59
The Vapor Pressure of Mercury Marcia L. Huber Arno Laesecke Daniel G. Friend NISTIR 6643

The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Embed Size (px)

Citation preview

Page 1: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

The Vapor Pressure of

NISTIR 6643

Mercury

Marcia L HuberArno Laesecke

Daniel G Friend

NISTIR 6643

The Vapor Pressure of Mercury

Marcia L HuberArno Laesecke

Daniel G FriendPhysical and Chemical Properties Division

Chemical Science and Technology LaboratoryNational Institute of Standards and Technology

Boulder CO 80305-3328

April 2006

US DEPARTMENT OF COMMERCECarlos M Gutierrez Secretary

TECHNOLOGY ADMINISTRATIONRobert Cresanti Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGYWilliam Jeffrey Director

Table of Contents

1 Introduction1

2 Experimental Vapor Pressure Data 2

3 Correlation Development11

4 Comparison with Experimental Data18

5 Comparisons with Correlations from the Literature23

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC25

7 Conclusions35

8 References36

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of Mercury42

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury56

iii

The Vapor Pressure of Mercury

Marcia L Huber Arno Laesecke and Daniel G Friend

National Institute of Standards and TechnologylowastBoulder CO 80303-3328

In this report we review the available measurements of the vapor pressure of mercury and develop a new correlation that is valid from the triple point to the critical point The equation is a Wagner-type form where the terms of the equation are selected by use of a simulated annealing optimization algorithm In order to improve the reliability of the equation at low temperatures heat capacity data were used in addition to vapor pressure data We present comparisons with available experimental data and existing correlations In the region of interest for this project over the temperature range 0 degC to 60 degC the estimated uncertainty (estimated as a combined expanded uncertainty with coverage factor of 2 2σ) of the correlation is 1

Keywords correlation mercury vapor pressure

1 Introduction

Recent concerns about mercury as an industrial pollutant have lead to increased

interest in the detection and regulation of mercury in the environment [1] The

development of standardized equations for the thermophysical properties of mercury can

aid this task A critical evaluation of density thermal expansion coefficients and

compressibilities as a function of temperature and pressure was conducted by Holman

and ten Seldam [2] Bettin and Fehlauer [3] recently reviewed the density of mercury for

metrological applications Vukalovich and Fokinrsquos book [4] and the Gmelin Handbook

[5] are both thorough treatises on the thermophysical properties of mercury Thermal

properties such as thermal conductivity and heat capacity were reviewed by Sakonidou et

al [6] while Hensel and Warren [7] cover other properties including optical and

magnetic characteristics To assess risks of exposure it is important to have an accurate

lowast Physical and Chemical Properties Division Chemical Science and Technology Laboratory

1

representation of the vapor pressure of mercury Numerous compilations and correlations

of the vapor pressure of mercury have been published [8-25] but there is no consensus

on which is the best one to use for a given purpose In this work we review the existing

experimental data and correlations and provide a new representation of the vapor

pressure of mercury that is valid from the triple point to the critical point We also

present comparisons with both experimental data and correlations and estimate the

uncertainty of the correlation

2 Experimental Vapor Pressure Data

Experimental measurements of the vapor pressure of mercury have a long history

A single vapor pressure point of mercury the boiling point was first measured in 1801

by Dalton [26] who obtained a value corresponding to 622 K shortly thereafter in 1803

Crichton [27] mentioned that the normal boiling point is above a temperature

corresponding to 619 K More recently the normal boiling point of mercury was

determined by Beattie et al [28] as (35658 plusmn 00016) degC on the 1927 International

Temperature Scale This measurement was selected as a secondary fixed point on the

ITS-48 Temperature scale [29] Converted to the ITS-90 temperature scale [30] this

value is (6297653 plusmn 00016) K The value recommended by Marsh [31] is 62981 K

(IPTS-68) on the International Practical Temperature Scale [32] of 1968 this was a

secondary fixed point Converted to ITS-90 this recommendation is 6297683 K for the

normal boiling point

Regnault [33] published observations of the vapor pressure of mercury over a

range of temperatures in 1862 Several of the early publications are by researchers who

became quite famous including Avogadro [34] Dalton [26] Hertz [35] Ramsay [36]

and Haber [37] Indeed much of the work on mercury was done in the early part of the

20th century Figure 1 shows the distribution of the experimental data Table 1 gives a

detailed compilation of sources of vapor-pressure data from 1862 to the present along

with the temperature range of the measurements the experimental method used and an

estimate of the uncertainty of these measurements In general determinations of the

purity of the mercury were not available however methods for the purification of

mercury have been known for a long time and samples of high purity were prepared

2

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 2: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

NISTIR 6643

The Vapor Pressure of Mercury

Marcia L HuberArno Laesecke

Daniel G FriendPhysical and Chemical Properties Division

Chemical Science and Technology LaboratoryNational Institute of Standards and Technology

Boulder CO 80305-3328

April 2006

US DEPARTMENT OF COMMERCECarlos M Gutierrez Secretary

TECHNOLOGY ADMINISTRATIONRobert Cresanti Under Secretary of Commerce for Technology

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGYWilliam Jeffrey Director

Table of Contents

1 Introduction1

2 Experimental Vapor Pressure Data 2

3 Correlation Development11

4 Comparison with Experimental Data18

5 Comparisons with Correlations from the Literature23

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC25

7 Conclusions35

8 References36

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of Mercury42

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury56

iii

The Vapor Pressure of Mercury

Marcia L Huber Arno Laesecke and Daniel G Friend

National Institute of Standards and TechnologylowastBoulder CO 80303-3328

In this report we review the available measurements of the vapor pressure of mercury and develop a new correlation that is valid from the triple point to the critical point The equation is a Wagner-type form where the terms of the equation are selected by use of a simulated annealing optimization algorithm In order to improve the reliability of the equation at low temperatures heat capacity data were used in addition to vapor pressure data We present comparisons with available experimental data and existing correlations In the region of interest for this project over the temperature range 0 degC to 60 degC the estimated uncertainty (estimated as a combined expanded uncertainty with coverage factor of 2 2σ) of the correlation is 1

Keywords correlation mercury vapor pressure

1 Introduction

Recent concerns about mercury as an industrial pollutant have lead to increased

interest in the detection and regulation of mercury in the environment [1] The

development of standardized equations for the thermophysical properties of mercury can

aid this task A critical evaluation of density thermal expansion coefficients and

compressibilities as a function of temperature and pressure was conducted by Holman

and ten Seldam [2] Bettin and Fehlauer [3] recently reviewed the density of mercury for

metrological applications Vukalovich and Fokinrsquos book [4] and the Gmelin Handbook

[5] are both thorough treatises on the thermophysical properties of mercury Thermal

properties such as thermal conductivity and heat capacity were reviewed by Sakonidou et

al [6] while Hensel and Warren [7] cover other properties including optical and

magnetic characteristics To assess risks of exposure it is important to have an accurate

lowast Physical and Chemical Properties Division Chemical Science and Technology Laboratory

1

representation of the vapor pressure of mercury Numerous compilations and correlations

of the vapor pressure of mercury have been published [8-25] but there is no consensus

on which is the best one to use for a given purpose In this work we review the existing

experimental data and correlations and provide a new representation of the vapor

pressure of mercury that is valid from the triple point to the critical point We also

present comparisons with both experimental data and correlations and estimate the

uncertainty of the correlation

2 Experimental Vapor Pressure Data

Experimental measurements of the vapor pressure of mercury have a long history

A single vapor pressure point of mercury the boiling point was first measured in 1801

by Dalton [26] who obtained a value corresponding to 622 K shortly thereafter in 1803

Crichton [27] mentioned that the normal boiling point is above a temperature

corresponding to 619 K More recently the normal boiling point of mercury was

determined by Beattie et al [28] as (35658 plusmn 00016) degC on the 1927 International

Temperature Scale This measurement was selected as a secondary fixed point on the

ITS-48 Temperature scale [29] Converted to the ITS-90 temperature scale [30] this

value is (6297653 plusmn 00016) K The value recommended by Marsh [31] is 62981 K

(IPTS-68) on the International Practical Temperature Scale [32] of 1968 this was a

secondary fixed point Converted to ITS-90 this recommendation is 6297683 K for the

normal boiling point

Regnault [33] published observations of the vapor pressure of mercury over a

range of temperatures in 1862 Several of the early publications are by researchers who

became quite famous including Avogadro [34] Dalton [26] Hertz [35] Ramsay [36]

and Haber [37] Indeed much of the work on mercury was done in the early part of the

20th century Figure 1 shows the distribution of the experimental data Table 1 gives a

detailed compilation of sources of vapor-pressure data from 1862 to the present along

with the temperature range of the measurements the experimental method used and an

estimate of the uncertainty of these measurements In general determinations of the

purity of the mercury were not available however methods for the purification of

mercury have been known for a long time and samples of high purity were prepared

2

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 3: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Table of Contents

