1
RESEARCH POSTER PRESENTATION DESIGN © 2012 www.PosterPresentations.com The Great Smoky Mountains National Park (GSMNP) is the most visited national park in the United States, drawing over 9 million visitors per year. Emissions of nitrogen oxides (NO x ) from the exhaust of automobiles transporting those visitors into and through the park combine with biogenic emissions of volatile organic compounds (VOCs) from the extensive park forests to form tropospheric (i.e., ground level) ozone, (O 3 ) which is harmful to plants, animals and humans. In this project, the National Oceanic and Atmospheric Administration’s Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) model is being used to estimate the impact of automobile NO x emissions on O 3 within and downwind of GSMNP. The one-dimensional column model ACCESS utilizes a current state-of-the-science, near explicit atmospheric chemistry mechanism to simulate tropospheric O 3 from ground level to the top of the planetary boundary layer (PBL) (~2 km) and accounts for turbulent vertical atmospheric transport of trace species from within the forest canopy and up throughout the full depth of the PBL. NO x emissions from varying levels of automobile traffic in the park will be simulated with ACCESS and the impact of the traffic on O 3 concentrations will be evaluated. Data from air quality monitoring sites within and around GSMNP will be used to assess ACCESS results. ABSTRACT 1. Run simulations that reflect realistic potential NOx levels from highway traffic and analyze the results of these simulations. 2. Gather data from detectors on the GSMNP site, and compare those results to our simulations. Potentially we will use those results to improve our initial conditions file and aid in future simulations. 3. Optimize ACCESS for an HPC platform. OBJECTIVES The following figures all describe the chemistry of the ACCESS program in detail. Figure 2 discusses the factors that are taken into an ACCESS simulation, such as emissions, different forms of turbulent mixing, deposition, and free tropospheric exchange within the planetary boundary layer to determine the photochemistry that is going on. CHEMISTRY OF ACCESS The following graphs constitute the results we have obtained thus far from the ACCESS simulations we ran. In the next column, we draw conclusions based upon these results. RESULTS RESULTS (Cont.) Graphs Chemical Production (Budget) CONCLUSION Graphs of Vertical Flux Data REFERENCES Under the environmental conditions studied so far in our simulations, only minor amounts of local ozone production above the canopy are predicted. However, the simulation results suggest that the enhancements in PAN and MPAN formation from visitor traffic in the park may lead to increased ozone concentrations downwind from major highways within the park. Ozone data within and downwind of the park will be further analyzed to test the model prediction. 1 CSUREREU Student New Mexico State University 2 NOAA Air Resources Laboratory – Atmospheric Turbulence and Diffusion Division; Department of Civil Engineering, University of Tennessee 3 Department of Civil Engineering, University of Tennessee James W. Herndon III 1 , Rick D. Saylor 2 , Joshua S. Fu 3 The Effect of Nitrogen Oxide Emissions from Automobiles on the Concentra/on of Tropospheric Ozone in the Great Smoky Mountains Na/onal Park Other than methane, isoprene is the largest single emitted hydrocarbon species from biological sources. On a global scale, isoprene emissions from vegetation are roughly 10x larger than hydrocarbon emissions from industrial and other human sources and thus have a major influence on tropospheric ozone production worldwide (via the chemistry depicted in Figure 5). Deciduous forests dominated by oak, hickory and poplar such as those prevalent in East Tennessee are primary emitters of isoprene. The National Park Service (NPS) has sensors all over the park to track the amounts of several air pollutants, including ozone (Figures 1 & 2). You can see that peaks in the park right now are on average quite high, with several high ozone days around Look Rock (Friday, July 26 th , 2013, and Tuesday July 31 st , 2013 having maxima in the yellow zone). ACCESS will be used to predict levels of ozone within the park when there is a given amount of traffic emissions within it. Once we have data from the simulations, we can compare it to actual values within the park, and see how similar (or dissimilar) the predictions are from actual recorded values. This could help us improve future ACCESS simulations and broaden its potential use in industry as a predictive tool. Graphs of Species Concentrations FOR YOUR KNOWLEDGE: What is Isoprene (C 5 H 8 ) and why is it important for our model? AN ILLUSTRATION OF OUR PURPOSE: Ozone Levels in the Great Smoky Mountains as of July 31 st , 2013 Figure 1: Ozone Concentrations at Look Rock, GSMNP Image Source: National Park Service, “Great Smoky Mountains National Park: Air Quality 10-day Charts” URL:http://www.nature.nps.gov/air/ webcams/parks/grsmcam/ grsm_datatimelines.cfm Figure 3: Diagram of ACCESS version 1.2.0 Image Source: Dr. Rick D. Saylor, Diagram of ACCESS. Figure 4: Diagram of the Chemistry of the Atmosphere Image Source: ClimateScience.gov – “Schematic of chemical and transport processes related to atmospheric composition. These processes link the atmosphere with other components of the Earth system, including the oceans, land, and terrestrial and marine plants and animals. URL: www.climatescience.gov/Library/stratplan2003/final/ ccspstratplan2003-chap3.htm Figure 5 Schematic of atmospheric photochemical production of tropospheric ozone (a component of smog) Image Source: Rick D. Saylor – NOAA. Simplified diagram of reactions that take place in our atmosphere to create smog. 0 500 1000 1500 2000 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 Height (m) Concentra\on of NOx (ppb) NOx Concentra\ons at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 10 20 30 40 50 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00 Height (m) Concentra\on of NOx (ppb) NOx Concentra\ons at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 500 1000 1500 2000 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 Height (m) Concentra\on of O3 (ppb) Ozone Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 10 20 30 40 50 0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 Height (m) Concentra\on of O3 (ppb) Ozone Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 500 1000 1500 2000 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Height (m) Concentra\on of C5H8 (ppb) Isoprene Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 20 40 60 80 100 0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 Height (m) Concentra\on of C5H8 (ppb) Isoprene Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 500 1000 1500 2000 0.00E+00 5.00E+08 1.00E+09 1.50E+09 2.00E+09 2.50E+09 3.00E+09 3.50E+09 4.00E+09 4.50E+09 5.00E+09 Height (m) Concentra\on of PAN (molecules/cm3) PAN Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 10 20 30 40 50 3.40E+09 3.60E+09 3.80E+09 4.00E+09 4.20E+09 4.40E+09 Height (m) Concentra\on of PAN (molecules/cm3) PAN Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 500 1000 1500 2000 0.00E+00 1.00E+08 2.00E+08 3.00E+08 4.00E+08 5.00E+08 6.00E+08 7.00E+08 Height (m) Concentra\on of MPAN (molecules/cm3) MPAN Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 10 20 30 40 50 4.00E+08 4.50E+08 5.00E+08 5.50E+08 6.00E+08 6.50E+08 Height (m) Concentra\on of MPAN (molecules/cm3) MPAN Concentra\on at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 10 20 30 40 50 60 70 80 90 100 250.00 200.00 150.00 100.00 50.00 0.00 50.00 Height (m) Rate of Ozone Forma\on (ppb/hr) Ozone Budget at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 20 40 60 80 100 120 140 160 180 200 0.25 0.20 0.15 0.10 0.05 0.00 0.05 0.10 Height (m) Produc\on of PAN (ppb/hr) PAN Budget at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 20 40 60 80 100 120 140 160 180 200 0.040 0.030 0.020 0.010 0.000 0.010 0.020 Height (m) Produc\on of MPAN (ppb/hr) MPAN Budget at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 500 1000 1500 2000 40.00 20.00 0.00 20.00 40.00 60.00 Height (m) Ver\cal Flux O3 (nmol/m2s) Ozone Ver\cal Flux at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 50 100 150 200 0.03 0.01 0.01 0.03 0.05 Height (m) Ver\cal Flux of PAN (nmol/m2s) PAN Ver\cal Flux Data at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 100 200 300 400 500 0.01 0.00 0.00 0.01 0.01 0.02 0.02 Height (m) Ver\cal Flux MPAN (nmol/m2s) MPAN Ver\cal Flux at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx 0 50 100 150 200 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 Height (m) Ver\cal Flux C5H8 (nmol/m2s) Isoprene Ver\cal Flux at Varying NOx Emission Levels 0 nmol/m2s NOx 1 nmol/m2s NOx 10 nmol/m2s NOx 100 nmol/m2s NOx 0.1 nmol/m2s NOx Figure 2: Map of Air Quality Monitoring sites at GSMNP Image Source: Nancy Finley. Air Quality in the Great Smokey Mountains (PowerPoint Presentation). National Conference of State Legislatures Advisory Council on Energy. Oak Ridge, TN. Saylor, R. D. (2012). The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy. Atmospheric Chemistry and Physics, 12(9). Retrieved from http://www.atmos-chem- phys.net/13/693/2013/acp-13-693-2013.pdf.

