33
The Future of Energy Storage Venkat Srinivasan given by Marca Doeff Lawrence Berkeley National Laboratory

TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

The  Future  of  Energy  Storage  

Venkat  Srinivasan  given  by  Marca  Doeff  

Lawrence  Berkeley  National  Laboratory  

Page 2: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Disruption  has  already  occurred  in  the  consumer  electronics  industry  

2  

Page 3: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Its  happening  in  electric  cars  

Instead of this…! We have…!

3  

Page 4: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

And  it  will  happen  on  the  grid  

4  

Page 5: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Moore’s  law  for  batteries  

Lead acid Nickel Metal Hydride

Li-ion:5% per year

Li-ion commercialized

Battery pack

Target

2-5x improvement in energy density needed to achieve range parity with gasoline cars

5  

Page 6: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

EV Battery packs

EV Target

Batteries at $100-$125/kWh will be the tipping point.

...and  cost  remains  very  high  

6  

Gigafactory

Page 7: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Where  does  the  DOE  cost  target  come  from?  

•   The  car  companies  feel  that  the  “power  plant”  cannot  cost  more  than  $7500  

•   Assuming  a  200  mile  car,  one  needs  60  kWh  baDery  (300  Wh/mile)  •   Hence,  the  $125/kWh  number  ($7500/60  kWh)  

• But what if the consumer demands the same miles as today’s vehicle? (350 miles)

• Will need a 90 kWh battery

• Cost target $83/kWh!

Page 8: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Flow Batteries

1  

2  

4  

6  

10  

2  

4  

6  

100  

2  

4  

6  

1000    Spe

cific  Ene

rgy  (W

h/kg)  

10  0  

10  1  

10  2  

10  3  

10  4  

Specific  Power  (W/kg)  

-­‐  

36  s  0.1  h  1  h  

100  h  

-­‐  

-­‐  

-­‐  

Fuel Cells

36  s  0.1  h  1  h  

100  h  

-­‐  

Acceleration

Ran

ge

EV goal

3.6  s  36  s  0.1  h  1  h  

10  h  

100  h  

Source: Product data sheets

PHEV goal

EV – Electric Vehicle PHEV– Plug-in Hybrid- Electric Vehicle HEV- Hybrid-Electric vehicle

IC Engine=2500 Wh/kg

Energy  and  power  play  against  each  other  

Capacitors  

Lead-­‐acid  Ni-­‐MH  

Li-­‐ion  

But its more than just about energy and power

HEV goal

Page 9: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Specific  Power-­‐Discharge,  10s  (317  W/kg)  

Useable  Specific  Energy-­‐C/1  (96  Wh/kg)  

Power  Density  (475  W/liter)  

Useable  Energy  Density-­‐C/1  (145  Wh/liter)  

Cycle  Life-­‐70%  DOD  (5,000  cycles)  

Calendar  Life  (15  years)  

ProducQon  Price  @100k/yr  ($293/kWh  usable)  

OperaQng  Temperature  Range  (-­‐30  to  +50  °C)  

0%  

20%  

40%  

60%  

80%  

100%  

120%  

140%  

FreedomCAR  Goals   lithium-­‐ion  

Comparison  of  Present-­‐day  Li-­‐ion  Batteries  vs.  Plug-­‐in  Vehicle  Goals    

Open question: Would the Gigafactory make PHEVs ubiquitous?

Page 10: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

USABC EV Goals lithium-ion

Comparison  of  Present-­‐day  Li-­‐ion  Batteries  vs.  Electric  Vehicle  Goals    

Anode: Graphite, Cathode: LiNi0.8Co0.15Al0.05O2, Electrolyte: LiPF6 in PC:EC:DEC

The present feeling is that cost is the main issue. Rest becomes important if cost can be managed.

Page 11: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Where  is  the  cost?  Total=$540/kWh

Material-38%

Cell manufacturing-46%

Pack-16%

•  Both material cost and manufacturing costs are important •  It is not obvious that simply finding lower cost materials or finding new ways to assembling batteries will be enough

Separator Electrolyte

Cathode

Electrode Preparation-24%

Assembly-36%

Formation-22%

Winding-18%

Page 12: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Cost  will  go  below  $200/kWh  with  today’s  systems  

Energy Environ. Sci.,2014, 7, 1555-1563

It appears that newer materials need to enter the market to meet the cost targets

Page 13: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Approach  1:  High  voltage  cathodes  

Consumer batteries are moving to higher voltages. So is Tesla

•  Thermodynamics: Need electrolytes that are stable to high voltages •  Kinetics: Need ways to passivate the cathode (coatings)

Page 14: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

•  Alloys, like Li-silicon and Li-aluminum, can intercalate upto 4 lithium per lattice site (graphite intercalates 1 Li for every 6 lattice sites)

•  However, to accommodate these lithium ions volume expands more than 300% (graphite expands 10%)

Lithiation

Approach  2:  Alloy  anodes  

Si nanotube anodes (Yi Cui- Stanford)

Conductive binders (Gao Liu- LBNL)

For 20% fade efficiency=100*(1-0.2)1/cycles

For 300 cycles: 99.92% For 3000 cycles: 99.992%

Page 15: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Silicon-­‐graphite  mixtures  are  now  entering  the  market  

Page 16: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

How  much  can  we  improve  energy  with  these  changes?  