1 Introduction1

2 Experimental Vapor Pressure Data 2

3 Correlation Development11

4 Comparison with Experimental Data18

5 Comparisons with Correlations from the Literature23

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC25

7 Conclusions35

8 References36

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of Mercury42

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury56

iii

The Vapor Pressure of Mercury

Marcia L Huber Arno Laesecke and Daniel G Friend

National Institute of Standards and TechnologylowastBoulder CO 80303-3328

In this report we review the available measurements of the vapor pressure of mercury and develop a new correlation that is valid from the triple point to the critical point The equation is a Wagner-type form where the terms of the equation are selected by use of a simulated annealing optimization algorithm In order to improve the reliability of the equation at low temperatures heat capacity data were used in addition to vapor pressure data We present comparisons with available experimental data and existing correlations In the region of interest for this project over the temperature range 0 degC to 60 degC the estimated uncertainty (estimated as a combined expanded uncertainty with coverage factor of 2 2σ) of the correlation is 1

Keywords correlation mercury vapor pressure

1 Introduction

Recent concerns about mercury as an industrial pollutant have lead to increased

interest in the detection and regulation of mercury in the environment [1] The

development of standardized equations for the thermophysical properties of mercury can

aid this task A critical evaluation of density thermal expansion coefficients and

compressibilities as a function of temperature and pressure was conducted by Holman

and ten Seldam [2] Bettin and Fehlauer [3] recently reviewed the density of mercury for

metrological applications Vukalovich and Fokinrsquos book [4] and the Gmelin Handbook

[5] are both thorough treatises on the thermophysical properties of mercury Thermal

properties such as thermal conductivity and heat capacity were reviewed by Sakonidou et

al [6] while Hensel and Warren [7] cover other properties including optical and

magnetic characteristics To assess risks of exposure it is important to have an accurate

lowast Physical and Chemical Properties Division Chemical Science and Technology Laboratory

1

representation of the vapor pressure of mercury Numerous compilations and correlations

of the vapor pressure of mercury have been published [8-25] but there is no consensus

on which is the best one to use for a given purpose In this work we review the existing

experimental data and correlations and provide a new representation of the vapor

pressure of mercury that is valid from the triple point to the critical point We also

present comparisons with both experimental data and correlations and estimate the

uncertainty of the correlation

2 Experimental Vapor Pressure Data

Experimental measurements of the vapor pressure of mercury have a long history

A single vapor pressure point of mercury the boiling point was first measured in 1801

by Dalton [26] who obtained a value corresponding to 622 K shortly thereafter in 1803

Crichton [27] mentioned that the normal boiling point is above a temperature

corresponding to 619 K More recently the normal boiling point of mercury was

determined by Beattie et al [28] as (35658 plusmn 00016) degC on the 1927 International

Temperature Scale This measurement was selected as a secondary fixed point on the

ITS-48 Temperature scale [29] Converted to the ITS-90 temperature scale [30] this

value is (6297653 plusmn 00016) K The value recommended by Marsh [31] is 62981 K

(IPTS-68) on the International Practical Temperature Scale [32] of 1968 this was a

secondary fixed point Converted to ITS-90 this recommendation is 6297683 K for the

normal boiling point

Regnault [33] published observations of the vapor pressure of mercury over a

range of temperatures in 1862 Several of the early publications are by researchers who

became quite famous including Avogadro [34] Dalton [26] Hertz [35] Ramsay [36]

and Haber [37] Indeed much of the work on mercury was done in the early part of the

20th century Figure 1 shows the distribution of the experimental data Table 1 gives a

detailed compilation of sources of vapor-pressure data from 1862 to the present along

with the temperature range of the measurements the experimental method used and an

estimate of the uncertainty of these measurements In general determinations of the

purity of the mercury were not available however methods for the purification of

mercury have been known for a long time and samples of high purity were prepared

2

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 4: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

The Vapor Pressure of Mercury

Marcia L Huber Arno Laesecke and Daniel G Friend

National Institute of Standards and TechnologylowastBoulder CO 80303-3328

In this report we review the available measurements of the vapor pressure of mercury and develop a new correlation that is valid from the triple point to the critical point The equation is a Wagner-type form where the terms of the equation are selected by use of a simulated annealing optimization algorithm In order to improve the reliability of the equation at low temperatures heat capacity data were used in addition to vapor pressure data We present comparisons with available experimental data and existing correlations In the region of interest for this project over the temperature range 0 degC to 60 degC the estimated uncertainty (estimated as a combined expanded uncertainty with coverage factor of 2 2σ) of the correlation is 1

Keywords correlation mercury vapor pressure

1 Introduction

Recent concerns about mercury as an industrial pollutant have lead to increased

interest in the detection and regulation of mercury in the environment [1] The

development of standardized equations for the thermophysical properties of mercury can

aid this task A critical evaluation of density thermal expansion coefficients and

compressibilities as a function of temperature and pressure was conducted by Holman

and ten Seldam [2] Bettin and Fehlauer [3] recently reviewed the density of mercury for

metrological applications Vukalovich and Fokinrsquos book [4] and the Gmelin Handbook

[5] are both thorough treatises on the thermophysical properties of mercury Thermal

properties such as thermal conductivity and heat capacity were reviewed by Sakonidou et

al [6] while Hensel and Warren [7] cover other properties including optical and

magnetic characteristics To assess risks of exposure it is important to have an accurate

lowast Physical and Chemical Properties Division Chemical Science and Technology Laboratory

1

representation of the vapor pressure of mercury Numerous compilations and correlations

of the vapor pressure of mercury have been published [8-25] but there is no consensus

on which is the best one to use for a given purpose In this work we review the existing

experimental data and correlations and provide a new representation of the vapor

pressure of mercury that is valid from the triple point to the critical point We also

present comparisons with both experimental data and correlations and estimate the

uncertainty of the correlation

2 Experimental Vapor Pressure Data

Experimental measurements of the vapor pressure of mercury have a long history

A single vapor pressure point of mercury the boiling point was first measured in 1801

by Dalton [26] who obtained a value corresponding to 622 K shortly thereafter in 1803

Crichton [27] mentioned that the normal boiling point is above a temperature

corresponding to 619 K More recently the normal boiling point of mercury was

determined by Beattie et al [28] as (35658 plusmn 00016) degC on the 1927 International

Temperature Scale This measurement was selected as a secondary fixed point on the

ITS-48 Temperature scale [29] Converted to the ITS-90 temperature scale [30] this

value is (6297653 plusmn 00016) K The value recommended by Marsh [31] is 62981 K

(IPTS-68) on the International Practical Temperature Scale [32] of 1968 this was a

secondary fixed point Converted to ITS-90 this recommendation is 6297683 K for the

normal boiling point

Regnault [33] published observations of the vapor pressure of mercury over a

range of temperatures in 1862 Several of the early publications are by researchers who

became quite famous including Avogadro [34] Dalton [26] Hertz [35] Ramsay [36]

and Haber [37] Indeed much of the work on mercury was done in the early part of the

20th century Figure 1 shows the distribution of the experimental data Table 1 gives a

detailed compilation of sources of vapor-pressure data from 1862 to the present along

with the temperature range of the measurements the experimental method used and an

estimate of the uncertainty of these measurements In general determinations of the

purity of the mercury were not available however methods for the purification of

mercury have been known for a long time and samples of high purity were prepared

2

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 5: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

representation of the vapor pressure of mercury Numerous compilations and correlations

of the vapor pressure of mercury have been published [8-25] but there is no consensus

on which is the best one to use for a given purpose In this work we review the existing

experimental data and correlations and provide a new representation of the vapor

pressure of mercury that is valid from the triple point to the critical point We also

present comparisons with both experimental data and correlations and estimate the

uncertainty of the correlation

2 Experimental Vapor Pressure Data

Experimental measurements of the vapor pressure of mercury have a long history

A single vapor pressure point of mercury the boiling point was first measured in 1801

by Dalton [26] who obtained a value corresponding to 622 K shortly thereafter in 1803

Crichton [27] mentioned that the normal boiling point is above a temperature

corresponding to 619 K More recently the normal boiling point of mercury was

determined by Beattie et al [28] as (35658 plusmn 00016) degC on the 1927 International

Temperature Scale This measurement was selected as a secondary fixed point on the

ITS-48 Temperature scale [29] Converted to the ITS-90 temperature scale [30] this

value is (6297653 plusmn 00016) K The value recommended by Marsh [31] is 62981 K

(IPTS-68) on the International Practical Temperature Scale [32] of 1968 this was a

secondary fixed point Converted to ITS-90 this recommendation is 6297683 K for the

normal boiling point

Regnault [33] published observations of the vapor pressure of mercury over a

range of temperatures in 1862 Several of the early publications are by researchers who

became quite famous including Avogadro [34] Dalton [26] Hertz [35] Ramsay [36]

and Haber [37] Indeed much of the work on mercury was done in the early part of the

20th century Figure 1 shows the distribution of the experimental data Table 1 gives a

detailed compilation of sources of vapor-pressure data from 1862 to the present along

with the temperature range of the measurements the experimental method used and an

estimate of the uncertainty of these measurements In general determinations of the

purity of the mercury were not available however methods for the purification of

mercury have been known for a long time and samples of high purity were prepared

2

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 6: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

before it was possible to quantify the purity [18] The estimates of uncertainty were

obtained by considering the experimental method and conditions the original authorrsquos

estimates (when available) and agreement with preliminary correlations These

correspond to our estimate of a combined expanded uncertainty with a coverage factor of

two In Appendix A we tabulate all experimental data for the vapor pressure of mercury

collected in this study

The experimental techniques used to measure vapor pressure can be grouped into

three main categories the static quasistatic and kinetic techniques are discussed by