TheEffectofNitrogenOxideEmissionsfromAutomobilesontheConcentraonof … · the size of the final poster. All text and graphics will be printed at 100% their size. To see what your

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TheEffectofNitrogenOxideEmissionsfromAutomobilesontheConcentraonof … · the size of the final poster. All text and graphics will be printed at 100% their size. To see what your

RESEARCH POSTER PRESENTATION DESIGN © 2012

www.PosterPresentations.com

QUICK DESIGN GUIDE (--THIS SECTION DOES NOT PRINT--)

This PowerPoint 2007 template produces a 36x48 inch professional poster. You can use it to create your research poster and save valuable time placing titles, subtitles, text, and graphics. We provide a series of online tutorials that will guide you through the poster design process and answer your poster production questions. To view our template tutorials, go online to PosterPresentations.com and click on HELP DESK. When you are ready to print your poster, go online to PosterPresentations.com. Need Assistance? Call us at 1.866.649.3004

Object Placeholders

Using the placeholders To add text, click inside a placeholder on the poster and type or paste your text. To move a placeholder, click it once (to select it). Place your cursor on its frame, and your cursor will change to this symbol Click once and drag it to a new location where you can resize it. Section Header placeholder Click and drag this preformatted section header placeholder to the poster area to add another section header. Use section headers to separate topics or concepts within your presentation. Text placeholder Move this preformatted text placeholder to the poster to add a new body of text. Picture placeholder Move this graphic placeholder onto your poster, size it first, and then click it to add a picture to the poster.

Student discounts are available on our Facebook page. Go to PosterPresentations.com and click on the FB icon.

QUICK TIPS (--THIS SECTION DOES NOT PRINT--)

This PowerPoint template requires basic PowerPoint (version 2007 or newer) skills. Below is a list of commonly asked questions specific to this template. If you are using an older version of PowerPoint some template features may not work properly.

Template FAQs

Verifying the quality of your graphics Go to the VIEW menu and click on ZOOM to set your preferred magnification. This template is at 100% the size of the final poster. All text and graphics will be printed at 100% their size. To see what your poster will look like when printed, set the zoom to 100% and evaluate the quality of all your graphics before you submit your poster for printing. Modifying the layout This template has four different column layouts. Right-click your mouse on the background and click on LAYOUT to see the layout options. The columns in the provided layouts are fixed and cannot be moved but advanced users can modify any layout by going to VIEW and then SLIDE MASTER. Importing text and graphics from external sources TEXT: Paste or type your text into a pre-existing placeholder or drag in a new placeholder from the left side of the template. Move it anywhere as needed. PHOTOS: Drag in a picture placeholder, size it first, click in it and insert a photo from the menu. TABLES: You can copy and paste a table from an external document onto this poster template. To adjust the way the text fits within the cells of a table that has been pasted, right-click on the table, click FORMAT SHAPE then click on TEXT BOX and change the INTERNAL MARGIN values to 0.25. Modifying the color scheme To change the color scheme of this template go to the DESIGN menu and click on COLORS. You can choose from the provided color combinations or create your own.

©  2013  PosterPresenta/ons.com          2117  Fourth  Street  ,  Unit  C          Berkeley  CA  94710          [email protected]  

The Great Smoky Mountains National Park (GSMNP) is the most visited national park in the United States, drawing over 9 million visitors per year. Emissions of nitrogen oxides (NOx) from the exhaust of automobiles transporting those visitors into and through the park combine with biogenic emissions of volatile organic compounds (VOCs) from the extensive park forests to form tropospheric (i.e., ground level) ozone, (O3) which is harmful to plants, animals and humans. In this project, the National Oceanic and Atmospheric Administration’s Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS) model is being used to estimate the impact of automobile NOx emissions on O3 within and downwind of GSMNP. The one-dimensional column model ACCESS utilizes a current state-of-the-science, near explicit atmospheric chemistry mechanism to simulate tropospheric O3 from ground level to the top of the planetary boundary layer (PBL) (~2 km) and accounts for turbulent vertical atmospheric transport of trace species from within the forest canopy and up throughout the full depth of the PBL. NOx emissions from varying levels of automobile traffic in the park will be simulated with ACCESS and the impact of the traffic on O3 concentrations will be evaluated. Data from air quality monitoring sites within and around GSMNP will be used to assess ACCESS results.

ABSTRACT  

1.  Run simulations that reflect realistic potential NOx levels from highway traffic and analyze the results of these simulations.

2.  Gather data from detectors on the GSMNP site, and compare those results to our simulations. Potentially we will use those results to improve our initial conditions file and aid in future simulations.

3.  Optimize ACCESS for an HPC platform.

OBJECTIVES  

The following figures all describe the chemistry of the ACCESS program in detail. Figure 2 discusses the factors that are taken into an ACCESS simulation, such as emissions, different forms of turbulent mixing, deposition, and free tropospheric exchange within the planetary boundary layer to determine the photochemistry that is going on.

