For mesoscopic systems size-dependence for G,K,S can be expectedIn the diffusive transport regime Ohm’s and Fourier’s scaling laws hold:

Page 52: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Local equilibrium

Under the assumption of local equilibrium we can write phenomenological equations with ∇T and ∇µ rather than ΔT and Δµ

In this case we connect Onsager coefficients to electric and thermal conductivity rather than to conductances

charge and heat current densities

� =�

je

�V

�T=0

, � =�

jh

�T

je=0

Page 53: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Crossover from endoreversible to exoreversible regimes

Thermoelectric generator: internal dissipation (Joule heating, thermal conductance) and external dissipation (dissipative thermal coupling to reservoirs)

[Apertet, Ouerdane, Goupil, Lecoeur, PRE 85,

031116 (2012)]

Page 54: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Linear response and Landauer formalism

The Onsager coefficients are obtained from the linear response expansion of the charge and thermal currents

Lee = e2TI0, Leh = Lhe = eTI1, Lhh = TI2

Page 55: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Wiedemann-Franz law

Phenomenological law: the ratio of the thermal to the electrical conductivity is directly proportional to the temperature, with a universal proportionality factor.

Lorenz number

Page 56: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Sommerfeld expansionThe Wiedemann-Franz law can be derived for low-temperature non-interacting systems both within kinetic theory or Landauer approachIn both cases it is substantiated by Sommerfeld expansion. Within Landauer approach we consider

We assume smooth transmission functions τ(E) in the neighborhood of E=µ:

Jq.� =1h

� �

��dE(E � µ�)�(E)[fL(E)� fR(E)]

Page 57: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

To leading order in kBT/EF with

Neglected I12/I0 with respect to I2, which in turn implies LeeLhh>>(Leh)2 and

G = e2I0 �e2

h�(µ), K =

1T

�I2 �

I21

I0

�� �2k2

BT

3h�(µ)

Wiedemann-Franz law:

K

G� �2

3

�kB

e

�2

T

Page 58: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Wiedemann-Franz law and thermoelectric efficiency

ZT =GS2

KT =

S2

L

Wiedemann-Franz law derived under the condition LeeLhh>>(Leh)2 and therefore

Wiedemann-Franz law violated in - low-dimensional interacting systems that exhibit non-Fermi liquid behavior - (smll) systems where transmission can show significant energy dependence

Page 59: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

(Violation of) Wiedemann-Franz law in small systems

Consider a (basic) model of a molecular wire coupled to electrodes:

Transmission:Green’s function:Level broadening functions: Self-energies:

Page 60: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Wide band limit: level widths energy independent:

Green’s function obtained by inverting

Take

Transmission:

Page 61: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 62: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Mott’s formula for thermopowerFor non-interacting electrons (thermopower vanishes when there is particle-hole symmetry)

S =1

eT

I1

I0=

1eT

���� dE(E � µ)�(E)

�� �f

�E

���� dE�(E)

�� �f

�E

Consider smooth transmissions

Electron and holes contribute with opposite signs: we want sharp, asymmetric transmission functions to have large S (ex: resonances, Anderson QPT, see Imry and Amir, 2010), violation of WF, possibly large ZT.

Page 63: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Metal-insulator 3D Anderson transition

x conductivi ty cr i t ical exponent

[G.B., H. Ouerdane, C. Goupil, arXiv:1602.06590; Comptes Rendus Physique, in press]

Page 64: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Energy filtering

No dispersion with delta-energy filtering: ZT diverges

For good thermoelectric we desire violation of WF law such that:

Page 65: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Thermoelectricity in the Coulomb blockade regime,

Kinetic equations. Quantum dot model

Page 66: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Multilevel interacting quantum dot

Discrete energy levels: ideal to implement energy filtering

[Erdmann, Mazza, Bosisio, G.B., Fazio, Taddei PRB 95, 245432 (2017)]