Dykyj et al [38] and Ditchburn and Gilmour [14] One of the simplest methods to

measure the vapor pressure is a static method that involves placing the sample in a closed

container then removing any air and impurities keeping the vessel at constant

temperature and then measuring the temperature and pressure after equilibrium has been

established It is generally limited to pressures above 10 kPa In principle it is applicable

to any pressure but in practice the presence of nonvolatile impurities can cause large

systematic errors With very careful sample preparation it may be possible to go to lower

pressures with this technique Another static instrument is the isoteniscope This type of

instrument was used by Smith and Menzies [39 40] in their early work on the vapor

pressure of mercury In this type of apparatus the sample is placed in a bulb that is

connected to a U-tube that acts as a manometer (ie a pressure sensor) The device is

placed in a thermostat and the external pressure is adjusted until it equals that of the

vapor above the sample Isoteniscopes are limited by the sensitivity of the pressure

sensor A third type of static method involves the use of an inclined piston gauge The

sample is placed in a cylinder fitted with a movable piston so that the pressure of the

sample balances the weight (gravitational force) of the piston This method is generally

applicable over the range 01 kPa to 15 kPa

Among the instruments classified as quasistatic are ebulliometers and

transpiration methods In both of them a steady rate of boiling is established and it is

assumed that the pressure at steady state is equivalent to the equilibrium vapor pressure

In an ebulliometer the sample is boiled at a pressure set by an external pressurizing gas

(often helium) with the vapor passing through a reflux condenser before returning to the

boiler The temperature measured is that of the vapor just above the boiling liquid An

3

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 7: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

advantage to this method is that volatile impurities do not condense and are removed at

the top of the apparatus This method may also be set up in a comparative mode with two

separate ebulliometers one containing a reference fluid and the other containing the

sample fluid connected with a common pressure line so that direct measurement of the

pressure is unnecessary It is possible to make very accurate measurements with this type

of device at pressures greater than about 2 kPa The very accurate measurements of the

vapor pressure of mercury by Ambrose and Sprake [18] were made with an ebulliometric

technique The transpiration method (also called gas saturation) involves passing a steady

stream of an inert gas over or through the sample which is held at constant temperature

The pressure is not measured directly but rather is calculated from converting the

concentration of the mercury in the gas stream to a partial pressure that is the vapor

pressure of the sample This type of method has a larger uncertainty than some of the

other methods generally ranging from 05 to 5 [38] It is most useful over a pressure

range of 01 to 5 kPa For example Burlingame [43] and Dauphinee [4950] used the

transpiration method in their measurements

4

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 8: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

1E-9

1E-6

1E-3

1E+0

1E+3

1E+6

100

300

500

700

900

1100

1300

1500

1700

Tem

pera

ture

K

Pressure kPaR

egna

ult 1

862

Her

tz 1

882

Ram

say

1886

Cal

lend

ar 1

891

You

ng 1

891

Cai

llete

t 189

7P

faun

dler

189

7M

orle

y 19

04G

ebha

rdt 1

905

Sm

ith M

enzi

es 1

910

192

7K

nuds

en 1

909

Ege

rton

1917

Ruf

f 191

9V

olm

er 1

921

Hill

192

2S

cott

1924

Ber

nhar

dt 1

925

Poi

ndex

ter 1

925

Rod

ebus

h 19

25V

olm

er19

25Je

nkin

s 19

26M

illar

192

7N

eum

ann

1932

Ped

der 1

933

von

Hal

ban

1935

Bea

ttie

1937

Sch

neid

er 1

944

Dau

phin

ee 1

950

Dou

glas

195

1B

usey

195

3E

rnsb

erge

r 195

5S

pedd

ing

1955

Roe

der

1956

Sug

awar

a 19

62C

arls

on 1

963

Sch

mah

l 196

5M

orgu

lesc

u 19

66A

mbr

ose

1972

Sch

oumlnhe

rr 1

981

Trip

le p

oint

Nor

mal

boi

ling

poin

tC

ritic

al p

oint

Fi

gure

1 E

xper

imen

tal v

apor

pre

ssur

e da

ta fo

r mer

cury

5

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 9: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Tabl

e 1

Sum

mar

y of

ava

ilabl

e da

ta fo

r the

vap

or p

ress

ure

of m

ercu

ry R

efer

ence

s in

bold

face

indi

cate

prim

ary

data

sets

(see

text

)

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

A

mbr

ose

[18]

19

72

ebul

liom

eter

11

3 41

7-77

1 le

ss th

an 0

03

gre

ates

t at l

owes

t T

Bea

ttie

[28]

19

37

boili

ng tu

be42

623-

636

003

B

ernh

ardt

[41]

19

25

3 st

atic

met

hods

27

69

4-17

06

varie

s fro

m 2

to gt

15

Bes

sel-H

agen

[42]

18

81

Toumlpl

er v

acuu

m p

ump

2 27

3-29

3 gt2

0 B

urlin

gam

e [4

3]

1968

tra

nspi

ratio

n 38

34

4-40

9 4

Bus

ey [4

4]

1953

de

rived

from

cal

oric

pro

perti

es

24

234-

750

varie

s fro

m 0

2 to

35

at l

owes

t T

Cai

llete

t [45

] 19

00

Bou

rdon

man

omet

er

11

673-

1154

va

ries f

rom

1 to

7

Cal

lend

ar [4

6]

1891

M

eyer

tube

2

630

02

Cam

men

ga [4

7]

1969

ef

fusi

on

grap

hica

l res

ults

27

3-32

5

Car

lson

[48]

19

63

effu

sion

9

299-

549

varie

s fro

m 3

to gt

20

Dau

phin

ee [4

9 5

0]

1950

195

1 tra

nspi

ratio

n 18

30

5-45

5 5

Dou

glas

[51]

19

51

deriv

ed fr

om c

alor

ic p

rope

rties

30

23

4-77

3 va

ries f

rom

00

3 (a

t nor

mal

boi

ling

poin

t) to

15

at l

owes

t T

Dur

rans

[52]

19

20

give

s tab

le a

ttrib

uted

to S

mith

an

d M

enzi

es[3

9]

4627

3-72

3

Eger

ton

[53]

19

17

effu

sion

27

28

9-30

9 5

Ern

sber

ger

[54]

19

55pi

ston

man

omet

er18

285-

327

1G

alch

enko

[55]

19

78

stat

ic m

etho

d gr

aphi

cal r

esul

ts

523-

723

3 G

alch

enko

[56]

19

84

atom

ic a

bsor

ptio

n co

rrel

atin

g eq

uatio

n on

ly

723-

873

3

Geb

hard

t [57

] 19

05

boili

ng tu

be

9 40

3-48

3 8

Hab

er [3

7]

1914

vi

brat

ing

quar

tz fi

lam

ent

1 29

3 2

Hag

en [5

8]

1882

di

ffer

entia

l pre

ssur

e 5

273-

473

gt20

Hen

sel [

59]

1966

el

ectri

cal r

esis

tanc

e gr

aphi

cal r

esul

ts

1073

-crit

ical

no

t ava

ilabl

e H

ertz

[35]

18

82

stat

ic a

bsol

ute

man

omet

er

9 36

3-48

0 5

Hey

cock

[60]

19

13

not a

vaila

ble

1 63

0 0

2 H

ilden

bran

d [6

1]

1964

to

rsio

n-ef

fusi

on

6 29

5-33

2 5

Hill

[62]

19

22

radi

omet

er p

rinci

ple

19

27

2-30

8 30

H

ubba

rd [6

3]

1982

st

atic

gr

aphi

cal r

esul

ts

742-

1271

no

t ava

ilabl

e Je

nkin

s [64

] 19

26

isot

enis

cope

21

47

9-67

1 0

1 to

gt20

K

ahlb

aum

[65]

18

94

ebul

liom

eter

43

39

3-49

3 gt1

0 K

nuds

en [6

6]

1909

ef

fusi

on

10

273-

324

varie

s fro

m 5

to 1

0 K

nuds

en [6

7]

1910

ra

diom

eter

prin

cipl

e 7

263-

298

varie

s fro

m 5

to 1

0

6

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 10: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Tabl

e 1

Con

tinue

d

Firs

t Aut

hor

Yea

r M

etho

d N

o p

ts

T ra

nge

K

Est

imat

ed u

ncer

tain

ty

K

orde

s [68

] 19

29

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 2

630-

632

4

May

er [6

9]

1930

ef

fusi

on

82

261-

298

5 e

xcep

t gre

ater

at T

lt270

M

cLeo

d [7

0]

1883

tra

nspi

ratio

n 1

293

gt20

Men

zies

[39

40]

19

101

927

isot

enis

cope

4639

5-70

80

5M

illar

[71]

19

27

isot

enis

cope

6

468-

614

2 M

orle

y [7

2]

1904

tra

nspi

ratio

n 6

289-

343

varie

s fro

m 8

to gt

20

Mur

gule

scu

[73]