CHEMISTRY  OF  ACCESS  

The following graphs constitute the results we have obtained thus far from the ACCESS simulations we ran. In the next column, we draw conclusions based upon these results.

RESULTS  

RESULTS  (Cont.)  

Graphs Chemical Production (Budget)

CONCLUSION  

Graphs of Vertical Flux Data

REFERENCES  

Under the environmental conditions studied so far in our simulations, only minor amounts of local ozone production above the canopy are predicted. However, the simulation results suggest that the enhancements in PAN and MPAN formation from visitor traffic in the park may lead to increased ozone concentrations downwind from major highways within the park. Ozone data within and downwind of the park will be further analyzed to test the model prediction.

1CSURE-­‐REU  Student    New  Mexico  State  University  2NOAA  Air  Resources  Laboratory  –  Atmospheric  Turbulence  and  Diffusion  Division;  Department  of  Civil  Engineering,  University  of  Tennessee  

3Department  of  Civil  Engineering,  University  of  Tennessee    

James  W.  Herndon  III1,  Rick  D.  Saylor2,  Joshua  S.  Fu3    

The  Effect  of  Nitrogen  Oxide  Emissions  from  Automobiles  on  the  Concentra/on  of  Tropospheric  Ozone  in  the  Great  Smoky  Mountains  Na/onal  Park  

 

Other than methane, isoprene is the largest single emitted hydrocarbon species from biological sources. On a global scale, isoprene emissions from vegetation are roughly 10x larger than hydrocarbon emissions from industrial and other human sources and thus have a major influence on tropospheric ozone production worldwide (via the chemistry depicted in Figure 5). Deciduous forests dominated by oak, hickory and poplar such as those prevalent in East Tennessee are primary emitters of isoprene.

The National Park Service (NPS) has sensors all over the park to track the amounts of several air pollutants, including ozone (Figures 1 & 2). You can see that peaks in the park right now are on average quite high, with several high ozone days around Look Rock (Friday, July 26th, 2013, and Tuesday July 31st, 2013 having maxima in the yellow zone). ACCESS will be used to predict levels of ozone within the park when there is a given amount of traffic emissions within it. Once we have data from the simulations, we can compare it to actual values within the park, and see how similar (or dissimilar) the predictions are from actual recorded values. This could help us improve future ACCESS simulations and broaden its potential use in industry as a predictive tool.

Graphs of Species Concentrations

FOR  YOUR  KNOWLEDGE:  What  is  Isoprene  (C5H8)  and  why  is  it  important  for  our  model?  

AN  ILLUSTRATION  OF  OUR  PURPOSE:  Ozone  Levels  in  the  Great  Smoky  Mountains  as  

of  July  31st,  2013  

Figure 1: Ozone Concentrations at Look Rock, GSMNP Image Source: National Park Service, “Great Smoky Mountains National Park: Air Quality 10-day Charts” URL:http://www.nature.nps.gov/air/webcams/parks/grsmcam/grsm_datatimelines.cfm

Figure 3: Diagram of ACCESS version 1.2.0 Image Source: Dr. Rick D. Saylor, Diagram of ACCESS.

Figure 4: Diagram of the Chemistry of the Atmosphere Image Source: ClimateScience.gov – “Schematic of chemical and transport processes related to atmospheric composition. These processes link the atmosphere with other components of the Earth system, including the oceans, land, and terrestrial and marine plants and animals. URL: www.climatescience.gov/Library/stratplan2003/final/ccspstratplan2003-chap3.htm

Figure 5  Schematic of atmospheric photochemical production of tropospheric ozone (a component of smog) Image Source: Rick D. Saylor – NOAA. Simplified diagram of reactions that take place in our atmosphere to create smog.

0  

500  

1000  

1500  

2000  

0.00   10.00   20.00   30.00   40.00   50.00   60.00   70.00  

Height  (m

)  

Concentra\on  of  NOx  (ppb)  

NOx  Concentra\ons  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx   0  

10  

20  

30  

40  

50  

0.00   10.00   20.00   30.00   40.00   50.00   60.00   70.00  

Height  (m

)  

Concentra\on  of  NOx  (ppb)  

NOx  Concentra\ons  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

500  

1000  

1500  

2000  

0.00   5.00   10.00   15.00   20.00   25.00   30.00   35.00  

Height  (m

)  

Concentra\on  of  O3  (ppb)  