Study the effects of Coulomb interaction between electrons

Page 67: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Sequential (single-electron) tunnelling regime

Weak coupling to the reservoirs: thermal energy , level spacing and charging energy much larger than the coupling energy between the QD and the reservoirs: charge quantized

tunneling rate from level p to reservoir 𝛼

single-electron levels of the QCcapacitancenumber of electrons in the dot

electrostatic (Coulomb) interaction

Electrostatic energysingle-electron charging energy

Page 68: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Energy conservation

Configuration determined by occupation numbers

Non-equilibrium probability

Energy conservation for tunnelling into or from reservoirs:

Page 69: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Kinetic equationsOne kinetic equation for each configuration:

Stationary solution:

Page 70: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Steady-state currentsCharge current:

Heat current:

Energy current:

Page 71: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Quantum limitEnergy spacing and charging energy much bigger than

Analytical results for equidistant levels:

(energy filtering)

power factor

Page 72: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Coulomb interaction may enhance the thermoelectric performance of a QD

Compare interacting and non-interacting two-terminal QD with the same energy spacing

T h e r m a l c o n d u c t a n c e suppressed by Coulomb interaction: ZT is greatly increased. For a single level K=0 (charge and heat current proportional). For at least two levels Coulomb blockade prevents a second electron to enter when one is already there (electrostatic energy to be paid).

Page 73: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Strongly interacting systems, Electronic Phase transitions, Power-efficiency trade-off,

Power-efficiency-fluctuations trade-off, Carnot efficiency at finite power?

Generality of Onsager reciprocal relations

Page 74: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Short intermezzo: a reason why interactions might be interesting for thermoelectricity

thermal conductance at zero voltage

If the ratio K’/K diverges, then the Carnot efficiency is achieved

Page 75: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Thermodynamic properties of the working fluid

coupled equations:

Page 76: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Setting dN=0 in the coupled equations:

Page 77: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Thermodynamic cycle

maximum efficiency (over d𝜇 at fixed dT):

thermodynamic figure of merit:

Page 78: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Analogy with a classical gas

heat capacity at constant p or V

Page 79: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 80: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 81: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Power-efficiency trade-off: Is it possible to overcome the non-interacting bound?

Noninteracting systems: for P/Pmax<<1,

Bound not favorable for power-efficiency trade-off; due to the fact that delta-energy filtering is the only mechanism to achieve Carnot for noninteracting systems

For interacting systems it is possible to achieve Carnot without delta-energy filtering

Page 82: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Interacting systems, Green-Kubo formulaThe Green-Kubo formula expresses linear response transport coefficients in terms of dynamic correlation functions of the corresponding current operators, cal- culated at thermodynamic equilibrium

Non-zero generalized Drude weights signature of ballistic transport

Page 83: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Conservation laws and thermoelectric efficiencySuzuki’s formula (which generalizes Mazur’s inequality) for finite-size Drude weights

Qm relevant (i.e., non-orthogonal to charge and thermal currents), mutually orthogonal conserved quantities

Assuming commutativity of the two limits,

Page 84: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Momentum-conserving systems

Consider systems with a single relevant constant of motion, notably momentum conservation

Ballistic contribution to vanishes since

ZT =�S2

�T � �1�� �� when ���

(G.B., G. Casati, J. Wang, PRL 110, 070604 (2013))

DeeDhh �D2eh = 0

(� < 1)

Page 85: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

For systems with more than a single relevant constant of motion, for instance for integrable systems, due to the Schwarz inequality

Equality arises only in the exceptional case when the two vectors are parallel; in general

detL � L2, � � �, ZT � �0

DeeDhh �D2eh = ||xe||2||xh||2 � �xe,xh� � 0

xi = (xi1, ..., xiM ) =1

2�

��JiQ1��

�Q21�

, ...,�JiQM ��

�Q2M �

�xe,xh� =M�

k=1

xekxhk

� �2

Page 86: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Example: 1D interacting classical gas