19

66

quas

i-sta

tic

9 30

1-54

9 3

Neu

man

n [7

4]

1932

to

rsio

n ba

lanc

e 19

29

0-34

4 6

Pedd

er [7

5]

1933

tra

nspi

ratio

n 3

559-

573

2 Pf

aund

ler [

76]

1897

ga

s sat

urat

ion

3 28

8-37

2 12

Po

inde

xter

[77]

19

25

ioni

zatio

n ga

ge

17

235-

293

5-20

gre

ates

t at l

owes

t T

Raa

be [7

8]

2003

co

mpu

ter s

imul

atio

n 20

40

8-15

75

varie

s fro

m 0

5 to

gt20

R

amsa

y [3

6]

1886

is

oten

isco

pe

13

495-

721

varie

s fro

m 0

3 to

10

at h

ighe

st T

R

egna

ult [

33]

1862

is

oten

isco

pe

29

297-

785

~6 fo

r Tgt4

00 m

uch

high

er fo

r low

er T

R

odeb

ush

[79]

19

25

quas

i-sta

tic

7 44

4-47

6 1

Roe

der [

80]

1956

qu

artz

spira

l man

omet

er

7 41

3-61

4 2

Ruf

f [81

] 19

19

tem

pera

ture

scan

ning

ev

apor

atio

n m

etho

d 12

478-

630

gt20

Schm

ahl [

82]

1965

st

atic

met

hod

43

412-

640

15

Schn

eide

r [83

] 19

44

gas s

atur

atio

n 23

48

4-57

5 10

Sc

houmlnh

err

[84]

19

81el

ectri

cal c

ondu

ctiv

ity13

1052

-173

53

Scot

t [85

] 19

24

vibr

atin

g qu

artz

fila

men

t 1

293

2 Sh

pilrsquor

ain

[86]

19

71

ebul

liom

eter

50

55

4-88

3 0

6 to

08

Sped

ding

[87]

19

55is

oten

isco

pe13

534-

630

003

Stoc

k [8

8]

1929

tra

nspi

ratio

n 3

253-

283

20

Suga

war

a [9

] 19

62

stat

ic m

etho

d 14

60

2-93

0 2

van

der P

laat

s [89

] 18

86

trans

pira

tion

26

273-

358

V

illie

rs [9

0]

1913

eb

ullio

met

er

12

333-

373

6 V

olm

er [9

1]

1925

ef

fusi

on

10

303-

313

3 vo

n H

alba

n [9

2]

1935

re

sona

nce

light

abs

orpt

ion

1

255

7 Y

oung

[93]

18

91

stat

ic

11

457-

718

2

Excl

udes

poi

nts b

elow

the

tripl

e po

int

7

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 11: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

The Knudsen effusion method is a type of vapor pressure measurement classified as a

dynamic method In this type of experiment a steady rate of evaporation through an orifice

into a vacuum is established and pressure is calculated from the flow rate through the orifice

by use of kinetic theory This method is applicable at very low pressures (below 01 kPa) but

generally has high uncertainties

As indicated in Table 1 many measurements have been made on the vapor pressure

of mercury However only a limited number of these are comprehensive and have

uncertainty levels of one percent or less These sets have been identified as primary data sets

in our work and are indicated by boldface type in Table 1 In general the most accurate

measurements were those made with ebulliometric methods Ambrose and Sprake [18] used

an ebulliometric technique for their measurements from 380 K to 771 K These data have an

uncertainty of about 003 or lower with the largest uncertainty at the lowest temperatures

Beattie et al [28] very accurately determined the boiling point of mercury over the

temperature range 623 K to 636 K Spedding and Dye [87] used an isoteniscope to measure

the vapor pressure over the range 534 K to 630 K with uncertainties on the order of 003

except at the lowest temperatures where they are larger Menzies [40 94] used an

isoteniscope at temperatures from 395 K to 708 K but these data show more scatter and have

larger uncertainties than the sets mentioned above however the uncertainties are still less

than 05 Shpilrsquorain and Nikanorov [86] used an ebulliometric method extending from 554

K to 883 K Their data are more consistent with the measurements of Ambrose and Sprake

[18] in their region of overlap than are other high temperature sets such as those by

Sugawara et al [9] Bernhardt [41] or Cailletet et al [45] and thus were selected as the

primary data for the high temperature region from about 700 K to 900 K In addition

although the uncertainty is higher than 1 we have selected the data of Schoumlnherr and

Hensel [84] for the highest temperature region 1052 K to 1735 K This data set was obtained

by observing changes in the electrical conductivity At fixed pressures the temperature was

raised and when a discontinuity was observed this was taken as an indication of phase

change

All of the sets mentioned so far are for temperatures greater than 380 K At lower

temperatures the measurements are much more uncertain and display significant scatter In

the low temperature range we considered the measurements of Ernsberger and Pitman [54]

8

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 12: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

to be the most accurate These measurements were made with an absolute manometer

method with uncertainties on the order of 1 and they cover the temperature range 285 K

to 327 K This data set has been adopted in the metrology community for use in precision

manometry and has been described as reliable and confirmed by heat capacity measurements

[95] The reliability and thermodynamic consistency of these data will be discussed in more

detail in a later section of this document

The end points of the vapor pressure curve for stable vapor-liquid equilibrium are the

triple point and the critical point Metastable points may be obtained at points below the

triple point In principle the three phase-boundary curves that meet at the gas-liquid-solid

triple point of a pure substance continue beyond this intersection so that the phase equilibria

become metastable relative to the third phase which is absolutely stable Vapor-liquid

equilibrium along the vapor pressure curve continued below the triple point becomes

metastable relative to the solid phase and vapor-solid equilibrium along the sublimation

pressure curve continued above the triple point becomes metastable relative to the liquid

phase Although the former has been realized in experiments [96] metastable phase

equilibria are one of the least investigated phenomena of the behavior of matter Their

existence in principle is mentioned here because three datasets in the present collection

report mercury vapor pressure data at temperatures below the triple point Poindexter [77]

Stock and Zimmermann [88] and von Halban [92] The farthest reaching data below the

triple point temperature are the results of Poindexter covering a range from 194 K to 293 K

However in this work we restrict our study to points above the triple point although all

points are tabulated in Appendix A

The triple point of mercury has been designated as a fixed point of the ITS-90 [30]

temperature scale with a value of 2343156 K The critical point has been measured by

several investigators these values are listed in Table 2 along with uncertainty estimates

provided by the authors One of the first measurements of the critical point was made by

Koenigsberger [97] in 1912 who made visual observations in a quartz tube and reported the

critical temperature of mercury to be near 1270 degC (1543 K) This measurement was later

criticized by Menzies [94] who reported that the critical temperature was at least 1275 degC

(1548 K) Another early determination was that of Bernhardt [41] who extrapolated his vapor

pressure observations and used Benderrsquos [98] value of 1650 degC (1923 K) for the critical

9

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 13: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

temperature while estimating the critical pressure to be in the range 2942 to 3432 MPa

Later Birch [99] determined the critical point by observing the changes in electrical

resistance as a function of temperature at constant pressure The review paper of Mathews

[100] adopted Birchrsquos values for the critical point Ambrose [101] and also Vargaftik et al

[8] instead selected the value obtained by Franck and Hensel [102] also obtained from

studies of changes in electrical resistance Kikoin and Senchenkov [103] used electrical

conductivity experiments to locate the critical point Neale and Cusack [104] observed

changes in the Seebeck voltage while Goumltzlaff [13] analyzed isochoric and isobaric PVT

data extrapolated to the saturation boundary Most recently Kozhevnikov et al [105]

observed changes in the speed of sound along isobars as a function of temperature to

determine the critical point The value by Bernhardt [41] is too high both in pressure and in

temperature The critical temperature of Franck and Hensel [102] agrees very well with that

obtained by Kozhevnikov et al [105] while the critical pressure of Goumltzlaff [13] agrees very

well with that of Kozhevnikov et al [105] In this work we adopted the critical point of

Kozhevnikov et al [105]

Table 2 The critical temperature and pressure of mercury

First Author Year Tc (K) pc (MPa) Koenigsberger [97] 1912 ~1543 Menzies [94] 1913 gt1548 Bender [98] 1915 1923 Meyer [106] 1921 1747 Bernhardt [41] 1925 1923 2942 - 3432 Birch [99] 1932 1733 plusmn 20 161 plusmn 5 Franck [59 102] 1966 176315 plusmn 15 151 plusmn 3 Kikoin [103] 1967 1753 plusmn 10 152 plusmn 1 Neale [104] 1979 1768 plusmn 8 1675 plusmn 25 Hubbard [107] 1983 1750 172 Goumltzlaff [13] 1988 1751 plusmn 1 1673 plusmn 02 Kozhevnikov [105] 1996 1764 plusmn 1 167 plusmn 3

Uncertainties are expressed in kelvins and megapascals for the temperature and pressure respectively

10

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 14: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