Ozone  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx   0  

10  

20  

30  

40  

50  

0.00   5.00   10.00   15.00   20.00   25.00   30.00   35.00  

Height  (m

)  

Concentra\on  of  O3  (ppb)  

Ozone  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

500  

1000  

1500  

2000  

0.00   1.00   2.00   3.00   4.00   5.00   6.00   7.00  

Height  (m

)  

Concentra\on  of  C5H8  (ppb)  

Isoprene  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx   0  

20  

40  

60  

80  

100  

0.00   1.00   2.00   3.00   4.00   5.00   6.00   7.00  

Height  (m

)  

Concentra\on  of  C5H8  (ppb)  

Isoprene  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

500  

1000  

1500  

2000  

0.00E+00   5.00E+08   1.00E+09   1.50E+09   2.00E+09   2.50E+09   3.00E+09   3.50E+09   4.00E+09   4.50E+09   5.00E+09  

Height  (m

)  

Concentra\on  of  PAN  (molecules/cm3)  

PAN  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx   0  

10  

20  

30  

40  

50  

3.40E+09   3.60E+09   3.80E+09   4.00E+09   4.20E+09   4.40E+09  

Height  (m

)  

Concentra\on  of  PAN  (molecules/cm3)  

PAN  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

500  

1000  

1500  

2000  

0.00E+00   1.00E+08   2.00E+08   3.00E+08   4.00E+08   5.00E+08   6.00E+08   7.00E+08  

Height  (m

)  

Concentra\on  of  MPAN  (molecules/cm3)  

MPAN  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx   0  

10  

20  

30  

40  

50  

4.00E+08   4.50E+08   5.00E+08   5.50E+08   6.00E+08   6.50E+08  

Height  (m

)  

Concentra\on  of  MPAN  (molecules/cm3)  

MPAN  Concentra\on  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

10  

20  

30  

40  

50  

60  

70  

80  

90  

100  

-­‐250.00   -­‐200.00   -­‐150.00   -­‐100.00   -­‐50.00   0.00   50.00  

Height  (m

)  

Rate  of  Ozone  Forma\on  (ppb/hr)  

Ozone  Budget  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

-­‐0.25   -­‐0.20   -­‐0.15   -­‐0.10   -­‐0.05   0.00   0.05   0.10  

Height  (m

)  

Produc\on  of  PAN  (ppb/hr)  

PAN  Budget  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

20  

40  

60  

80  

100  

120  

140  

160  

180  

200  

-­‐0.040   -­‐0.030   -­‐0.020   -­‐0.010   0.000   0.010   0.020  

Height  (m

)  

Produc\on  of  MPAN  (ppb/hr)  

MPAN  Budget  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

500  

1000  

1500  

2000  

-­‐40.00   -­‐20.00   0.00   20.00   40.00   60.00  

Height  (m

)  

Ver\cal  Flux  O3  (nmol/m2-­‐s)  

Ozone  Ver\cal  Flux  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  0  

50  

100  

150  

200  

-­‐0.03   -­‐0.01   0.01   0.03   0.05  

Height  (m

)  

Ver\cal  Flux  of  PAN  (nmol/m2-­‐s)  

PAN  Ver\cal  Flux  Data  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

0  

100  

200  

300  

400  

500  

-­‐0.01   0.00   0.00   0.01   0.01   0.02   0.02  

Height  (m

)  

Ver\cal  Flux  MPAN  (nmol/m2-­‐s)  

MPAN  Ver\cal  Flux  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  0  

50  

100  

150  

200  

0.00   2.00   4.00   6.00   8.00   10.00   12.00   14.00  

Height  (m

)  

Ver\cal  Flux  C5H8  (nmol/m2-­‐s)  

Isoprene  Ver\cal  Flux  at  Varying  NOx  Emission  Levels  

0  nmol/m2-­‐s  NOx  

1  nmol/m2-­‐s  NOx  

10  nmol/m2-­‐s  NOx  

100  nmol/m2-­‐s  NOx  

0.1  nmol/m2-­‐s  NOx  

Figure 2: Map of Air Quality Monitoring sites at GSMNP Image Source: Nancy Finley. Air Quality in the Great Smokey Mountains (PowerPoint Presentation). National Conference of State Legislatures Advisory Council on Energy. Oak Ridge, TN.

Saylor, R. D. (2012). The Atmospheric Chemistry and Canopy Exchange Simulation System (ACCESS): model description and application to a temperate deciduous forest canopy. Atmospheric Chemistry and Physics, 12(9). Retrieved from http://www.atmos-chem-phys.net/13/693/2013/acp-13-693-2013.pdf.