Consider a one dimensional gas of elastically colliding particles with unequal masses: m, M

ZT depends on the system size

(integrable model)ZT = 1 (at µ = 0)

Page 87: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Quantum mechanics needed: Relation between density and electrochemical potential

Maxwell-Bolzmann distribution of

velocities

Reservoirs modeled as ideal (1D) gases

injection rates

grand partition function

density

de Broglie thermal wave length

Page 88: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Non-decaying correlation functions

Page 89: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Anomalous thermal transport

Carnot efficiency at the thermodynamic limit

ZT =�S2

kT

[R. Luo, G. B., G. Casati, J. Wang, PRL 121, 080602 (2018)]

Page 90: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Delta-energy filtering mechanism?

A mechanism for achieving Carnot different from delta-energy filtering is needed

Page 91: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Validity of linear response

The agreement with linear response improves with N

Page 92: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Non-interacting classical bound (but quantum mechanics needed)

charge current

heat current

Maxwell-Boltzmann distribution

(in 1D)

Page 93: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

0.0 0.2 0.4 0.6 0.8 1.00.0

0.2

0.4

0.6

0.8

1.0

PêPmax

hêhC

Page 94: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Overcoming the non-interacting bound

[by linear response]<latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="C39OhB+IczRcjLNINXH29e9lt8M=">AAAB2HicbZDNSgMxFIXv1L86Vq1rN8EiuCpTN+pOcOOygmML7VAymTttaCYzJHeEMvQFXLhRfDB3vo3pz0KtBwIf5yTk3hMXSloKgi+vtrW9s7tX3/cPGv7h0XGz8WTz0ggMRa5y04+5RSU1hiRJYb8wyLNYYS+e3i3y3jMaK3P9SLMCo4yPtUyl4OSs7qjZCtrBUmwTOmtowVqj5ucwyUWZoSahuLWDTlBQVHFDUiic+8PSYsHFlI9x4FDzDG1ULcecs3PnJCzNjTua2NL9+aLimbWzLHY3M04T+zdbmP9lg5LS66iSuigJtVh9lJaKUc4WO7NEGhSkZg64MNLNysSEGy7INeO7Djp/N96E8LJ90w4eAqjDKZzBBXTgCm7hHroQgoAEXuDNm3iv3vuqqpq37uwEfsn7+Aap5IoM</latexit><latexit sha1_base64="GwhlYFXBSeBmFoHvBy/FdU0sTd0=">AAAB+HicbZC9TgJBFIXv+ouIirY0E4mJFVls1M7ExhITV0hgQ2aHC0yYndnMzBo3GwobX8XGQo1PYufbOAsUCp5kki/nzN89USK4sb7/7a2tb2xubZd2yruVvf2D6mHl3qhUMwyYEkp3ImpQcImB5VZgJ9FI40hgO5pcF3n7AbXhSt7ZLMEwpiPJh5xR66x+tdYbR+ox70YZKa6gmmg0iZIGw2m/Wvcb/kxkFZoLqMNCrX71qzdQLI1RWiaoMd2mn9gwp9pyJnBa7qUGE8omdIRdh5LGaMJ8NsSUnDhnQIZKuyUtmbm/T+Q0NiaLI7czpnZslrPC/C/rpnZ4EeZcJqlFyeYPDVNBrCJFI2TANTIrMgeUae7+StiYasqs663sSmguj7wKwVnjsuHf+lCCGhzDKTThHK7gBloQAIMneIE3ePeevVfvY97Wmreo7Qj+yPv8ARwBluA=</latexit><latexit