3 Correlation Development

Numerous expressions have been used to represent the vapor pressure of a pure fluid

many are reviewed in Růžička and Majer [108] Equations of the general form

2( ) ( ) i

c c ii

ln p p T T aτ= sum (1)

where τ = 1-TTc are attributed to Wagner [109-112] and have been used successfully to

represent the vapor pressures of a wide variety of fluids Lemmon and Goodwin [113] used

the Wagner form with exponents (1 15 25 and 5) to represent the vapor pressures of

normal alkanes up to C36 This form which we will call Wagner 25-5 is one of the most

widely used forms along with the equation with exponents (1 15 3 and 6) [109 110]

which we call Wagner 3-6 The 25-5 form has emerged as the generally preferred form

[114] When the data set is extensive and of high quality other forms with alternative sets of

exponents with additional terms have been used For example a Wagner equation with

exponents (1 15 2 25 and 55) was used to represent the vapor pressure of acetonitrile

[115] and another variant of the Wagner equation with exponents (1 189 2 3 and 36)

was used to represent the vapor pressure of heavy water [116] from the triple point to the

critical point to within the experimental scatter of the measurements The International

Association for the Properties of Water and Steam (IAPWS) formulation for the vapor

pressure of water [117 118] uses a six-term Wagner equation with exponents of (1 15 3

35 4 and 75)

Since there is a lack of high-quality experimental vapor-pressure data in the low

temperature region (T lt 285 K) liquid heat capacity measurements at low temperatures can

be used to supplement the vapor-pressure data [108 114 119] This permits the

simultaneous regression of heat capacity and vapor-pressure data to determine the

coefficients of a vapor pressure equation that is valid down to the triple point An alternative

method is to use an expression involving enthalpies of vaporization in addition to vapor-

pressure data [120] Both of these approaches can be used to ensure that the vapor pressure is

thermodynamically consistent with other thermodynamic data

King and Al-Najjar [119] related heat capacity and vapor pressure using

11

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 15: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

02 ln L

p psat C C Gd pd TdT dT R

minus minus⎛ ⎞ =⎜ ⎟⎝ ⎠

(2)

K) psat is the vapor

ressure and G represents vapor phase nonidealities and is given by

where Cpdeg and CpL are the heat capacities at constant pressure of the ideal gas and the

saturated liquid R is the molar gas constant [121] R=8314 472 J(mol

p

( )22

2 22 sat satLsat L

dp d pdVd B dBG T p B VdT dT dT dT dT

⎛ ⎞⎛ ⎞= + minus + minus⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(3)

l

rence in

n of eq

of

above The smoothed heat capacity data from these two sources are listed in

In this expression B is the second virial coefficient and VL is the molar volume of the liquid

We restrict the use of this equation to temperatures lower than 270 K where vapor pressures

are on the order of 10-5 kPa In this region we treat the gas phase as ideal so that the G term

may be neglected (For example we applied equations in Douglas et al [51] for the viria

coefficients liquid volumes heat capacities vapor pressures and their derivatives and

estimated that the magnitude of the term G at 270 K relative to the heat capacity diffe

eq (2) is on the order 10-4 ) Assuming that mercury can be considered as an ideal

monatomic gas for these low pressures the ideal gas heat capacity for mercury is Cpdeg = 5R2

[122] With these assumptions after the derivatives of the vapor pressure in eq (2) are taken

analytically incorporating the specific form of the vapor pressure correlation functio

(1) one obtains the simple expression (5R2 minus CpL)R = (TTc)Σai(i2)(i2 minus 1)ti2-1

Busey and Giauque [44] measured the heat capacity Cp of mercury from 15 to 330 K

with estimated uncertainties of 01 Amitin et al [123] also measured the heat capacity

mercury at temperatures from 5 K to 300 K with an estimated uncertainty of 1 The

smoothed data over the temperature range 234 K to 270 K from these two sources were

identified as primary data for use in the regression in addition to the primary vapor pressure

data discussed

Appendix B

For our analysis of both psat and Cp experimental data all temperatures were first

converted to the ITS-90 scale Data taken prior to 1927 were converted to ITS-90 assuming

12

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 16: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

that the older data were on the International Temperature Scale of 1927 although we realize

this introduces additional uncertainties Except for the data of Menzies [40] all primary data

were measured after 1927 The temperatures of the data of Menzies were first converted to

the 1948 temperature scale

by use of the procedure given by Douglas et al [51] and then

iple

t

e

t the

g the

tive

its were considered outliers and were not included in the statistics and final

were converted to ITS-90

We regressed the primary data set to three different Wagner-type expressions the 3-

6 the 25-5 and a variable exponent expression where the exponents were selected from a

bank of terms by use of a simulated annealing procedure [124 125] Simulated annealing is

an optimization technique that can be used in complex problems where there may be mult

local minima It is a combinatorial method that does not require derivatives and does no

depend upon ldquotraveling downhillrdquo it also is relatively easy to implement An example

program using the simulated annealing to solve the Traveling Salesman Problem is given in

the book by Press et al [125] In this work the search space contained a bank of terms where

the bank contained exponents with powers of τ in increments of 05 with terms up to τ12 W

followed the recommendation of Harvey and Lemmon [116] and required the equation to

contain terms of order 1 189 and 2 based on theoretical considerations on the behavior

near the critical point The simulated annealing algorithm was used to determine the optimal

terms from the bank of terms We implemented a Lundy and Mees [126] annealing schedule

similar to that of earlier work [127] During the regression one can treat the critical pressure

as a variable to be determined in the regression or it can be fixed Due to concerns abou

quality and amount of experimental data in the temperature range 930 K to 1764 K we

adopted the critical point of Kozhevnikov et al [105] rather than determining it by fitting

experimental data The minimization was done with orthogonal distance regression usin

NIST statistical package ODRPACK [128] For the regression the data were weighted

according to their estimated uncertainty (u) with weights of 1u2 In addition the vapor

pressure data were given a relative weight factor of one and the heat capacity data a rela

weight factor of 002 Points that deviated by more than three standard deviations from

preliminary f

regression

The 25-5 form of the Wagner equation provided a better fit of the primary data set

than the 30-6 form further improvement resulted from the use of the simulated annealing

13

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 17: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

algorithm Upon closer inspection we noted that although one could reasonably reproduce

the numerical value of the heat capacity it was not possible to reproduce well the slope o

the saturated liquid heat capacity near the triple point without degrading the fit in other

regions We note that the liquid heat capacity at saturation of mercury as a function of

temperature displays an interesting behaviormdasha distinct minimum in the curve is observed

below the normal boiling point as shown in Figure 2 Douglas et al [51] noted that other

liquid metals such as sodium and potassium also exhibit this behavior Among nonmetals we

observe that water displays this feature however it is not observed in simple hydrocarb

such as linear alkanes In order to simultaneously fit the vapor pressure and liquid heat

capacity data and have the correct behavior of the slope of the heat capacity as a fun

temperature along the saturation boundary we increased the number of terms in the

regression

f

ons

ction of

from 5 to 6 and used the simulated annealing algorithm to obtain our final

quation

e

( )189 2 8 85 91 2 3 4 5 6( ) ( )c cln p p T T a a a a a aτ τ τ τ τ τ= + + + + + (4)

d

r

21] R

= 8314 472 J(molK) and the relative atomic mass [129] of mercury 20059 gmol

The regressed coefficients and their standard deviations are given in Table 3a and fixe

parameters for eq (4) are given in Table 3b Table 4 gives sample values of the vapo

pressure calculated from eq (4) over the temperature range 27315 to 33315 K For

validation of computer code more digits than are statistically meaningful are given For the

calibration community we also have included in Table 4 the density of saturated mercury

vapor in moles per liter and nanograms per milliliter obtained assuming the ideal gas law

applies ρ = p(RT) We use the currently accepted values of the molar gas constant [1

14

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 18: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

270

272

274

276

278

280

282

284

286

288

200 300 400 500 600 700 800

Temperature K

Cp

J(m

olmiddotK

)

Busey Giauque 1953

Amitin et al 1979

Triple point

Normal boiling point

Figure 2 Temperature dependence of the heat capacity of saturated liquid mercury

15

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 19: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Table 3a Fitted values of the parameters in eq (4) and their standard deviations

i ai Std dev 1 - 4576 183 68 00472 2 -1407 262 77 08448 3 2362 635 41 08204 4 -31088 998 5 13439 5 58018 395 9 24999 6 -27630 454 6 11798

Table 3b Fixed parameters in eq (4)

Tc (K) pc (MPa)