•  Note: All numbers are at the cell level. Approximately 2x the pack level numbers

100

200

300

400

Current Silicon Electrolyte Cathode

Cel

l Ene

rgy

Dens

ity (W

h/kg

)

Page 17: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Flow Batteries

1  

2  

4  

6  

10  

2  

4  

6  

100  

2  

4  

6  

1000    Spe

cific  Ene

rgy  (W

h/kg)  

10  0  

10  1  

10  2  

10  3  

10  4  

Specific  Power  (W/kg)  

-­‐  

36  s  0.1  h  1  h  

-­‐  

-­‐  

-­‐  

Fuel Cells

36  s  0.1  h  1  h  

-­‐  

Acceleration

Ran

ge

EV goal

3.6  s  36  s  0.1  h  1  h  

10  h  

100  h  

Source: Product data sheets

PHEV goal

IC Engine=2500 Wh/kg

Capacitors  

Lead-­‐acid  Ni-­‐MH  

Li-­‐ion  

Is  this  enough?  Alloy anodes (10x capacity but lower V High V cathodes (2x capacity, higher V)

Page 18: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

If  Li  metal  were  successful,  options  open  up  

Energy Environ. Sci.,2014, 7, 1555-1563

Page 19: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

•  During charge, Li plates on the anode

•  The surface of the anode has irregularities on a nanometer scale

•  It has been seen that the plating is not uniform (deposition occurs on protrusions) and leads to formation of dendrites

–  This leads to cell shorting and failure –  In addition, the growth can break from the surface, thereby isolating material, leading to capacity fade

Li  dendrite  PlaQng  

Source: Dollé et al., Electrochem. Solid State Lett., 5, A286 (2002)

Approach  3:  Lithium  metal  anodes  

One solution may be to use a protective ceramic electrolyte

Page 20: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Electrolyte  Conductivities  

20  

Kamaya et al., Nat. Mater. 10 (2011), 682.

Issues for solid electrolytes: •  Conductivity (single ion conductors) •  Processibility (thin dense films) •  Reactivity (with electrodes, substrates, atmosphere, etc.)

Page 21: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Li7La3Zr2O12  and  variants:  garnet  structure  

Al  added  to  stabilize  the  cubic  phase. Pros:  •  High  lithium  ionic  conducQvity  for  cubic  phase  (>10-­‐4  S/cm  at  R.T.)  •  No  reacQon  observed  when  contacted  directly  with  molten  lithium  •  Oxides  should  be  easier  to  work  with  than  sulfides  Cons:  •  Difficult  to  densify  •  ReacQvity  with  substrates,  moisture,  ambient  atmosphere  •  High  interfacial  impedances •  Thin  films  required:  for  5  mA/cm2,  voltage  drop  <  100  mV,  needs  to  be  <  200  μm  

(assuming  no  contribuQon  from  interfacial  impedances!)  

Page 22: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

   

(c)  

25um  

(b)  

ADriSon  mill  

1100  °C  sintering  (porous)  

1100  °C  sintering  (Dense)  

10µm  

50µm  

2µm  

(a)  

Densification-­‐particle  size  matters

2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4

-­‐5.0

-­‐4.5

-­‐4.0

-­‐3.5

-­‐3.0

-­‐2.5

-­‐2.0

-­‐1.5

 

 

Logσ(S

/cm)

1000/T  (1/K )

 dens ified    porous 1*10-­‐5  S/cm  

2*10-­‐4  S/cm  

94%  density  

As  made  LLZO  powder  

130 °C lower than previously reported for conventional processing

Page 23: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Free-­‐standing  thin  films,  a  single  grain  thick  

23  

100um

RT:  2*10-­‐4  S/cm  

RT:  5.5*10-­‐4  S/cm  

100um

Regular  

Single  grain    

Cross  secQon  (fractured)  

Thickness:  ~1.500mm  

Thickness:  ~200um  Cheng et al., J. Mater. Chem. A, 2, 172 (2014).