sha1_base64="GwhlYFXBSeBmFoHvBy/FdU0sTd0=">AAAB+HicbZC9TgJBFIXv+ouIirY0E4mJFVls1M7ExhITV0hgQ2aHC0yYndnMzBo3GwobX8XGQo1PYufbOAsUCp5kki/nzN89USK4sb7/7a2tb2xubZd2yruVvf2D6mHl3qhUMwyYEkp3ImpQcImB5VZgJ9FI40hgO5pcF3n7AbXhSt7ZLMEwpiPJh5xR66x+tdYbR+ox70YZKa6gmmg0iZIGw2m/Wvcb/kxkFZoLqMNCrX71qzdQLI1RWiaoMd2mn9gwp9pyJnBa7qUGE8omdIRdh5LGaMJ8NsSUnDhnQIZKuyUtmbm/T+Q0NiaLI7czpnZslrPC/C/rpnZ4EeZcJqlFyeYPDVNBrCJFI2TANTIrMgeUae7+StiYasqs663sSmguj7wKwVnjsuHf+lCCGhzDKTThHK7gBloQAIMneIE3ePeevVfvY97Wmreo7Qj+yPv8ARwBluA=</latexit><latexit sha1_base64="hsfpqjk/0uYw3XODntxaikWhXUA=">AAACA3icbVA9T8MwEHXKVylfAcYuFhUSU5WyAFsFC2ORCK3URpXjXlurjh3ZDiKKOrDwV1gYALHyJ9j4NzhtBmh50klP793Zdy+MOdPG876d0srq2vpGebOytb2zu+fuH9xpmSgKPpVcqk5INHAmwDfMcOjECkgUcmiHk6vcb9+D0kyKW5PGEERkJNiQUWKs1HervXEoH7JumOL8CaKwAh1LoSGY9t2aV/dmwMukUZAaKtDqu1+9gaRJBMJQTrTuNrzYBBlRhlEO00ov0RATOiEj6FoqSAQ6yGZHTPGxVQZ4KJUtYfBM/T2RkUjrNAptZ0TMWC96ufif103M8DzImIgTA4LOPxomHBuJ80TwgCmghqeWEKqY3RXTMVGEGptbxYbQWDx5mfin9Yu6d+PVmpdFGmVURUfoBDXQGWqia9RCPqLoET2jV/TmPDkvzrvzMW8tOcXMIfoD5/MHpt2YSg==</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit><latexit sha1_base64="88lf/Y1auXT8/vunbgNUdnWycSs=">AAACA3icbVA9T8MwEHX4LOUrwNjFokJiqhKEBGwVLIxFIrRSG1WOe22tOnZkO4gq6sDCX2FhAMTKn2Dj3+C0GaDlSSc9vXdn370o4Uwbz/t2lpZXVtfWSxvlza3tnV13b/9Oy1RRCKjkUrUiooEzAYFhhkMrUUDiiEMzGl3lfvMelGZS3JpxAmFMBoL1GSXGSl230hlG8iFrR2OcP0EUVqATKTSEk65b9WreFHiR+AWpogKNrvvV6UmaxiAM5UTrtu8lJsyIMoxymJQ7qYaE0BEZQNtSQWLQYTY9YoKPrNLDfalsCYOn6u+JjMRaj+PIdsbEDPW8l4v/ee3U9M/DjIkkNSDo7KN+yrGROE8E95gCavjYEkIVs7tiOiSKUGNzK9sQ/PmTF0lwUruoeTen1fplkUYJVdAhOkY+OkN1dI0aKEAUPaJn9IrenCfnxXl3PmatS04xc4D+wPn8AagdmE4=</latexit>

Non-interacting bound

Page 95: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Multiparticle collision dynamics (Kapral model) in 2D

S t r e a m i n g s t e p : f r e e propagation during a time τ

Collision step: random rotations of the velocities of the particles in cells of linear size a with respect to the center of mass velocity:

Momentum is conserved

Page 96: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Overcoming the (2D) non-interacting bound

Page 97: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Results can be extended to cooling

linear response

numerical data

Page 98: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Applications for cold atoms?