1764 167

16

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 20: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Tabl

e 4

Vap

or p

ress

ure

of m

ercu

ry c

alcu

late

d w

ith e

q (4

) fro

m 2

73 K

to 3

33 K

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

T K

t

degC

p M

Pa

Idea

l gas

de

nsity

dagger mol

L

Idea

l gas

de

nsity

dagger ng

mL

273

15

0

269

88291

0-81

1883

371

0-82

3836

8430

415

314

2590

451

0-71

6841

851

0-733

783

0627

415

12

9793

921

0-81

3070

881

0-82

6218

8730

515

324

6114

951

0-71

8175

811

0-736

458

8527

515

23

2867

201

0-81

4366

751

0-82

8818

2630

615

334

9904

731

0-71

9605

271

0-739

326

2027

615

33

6231

291

0-81

5779

901

0-83

1652

8930

715

345

3977

701

0-72

1136

311

0-742

397

3227

715

43

9911

181

0-81

7319

891

0-83

4741

9630

815

355

8352

831

0-72

2775

351

0-745

685

0827

815

54

3933

761

0-81

8996

981

0-83

8106

0530

915

366

3050

241

0-72

4529

171

0-749

203

0527

915

64

8327

951

0-82

0822

171

0-84

1767

2031

015

376

8091

171

0-72

6404

891

0-752

965

5628

015

75

3124

871

0-82

2807

231

0-84

5749

0331

115

387

3498

131

0-72

8410

041

0-756

987

7028

115

85

8357

981

0-82

4964

771

0-85

0076

8231

215

397

9294

931

0-73

0552

551

0-761

285

3528

215

96

4063

191

0-82

7308

251

0-85

4777

6231

315

408

5506

711

0-73

2840

751

0-765

875

2728

315

107

0279

071

0-82

9852

091

0-85

9880

3131

415

419

2160

051

0-73

5283

441

0-770

775

0628

415

117

7046

981

0-83

2611

691

0-86

5415

7931

515

429

9283

021

0-73

7889

861

0-776

003

2728

515

128

4411

281

0-83

5603

481

0-87

1417

0231

615

431

0690

521

0-64

0669

721

0-781

579

3928

615

139

2419

501

0-83

8845

011

0-87

7919

2031

715

441

1505

801

0-64

3633

241

0-787

523

9128

715

141

0112

251

0-74

2354

981

0-88

4959

8631

815

451

2377

431

0-64

6791

161

0-793

858

3828

815

151

1057

491

0-74

6153

341

0-89

2578

9931

915

461

3308

881

0-65

0154

751

0-710

060

5428

915

161

2083

481

0-75

0261

351

0-810

081

9232

015

471

4303

831

0-65

3735

851

0-710

778

8829

015

171

3196

461

0-75

4701

611

0-810

972

6032

115

481

5366

131

0-65

7546

901

0-711

543

3329

115

181

4403

081

0-75

9498

221

0-811

934

7532

215

491

6499

851

0-66

1600

931

0-712

356

5329

215

191

5710

461

0-76

4676

781

0-812

973

5232

315

501

7709

281

0-66

5911

621

0-713

221

2129

315

201

7126

191

0-77

0264

521

0-814

094

3632

415

511

8998

901

0-67

0493

291

0-714

140

2529

415

211

8658

351

0-77

6290

361

0-815

303

0832

515

522

0373

471

0-67

5360

971

0-715

116

6629

515

222

0315

581

0-78

2785

021

0-816

605

8532

615

532

1837

951

0-68

0530

401

0-716

153

5929

615

232

2107

081

0-78

9781

121

0-818

009

1932

715

542

3397

601

0-68

6018

061

0-717

254

3629

715

242

4042

651

0-79

7313

231

0-819

520

0632

815

552

5057

891

0-69

1841

181

0-718

422

4229

815

252

6132

711

0-71

0541

801

0-721

145

8132

915

562

6824

621

0-69

8017

831

0-719

661

4029

915

262

8388

371

0-71

1413

441

0-722

894

2333

015

572

8703

851

0-61

0456

691

0-620

975

0730

015

273

0821

411

0-71

2350

361

0-724

773

5833

115

583

0701

931

0-61

1150

811

0-622

367

4030

115

283

3444

401

0-71

3356

911

0-726

792

6233

215

593

2825

551

0-61

1886

201

0-623

842

5330

215

293

6270

661

0-71

4437

701

0-728

960

5933

315

603

5081

701

0-61

2665

031

0-625

404

7830

315

303

9314

331

0-71

5597

631

0-731

287

29

dagger A

ssum

es id

eal g

as la

w a

pplie

s

17

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 21: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

4 Comparison with Experimental Data

For the 294 vapor pressure points in the primary data set the average absolute

deviation is 014 the bias is minus0028 and the root mean square deviation is 035

where we use the definitions AAD = (100n)Σabs(picalc pi

expt minus 1) BIAS = (100n)

Σ(picalc pi

expt minus 1) and RMS2 = (100n)( Σ(picalc pi

expt minus 1)2 minus ((100n) Σ(picalc pi

expt minus 1))2

where n is the number of points The AAD and RMS for the primary data are given in

Table 5 The normal boiling point calculated by this equation is 6297705 K

Figure 3 compares the primary data set with our correlation eq (4) The data of

Ernsberger and Pitman [54] display substantial scatter but the results are within their

estimated experimental uncertainty of 1 The data of Shpilrsquorain and Nikanorov [86]

also display a fairly high scatter but again it is within their uncertainty estimate (06

to 08 ) The very accurate measurements of Beattie et al [28] are in the vicinity of the

normal boiling point and the correlation eq (4) indicates an uncertainty of 002 at a

coverage factor of 2 The measurements of Spedding and Dye [87] and those of Ambrose

and Sprake [18] also are represented well by our correlation although the lowest

temperature points display larger scatter than at higher temperatures The measurements

of Menzies [39 40] are also represented to within their estimated uncertainty The

highest temperature data of Schoumlnherr and Hensel [84] are represented with an AAD of 1

and a standard deviation of 14 several points are outside of the range of the plot

and are not shown The correlation is valid to the critical point at 1764 K but does not

account for a metal-nonmetal transition [63] in mercury at approximately 1360 K that

results in a change of slope in the vapor pressure curve

18

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 22: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Table 5 Summary of comparisons of the correlation with the primary data for the vapor

pressure of mercury

First author No pts

T range K

Estimated uncertainty AAD

RMS

Ambrose [18] 113 417-771 less than 003 greatest at lowest T 002 006 Beattie [28] 42 623-636 003 001 001 Ernsberger [54] 18 285-327 1 033 035 Menzies [39 40] 46 395-708 05 014 020 Schoumlnherr [84] 13 1052-

1735 3 106 142

Shpilrsquorain [86] 50 554-883 06-08 025 029 Spedding [87] 13 534-630 003 005 006

Two outliers at 380 K and 400 K were not included in statistics One outlier at 395 K was not included in statistics

-1

-08

-06

-04

-02

0

02

04

06

08

1

200 700 1200 1700Temperature K

100

[(p-p

eq(4

))p

]

Ambrose Sprake 1972 Spedding Dye 1955

Shpilrain Nikanorov 1971 Menzies 19101927

Beattie et al 1937 Ernsberger Pitman 1955

Schoumlnherr Hensel 1981

Figure 3 Deviations between the correlation given in eq (4) and the primary data set

19

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 23: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Figure 4 compares selected data not used in the regression (secondary data) with

the correlation eq (4) and Table 6 summarizes comparisons with all secondary data It is

interesting to note that the behavior of the correlation at low temperatures falls in

between the values of Douglas et al [51] and those of Busey and Giauque [44] Both of

these sets were not obtained from direct vapor pressure measurements but rather were

calculated based upon caloric measurements combined with vapor pressure data at higher

temperatures The data of Schmahl et al [82] cover a range of temperature from 412 to

640 K and are in good agreement with the correlation The measurements of Burlingame

[43] and of Dauphinee [4950] were made by use of a transpiration technique with

uncertainties on the order of 4 to 5 and the correlation represents them within this

range of deviations Figure 4 also displays considerably more scatter at both the high and

low temperature ends of the plot

-10

-8

-6

-4

-2

0

2

4

6

8

10

200 400 600 800 1000Temperature K

100

[(p-p

eq(4

))p

]

Douglas et al 1951 Burlingame 1968Busey Giauque 1953 Dauphinee 1951Murgulescu Topor 1966 Schmahl et al 1965Sugawara et al 1962 Volmer Kirchoff 1925Roeder Morawietz 1956 Hildenbrand et al 1964Cailletet et al 1897 Rodebush Dixon 1925Egerton 1917 Poindexter 1925

Figure 4 Deviations between the correlation given in eq (4) and selected secondary data

20

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 24: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Table 6 Summary of comparisons of the correlation given in eq (4) with secondary data

for the vapor pressure of mercury

First author No pts T range K

Estimated uncertainty

AAD RMS

Bernhardt [41] 27 694-1706 varies from 2 to gt15 1413 1726 Bessel-Hagen [42] 2 273-293 gt20 9612 250 Burlingame [43] 38 344-409 4 144 192 Busey [44] 24 234-750 varies from 02 to 35 at lowest T 090 103 Cailletet [45] 11 673-1154 varies from 1 to7 397 226 Callendar [46] 2 630 02 017 014 Cammenga [47] graphical results 273-325 Carlson [48] 9 299-549 varies from 3 to gt20 1974 1683 Dauphinee [49 50] 18 305-455 5 214 294 Douglas [51] 30 234-773 var from 003 (at normal boiling

point) to 15 at lowest T 045 054

Durrans [52] 19 290-344 463 306 Egerton [53] 27 289-309 5 699 234 Galchenko [55] graphical results 523-723 3 na na Gebhardt [57] 9 403-483 8 334 403 Haber [37] 1 293 2 184 na Hagen [58] 5 273-473 gt20 5102 5744 Hensel [59] graphical results 1073-critical na na na Hertz [35] 9 363-480 5 450 194 Heycock [60] 1 630 02 021 Na Hildenbrand [61] 6 295-332 5 276 316 Hill [62] 19 272-308 30 2940 438 Hubbard [63] graphical results 742-1271 na na na Jenkins [64] 21 479-671 varies from 01 to gt20 508 567 Kahlbaum [65] 43 393-493 gt10 889 947 Knudsen [66] 10 273-324 varies from 5 to 10 736 167 Knudsen [67] 7 263-298 varies from 5 to 10 712 764 Kordes [68] 2 630-632 4 259 184 Mayer [69] 82 261-298 5 except greater at Tlt270 672 886 McLeod [70] 1 293 gt20 7765 na Millar [71] 6 468-614 2 127 184 Morley [72] 6 289-343 varies from 8 to gt20 1758 1182 Murgulescu [73] 9 301-549 3 141 156 Neumann [74] 19 290-344 6 463 306 Pedder [75] 3 559-573 2 114 094 Pfaundler [76] 3 288-372 12 806 576 Poindexter [77] 17 235-293 gt5-20 greatest at lowest T 2823 2919 Ramsay [36] 13 495-721 varies from 03 to 10 at highest T 323 302 Regnault [33] 29 297-785 ~6 for Tgt400 much higher for

lower T 2474 3403

Rodebush [79] 7 444-476 1 053 054

21

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 25: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Table 6 Continued