Page 24: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Control  of  Microstructures  

24  

40 µm40 µm

40 µm100 µm 40 µm

(a)

(b)

(c)

(d)

(e)

(f)

150 µm

surface

cross-section

1 µm particles 90% 1 µm 10% 10 µm

Not dense

70% 1 µm 30% 10 µm

50% 1 µm 50% 10 µm

surface

surface

500 µm

500 µm

100 µm

150 µm

(c)

(b) (d)

(a)

Heterostructures

LG

SG LG

SG

Junctions between large grain and small grain regions

Page 25: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Origins  of  Interfacial  Impedance  

25  

LIBS: Li/Zr ratio of air-exposed sample

~ 1 µm thick Li-rich layer on sample exposed to air for several months

Synchrotron XPS data

O Li Zr La C

Li2CO3 formation on sample exposed to air several days is thick enough to block La, Zr signals (>3 nm thick)

air

Ar

Soft XAS

Ar

air

Evidence of Li2CO3 formation on sample exposed to air, but still see LLZO in TFY mode (thickness <100 nm)

TEY (10 nm) TFY (100 nm)

Cheng et al., Phys. Chem. Chem. Phys. 16, 18294 (2014).

Samples polished under Ar to remove Li2CO3 have much lower interfacial resistance

Page 26: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Influence  of  Microstructure  on  Interfacial  Impedance  

26  

Cheng et al., ACS Appl. Mater. & Interfaces, 7, 2073 (2015).

0 500 1000 1500 2000 2500 30000

500

1000

1500

2000

2500

3000

ω=12 kHz

LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

Im (Z

) (Ω

)

Re (Z) (Ω)

ω=5 kHz

Item   Total  ConducSvity  

Bulk  Resistance  

Interfacial  Resistance  

Area  specific  

interfacial  resistance  

LLZO_LG   2.0×10-­‐4S/cm     2335  Ω     566  Ω   127  Ω·∙cm2    

LLZO_SG   2.5×10-­‐4S/cm     1672  Ω   161  Ω   37    Ω·∙cm2    

Lowest ASI ever reported for LLZO!

Removal of Li2CO3 layer and manipulation of microstructure lowers interfacial impedance, making LLZO a practical option for cells.

Page 27: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Effect  of  Interfacial  Impedance  and  Microstructure  on  Electrochemistry  

27  

•  Small grained samples have lower interfacial impedance and cycle better in stepped or constant current experiments •  Heterostructures with small grains on the outside (closest to Li electrodes) perform better than those with large grains on the outside. •  Surface microstructure is very important!

Li/LLZO/Li cells

500 µm

500 µm

100 µm

150 µm

(c)

(b) (d)

(a)

LG

500 µm

500 µm

100 µm

150 µm

(c)

(b) (d)

(a)

SG

Page 28: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

A  Closer  Look  at  the  Effect  of  Microstructure  on  Li2CO3  Formation  

28  

O L-edge sXAS experiments

pristine

Small-grained 24 h air exposure

10 nm 100 nm

Large-grained 24 h air exposure

More Li2CO3 for large-grained sample

Raman spectra 6 months air exposure

Cheng et al., ACS Applied Mater. Interfaces 7, 17649 (2015).

Page 29: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Why  does  the  Microstructure  Affect  Rate  of  Li2CO3  Formation?  

29  

Liquid sintering mechanism for large-grained sample depletes Al from bulk and concentrates it in grain boundaries.

XPS Spectra (surface sensitive)

Al Li Zr

small

large

More Al and less Li at surface of small-grained sample, less reactivity with water.

Page 30: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Li  current  direcQon  

Dimension:  16mm×3mm×1.2mm  

Optical Evidence of Dendrite Formation via Grain Boundaries

Page 31: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Visualization  of  Grain  Boundaries  

31  

150 µm 150 µm

150 µm150 µm

(a) (b)

(c) (d)

Area fractions of grain boundaries

Small grains Large grains

32% 16%

Increased area fraction and tortuosity of grain boundaries in small-grained samples dissipate current and ameliorate the current focusing that leads to dendrite formation.

Page 32: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

• There  has  been  remarkable  progress  in  baDery  technology  over  the  past  25  years,  thanks  to  Li-­‐ion  baDeries.  

• We  are  at  the  cusp  of  a  revoluSon;  rapidly  decreasing  costs  and  incremental  improvements  in  materials  for  Li-­‐ion  baDeries  have  brought  us  close  to  vehicle  goals-­‐new  materials  and  manufacturing  techniques  could  push  us  over  the  finish  line.  

• The  next  revoluSon  could  come  with  lithium  metal  baDeries,  but  we  need  to  ensure  their  safety  and  long  cycle  life  

• Ceramic  electrolytes  may  be  the  answer,  but  we  need  to  pay  close  aDenSon  to  microstructure  and  interfaces!    

                 Thank  you  for  your  attention      

Summary  

32  

Also, thanks to DOE-OVT who funds us through various battery programs

Page 33: TheFutureofEnergyStorage Venkat$Srinivasan$ · (2015). 0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000 ω=12 kHz LLZO_SG measured LLZO_LG measured calculated (RQ)(RQ)

LAWRENCE  BERKELEY  NATIONAL  LABORATORY  |  ENVIRONMENTAL  ENERGY  TECHNOLOGIES  DIVISION  

Title  

33