Page 99: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Power-efficiency trade-off at the verge of phase transitions

For heat engines described as Markov processes:

[N. Shiraishi, K. Saito, H. Tasaki, PRL 117, 190601 (2016)]

For a working substance at a critical point:

[M. Campisi, R. Fazio, Nature Comm. 7, 11895 (2016); see also Allahverdyan et al., PRL 111, 050601 (2013)]

Results compatible only with diverging amplitude A when approaching the Carnot efficiency

Page 100: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Power-efficiency-fluctuations trade-offFor classical Markovian dynamics on a finite set of states and overdamped Langevin dynamics, trade-off between power, efficiency, and constancy for steady-state engines:

[P. Pietzonka, U. Seifert, PRL 120, 190602 (2018)]

Bound violated in quantum mechanics, e.g. for resonant tunnelling transport (noninteracting system), but not close to Carnot efficiency. The problem for interacting systems is open.

[J. Liu. D. Segal, PRE 99, 062141 (2019)]

Page 101: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Carnot efficiency at finite power with broken time-reversal symmetry?

B applied magnetic field or any parameter breaking time-reversibility

such as the Coriolis force, etc.

�µ = µL � µR

�T = TL � TR

(we assume TL > TR, µL < µR)

��

Je = Lee(B)Fe + Leh(B)Fh

Jh = Lhe(B)Fe + Lhh(B)Fh

Page 102: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Constraints from thermodynamics

ONSAGER-CASIMIR RELATIONS:

POSITIVITY OF THE ENTROPY PRODUCTION:

G(B) = G(�B)K(B) = K(�B)

Page 103: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Both maximum efficiency and efficiency at maximum power depend on two parameters

Pmax

Page 104: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center
Page 105: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

[G..B., K. Saito, G. Casati, PRL 106, 230602 (2011)]

The CA limit can be overcome within linear response

When |x| is large the figure of merit y required to get Carnot efficiency becomes small

Carnot efficiency could be obtained far from the tight coupling condition

Page 106: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Output power at maximum efficiency

When time-reversibility is broken, within linear response it is not forbidden from the second law to have simultaneously Carnot efficiency and non-zero power.

Terms of higher order in the entropy production, beyond linear response, will generally be non-zero. However, irrespective how close we are to the Carnot efficiency, we could in principle find small enough forces such that the linear theory holds.

Page 107: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Reversible part of the currents

The reversible part of the currents does not contribute to entropy production

Possibility of dissipationless transport?

[K.. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013)]

Page 108: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

How to obtain asymmetry in the Seebeck coefficient?

For non-interacting systems, due to the symmetry properties of the scattering matrix

This symmetry does not apply when electron-phonon and electron-electron interactions are taken into account

Let us consider the case of partially coherent transport, with ine las t ic processes s imula ted by “conceptual probes” (Buttiker, 1988).

Page 109: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Physical model of probe reservoirsLarge but finite “reservoirs”

Voltage and temperature probe (m im ick ing e -e i ne las t i c scattering)

Voltage probe (mimicking e-ph inelastic scattering)

Page 110: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Non-interacting three-terminal model

tJ = (JeL, JhL, JeP , JhP )

k

Je,k = 0,�

k

Ju,k = 0 (Jh,k = Ju,k � (µ/e)Je,k)

tF =�

�µ

eT,�T

T 2,�µP

eT,�TP

T 2

�tFJ =4�

i=1

JiFi

Page 111: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Three-terminal Onsager matrixEquation connecting fluxes and thermodynamic forces:Equation connecting fluxes and thermodynamic forces:

In block-matrix form:

Zero-particle and heat current condition through the probe terminal:

J = LF

�J�

J�

�=

�L�� L��

L�� L��

� �F�

F�

F� = �L���1L��F�

Page 112: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Two-terminal Onsager matrix for partially coherent transport

Reduction to 2x2 Onsager matrix when the third terminal is a probe terminal mimicking inelastic scattering

J� = L�F�, L� � L�� � L��L���1L��.