First author No pts T range K

Estimated uncertainty

AAD RMS

Roeder [80] 7 413-614 2 100 111 Ruff [81] 12 478-630 gt20 2249 2578 Schmahl [82] 43 412-640 15 070 071 Schneider [83] 23 484-575 10 404 502 Scott [85] 1 293 2 111 na Stock [88] 3 253-283 20 1505 1680 Sugawara [9] 14 602-930 2 115 095 van der Plaats [89] 26 273-358 8665 2303 Villiers [90] 12 333-373 6 476 324 Volmer [91] 10 303-313 3 157 113 von Halban [92] 2 220-255 7 815 221 Young [93] 11 457-718 2 140 130

One outlier at 2886 K was not included in statistics na not applicable

22

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 26: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

5 Comparisons with Correlations from the Literature

Figures 5a and 5b compare correlations and tables for the vapor pressure of

mercury in different temperature regions obtained in the literature In these figures we

define percent deviation as 100(peq4-pcorr)peq4 where pcorr is the vapor pressure from

correlations in the literature and peq4 is that obtained from eq (4) We also show the

estimated uncertainty band of the new correlation eq (4) by a heavy black line The

existing correlations in the literature agree well with each other and with the new

correlation in the intermediate temperature region from about 400 K to the normal boiling

point In this region there is a fair number of high quality experimental data At low

temperatures the existing correlations differ from each other and some differ from the

new correlation As mentioned earlier there is a paucity of high quality direct vapor-

pressure measurements in this region and we feel that simultaneously using low

temperature heat capacity data allows our new correlation to display the proper behavior

in the low temperature region We also had access to newer data that some of the earlier

correlations did not include For example the Langersquos Handbook correlation [130] is

based upon the International Critical Tables of 1928 [131] while the most recent CRC

Handbook [132] values are based upon Vargaftik et al [8] which itself is based upon the

1972 book of Vukalovich and Fokin [4] Some earlier editions of the CRC Handbook (for

example the 57th Ed 1976-1977 p D-182) used the values from the International

Critical Tables of 1928 [131] Few correlations are applicable for higher temperatures

The maximum temperature limit of the Korea Thermophysical Properties Databank

correlation KDB [133] is given as 65415 K The maximum of the PTB equation [22] is

930 K these correlations should not be extrapolated outside of their given ranges At the

highest temperatures there are considerable differences among the various correlations

however there is also a lack of experimental measurements in this region The de Kruif

correlation [20 21] does not specifically state the temperature limits of the correlation

but the very thorough literature survey in the thesis [20] indicates that the only high

temperature data used in their work were those of Bernhardt [41] and Cailletet et al [45]

and they did not have access to the more recent measurements of Shpilrsquorain and

Nikanorov [86] Sugawara et al [9] or Schoumlnherr and Hensel [84] Langersquos Handbook

[130] includes a note in their table identifying 900 degC as the critical point this model

23

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 27: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

deviates substantially from the other correlations at high temperatures The DIPPR [134]

and Yaws [135] correlations appear indistinguishable on the plot and both have adopted

a critical point of 1735 K and 1608 MPa Our correlation agrees very well with these

correlations up to about 1500 K where the differences are probably due to the critical

point adopted in the correlations Also the correlation of Schmutzler (as presented in

Goumltzlaff [13]) adopts a different critical point from the selection here it uses Tc = 1751 K

and pc = 1673 MPa We note that the tabulated values in the book by Hensel and Warren

[7] appear to have been generated from the Schmutzler [13] correlation

-10

-8

-6

-4

-2

0

2

4

6

8

200 250 300 350 400 450 500 550 600

Temperature K

100

[(p-p

eq(4

))p

eq(4

)]

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Triple point

Figure 5a Comparison of the new correlation eq (4) with previous compilations and

correlations in the low temperature region up to 600 K The uncertainty band for eq (4) is

indicated by a heavy black solid line

24

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 28: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

4

0(4)]

-10

-8

-6

-4

-2

600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

Temperature K

100

[(p-p

eq(4

)

2

)peq

de Kruif

KDB

CRC

DIPPRYaws

Langes

Schmutzler

PTB

Normal boiling point

Critical point

Figure 5b Comparison of the new correlation eq (4) with previous compilations and

correlations in the high temperature region from 600 K to the critical temperature The

uncertainty band for eq (4) is indicated by a heavy black solid line

6 Detailed Comparisons for the Temperature Range 0 degC to 60 degC

The temperature range from 0 degC to 60 degC is of particular interest for this pro

Unfortunately in this region there are very few vapor pr

ject

essure data of high accuracy Our

e Figure

ta

approach as detailed above was to identify the data sets of highest quality and

supplement the vapor pressure data with low-temperature heat capacity data to improve

the behavior of the correlation at low temperatures and to ensure thermodynamic

consistency The data of Ernsberger and Pitman [54] are the only direct vapor pressure

measurements of low uncertainty (1 ) available in this region and were the only low-

temperature vapor pressure data used in the regression Figure 6a shows the deviations of

all data with estimated uncertainties of 3 or less in this temperature range whil

6b shows comparisons with all sets with estimated uncertainties of 6 or less The da

25

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 29: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

of both Busey and Giauque [44] and Douglas Ball and Ginnings [51] were not direct

measurements but rather were values obtained from their analysis of heat capacity dat

Our correlation does not agree with these sets to within their estimated uncertainties

neither do

a

the sets agree with each other to within these uncertainties The single data

point of Scott [85] at 293 K determined with a quartz fiber manometer with an estimated

timated

uncertainty and are represented well by the correlation

Figure 7 compares correlations in the literature with eq (4) for the temperature

range 273 K to 333 K (0 degC to 60 degC) There are four correlations that agree with eq (4)

to within our estimated uncertainty of 1 those by de Kruif [20 21] DIPPR [134]

Yaws [135] and Mukhachev et al [16] Yaws [135] does not state the uncertainty of his

equation however the DIPPR [134] equation reports an estimated uncertainty of less than

3 and the two correlations are almost indistinguishable from one another The DIPPR

correlation was developed by fitting vapor pressure data with a primary data set

consisting of 54 experimental points from Ambrose and Sprake [18] for temperatures

from 426 K to 771 K nine smoothed points from the correlation of Stull [11] for 399 K

to 596 K and 81 points from the tables in Vargaftik [136] for temperatures 273 K to

1073 K [137] The correlation of de Kruif [20 21] was developed by use of the method

uncertainty of 2 is represented by our correlation within this margin The

measurements of Volmer and Kirchoff [91] have a slightly higher (3 ) es

of Clark

26

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 30: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

-6

-2

0

2

4

6

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))eq

(4)]

-4

p

Douglas 1951Ernsberger 1955Busey 1953Volmer 1925Scott 1924

Figure 6a Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 3 or less

-20

-15

-10

-5

0

273 283 293 303 313 323 333Temperature K

100

[(p-p

eq(4

))

5peq

(4)

10

15

20

]

Douglas 1951Ernsberger1955Busey 1953Hildenbrand 1964Mayer 1930Volmer 1925Scott 1924Neumann 1932Knudsen 1909Knudsen 1910Poindexter 1925

Figure 6b Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with experimental data with estimated uncertainties of 6 or less

27

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 31: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

-10

-8

-6

-4

-2

0

2

4

6

100

[(p-p

eq(

))p

eq(4

)]

273 283 293 303 313 323 333Temperature K

4

CRC 2004 edition

de Kruif 1971

Yaws 1999

KDB 2005

Langes ICT 1928

Goumltzlaff 1988

PTB 1995

DIPPR 2004

Mukhachev 1965

ASTM D6350

Figure 7 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with correlations from the literature

and Glew [138] that in addition to vapor pressure data used supplementary data such as

heat capacities Gibbs free energies of vaporization and enthalpies of vaporization to

develop the correlation The curve from the CRC Handbook 85th Edition is based on

that of Vargaftik et al [8] which itself is based upon Vukalovich and Fokin [4] The