�J1

J2

�=

�L�

11 L�12

L�21 L�

22

� �F1

F2

Page 113: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

First-principle exact calculation within the Landauer-Büttiker approach

Bilinear Hamiltonian

Page 114: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Charge and heat current from the left terminal

Page 115: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Onsager coefficients from linear response expansion of the currents

Transmission probabilities:

Page 116: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Illustrative three-dot example

Asymmetric structure, e.g..

Page 117: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Asymmetric Seebeck coefficient

[K. Saito, G. B., G. Casati, T. Prosen, PRB 84, 201306(R) (2011)] [see also D. Sánchez, L. Serra, PRB 84, 201307(R) (2011)]

Page 118: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Asymmetric power generation and refrigeration

When a magnetic field is added, the efficiencies of power generation and refrigeration are no longer equal:

To linear order in the applied magnetic field:

A small magnetic field improves either power generation or refrigeration, and vice versa if we reverse the direction of the field

Page 119: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

The large-field enhancement of efficiencies is model-dependent, but the small-field asymmetry is generic

Page 120: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Transmission windows model

[V.. Balachandran, G. B., G. Casati, PRB 87, 165419 (2013);

se also M. Horvat, T. Prosen, G. B., G. Casati, PRE 86, 052102 (2012)]

i

�ij(E) =�

j

�ij(E) = 1 The Curzon-Ahlborn limit can be overcome (within linear response)

Page 121: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Saturation of bounds from the unitarity of S-matrix

Bounds obtained for non-interacting 3-terminal transport (K. Brandner, K. Saito, U. Seifert, PRL 110, 070603 (2013))

�(⇥max) =47

�C at x =43Pmax

Page 122: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Bounds for multi-terminal thermoelectricity

[Brandner and Seifert, NJP 15, 105003 (2013); PRE 91, 012121 (2015)]

Numerical evidence that the power vanishes when the Carnot efficiency is approached

Page 123: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Bounds with electron-phonon scattering

Efficiency bounded by the non-negativity of the entropy production of the original three-terminal junction. However, the efficiency at maximum power can be enhanced

[Yamamoto, Entin-Wohlman, Aharony, Hatano; PRB 94, 121402(R) (2015)]

Page 124: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Onsager-Casimir relations

Onsager reciprocal relations reflect at the macroscopic level the time-reversal symmetry of the microscopic dynamics, invariant under the transformation:

With an applied magnetic field one instead obtains Onsager-Casimir relations:

but in principle one could violate the Onsager symmetry:

Page 125: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Onsager relations and thermodynamic constraints on heat-to-work conversion

For thermoelectricity:

and in principle one could have the Carnot efficiency at finite power:

Page 126: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Onsager relations with broken time-reversal symmetry

Onsager relations under an applied magnetic field remain valid:

1) for noninteracting systems

2) if the magnetic field is constant

What about for a generic, spatially dependent magnetic field?

[Bonella, Ciccotti, Rondoni, EPL 108, 60004 (2014)]

Page 127: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Symmetry without magnetic field inversion

Analytical result for Landau gauge:

Equations of motion invariant under:

Page 128: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Numerical results

generic 2D case:

generic 3D case:Theoretical argument: divide the system into small volumes Time-reversal trajectories without reversing the field for

Page 129: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

No-go theorem for finite power at the Carnot efficiency on purely thermodynamic grounds?

According to Nico Van Kampen Onsager derived his reciprocal relations in a “stroke of genius”

Onsager reciprocal relations much more general than expected so far.

Page 130: Theoretical approaches for nanoscale …indico.ictp.it/event/8714/session/83/contribution/363/...Theoretical approaches for nanoscale thermoelectric phenomena Giuliano Benenti Center

Some open problems

Investigate strongly-interacting systems close to electronic phase transitions

In nonlinear regimes restrictions due to Onsager reciprocity relations might be overcome; useful for thermoelectricity?

Further investigate/optimize time-dependent driving

Power-efficiency-fluctuation trade-off for non-Markovian quantum dynamics?