Vukalovich and Fokin [4] source lists the data used in the development of the equation

and apparently they were unaware of the data of Ernsberger and Pitman [54] As

mentioned earlier Ernsberger and Pitman [54] give an estimated uncertainty of 1 for

s

al

oiling point of mercury The KDB correlation [133] is presented only as a set of

their measurements and they seem to be the most reliable vapor pressure measurement

in the 0 degC to 60 degC range The Mukhachev et al [16] correlation was developed from

caloric data such as heat of vaporization and heat capacities along with the norm

b

28

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 32: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

coefficients with a range of applicability and we do not know the data used in its

development it is consistently lower than our correlation The PTB curve [22] with a

reported maximum uncertainty of 4 is very different in shape from all the others

investigated This analysis did not incorporate caloric data and the experimental data in

the 0 degC to 60 degC range that were used in the regression were those of Poindexter [77]

and Neumann and Voumllker [74] The equation recommended in the ASTM Standard

D6350 [139] is presented in terms of a concentration in nanograms per milliliter We

converted the expression to vapor pressure by applying the ideal gas law and using

relative molar mass [129] of 20059 and gas constant [121] R = 8314472 J(molK) It

agrees well with the values from Langersquos Handbook [130] The curve from Langersquos

Handbook [130] deviates the most from our correlation approaching 10 at 273 K and

gives vapor pressures that are lower than all the other correlations The curve in Langersquos

Handbook [130] is based upon the 1928 International Critical Tables (ICT) [131] and w

developed with only the limited data and computational methods available at that time

Since it has been used extensively in handbooks and in industrial standards

further discussion of the 1928 International Critical Tables is warranted A total of 28

references are given for the 1928 International Critical Tables with the most recent date

1926 In addition some of these references are not original data but rather analysis of

literature data [17 140-143] and only 8 of the references [53 66 67 72 76 77 85 90]

contain data in the range 273 K to 333 K Details are not given concerning how the data

were weighted or the uncertainties of the numbers presented and it is difficult to know

the exact procedure used to obtain the values in the table However it was not

uncommon prior to the widespread use of computers to employ graphical methods For

example Stull [11] in 1947 states ldquothe analytical meth

a

as

d

odwas based on semilogarithmic

es

charts measuring 30 times 42 inches (where 1 mm = 1deg C) and colored map tacks

representing the plotted points over which a taut thread was stretchedrdquo Comparisons

with the data cited in the International Critical Tables (Figure 8) indicate that the valu

of the 1928 International Critical Tables (ICT) [131] in the range 0 degC to 60 degC are in

closest agreement with the 1909 data of Knudsen [66] Figure 8 shows the percent

deviations from eq (4) for all of the data cited in the 1928 ICT the ICT values [131] and

the data of Ernsberger and Pitman [54] The 1955 data of Ernsberger and Pitman [54]

29

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 33: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

were not available to the authors of the ICT Table however it is the primary data

we used in the low temperature region In addition Ernsberger and Pitman [54] noted

that although the ICT tables are given to four significant figures the uncertainty

probably 5 to 10 due to the uncertainties in the measurements upon which the ICT

table for mercury is based Further discussion on the Knudsen [66] data follows

appears that the ICT tables agree most closely with this particular data set

source

is

since it

-20

-10

0

10

20

30

40

50

60

270 280 290 300 310 320 330Temperature K

100

[(p-p

eq(4

))eq

(4)]

p

ICT 1928Egerton 1917Haber 1914Hill 1922Knudsen 1910Knudsen 1909Morley 1904Pfaundler 1897Poindexter 1925Scott 1924Villiers 1913Ernsberger 1955

Figure 8 Comparison of the new correlation eq (4) in the temperature range 273 K to

333 K with data cited in the references for the 1928 International Critical Tables (ICT)

[131] the values in the 1928 ICT and the data of Ernsberger and Pitman [54]

The vapor pressure data of Knudsen [66] were obtained in 1909 using an effusion

method In fact it was the very first measurement of this type and the method is now

often called ldquothe Knudsen effusion methodrdquo or ldquothe Knudsen methodrdquo Several variants

of this method have been developed and have been in continuous use from 1909 until the

present day Cater [144] discussed the state of the art in of the effusion method in 1978

as recently as 2006 Zaitsau et al [145] used the Knudsen method to measure the vapor

30

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 34: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

pressure of ε-caprolactam The basic method developed by Knudsen involves the flow

e or tube With a known orifice size

and geometry one can measure the flow rate and calculate the vapor pressure with

equations based on kinetic theory The measurements that Knudsen made in 1909 were

done very carefully One measurement at 0 degC took 13 days to completemdashhis method of

detection was to condense the effusing mercury vapor and measure its volume at room

temperature in a capillary tube located below the condenser However even today with

state of the art equipment estimated uncertainties for mass-loss Knudsen effusion

methods are about 5 [146 147] for pressures on the order of 10-1 Pa to 1 Pa EPA

guidelines [148] give an estimated repeatability of 10 to 30 for mass-loss effusion

methods for the pressure range 10-3 Pa to 1 Pa Measurements at such low pressures are

difficult some factors that can contribute to the uncertainty are temperature measurement

and control determination of the weight-loss and knowledge of the orifice geometry For

finite orifice lengths the geometry must be well known in order to compute the Clausing

re is a 1 uncertainty associated with the direct

manometric method of Ernsberger and Pittman [54]

One can also demonstrate that the ICT Tables apparently based on the data of

Knudsen [66] are thermodynamically inconsistent with low temperature heat capacity

data Figure 9a shows comparisons of the calculated and experimental values of heat

capacity and Figure 9b compares the experimental and calculated values for the vapor

pressure using the present vapor pressure equation eq (4) Sakonidou et al [6] reviewed

the availability of heat capacity data for mercury and identified three major sets of heat

capacity data for the low temperature (below 60 degC) region Busey and Giauque [44] (01

uncertainty) Douglas et al [51] (1 uncertainty) and Amitin et al [123](1

uncertainty) These sets of heat capacity data are represented to within their experimental

uncertainties as are the vapor pressure data of Ernberger and Pitman [54] (1

uncertainty) The Knudsen data [66] are represented to within 5 to 10 a level

consistent with the effusion technique with the highest deviations at the lowest

temperatures Therefore our equation represents all of these data sets to within their

of vapor from a space where it is in equilibrium with a solid or a liquid at a known

temperature into a high vacuum through a fine hol

factor which corrects for the fact that some molecules may strike the orifice wall and be

returned to the cell [144] In contrast the

31

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 35: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

uncertainties and the heat capacity data are thermodynamically consistent with the vapor

pressure data However if one refits the vapor pressure equation but instead of using the

n

o longer possible to represent the heat capacities to

within their experimental uncertainty as shown in Figure 10a This indicates that the

Knudsen data at a 2 uncertainty level are thermodynamically inconsistent with the

heat capacity measurements Therefore the 1928 ICT Tables that represent the Knudsen

data to better than 2 are thermodynamically inconsistent with the heat capacity

measurements of Busey and Giauque [44] Douglas et al [51] and Amitin et al [123] To

summarize the effusion data of Knudsen [66] can be assigned a temperature-dependent

uncertainty of 5 to 10 any attempt to ascribe a smaller uncertainty to this data set

would be inconsistent with the more recent data of Ernsberger and Pitman [54] Busey

and Giauque [44] Douglas et al [51] and Amitin et al [123]

data of Ernsberger and Pitman [54] as primary data one instead uses the data of Knudse

[66] and adjusts the weights so that the resulting vapor pressure equation represents the

Knudsen data to within 2 it is n

32

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 36: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

20

-20

-15

-10

-05

00

05

10

1510

0(Cp

exp-C

pcal

) Cp

exp

230 240 250 260 270 280 290 300 310Temperature K

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

Figure 9a Comparison of heat capacities calculated with the present correlation eq (4)

ental heat capacity data and eq (2) with experim

-10

-8

-6

-4

-2

0

270 280 290 300 310 320 330Temperature K

100

( pex

p-p

cal)p

exp

2Ernsberger and Pitman (1955)Knudsen (1909)

Figure 9b Comparison of vapor pressures calculated with the present correlation eq (4)

with experimental vapor pressure data

33

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 37: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

-4

-3

-2

-1

0

1

2

3

230

Busey and Giauque (1953)Amitin et al (1979)Douglas et al (1951)

pp

caex

l)Cp

exp-Cp

100(C

240 250 260 270 280 290 300 310Temperature K

Figure 10a Comparison of heat capacities calculated with eq (1) and eq (2) subject to

the constraint that the vapor pressure data of Knudsen be represented to within 2 with

experimental heat capacity data

-2

0

2

4

6

8

10Knudsen (1909)Ernsberger and Pitman (1955)

pex

p)

- pca

l( p

exp

100

270 280 290 300 310 320 330Temperature K

10b ComFigure parison of vapor pressures calculated with eq (1) and eq (2) subject to

on th the c straint that the vapor pressure data of Knudsen be represented to within 2 wi

experimental vapor pressure data

34

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 38: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

7 Conclusions

We de veloped a new correlation for the vapor pressure of mercury that is valid

the triple point [30] 2343156 K to the critical point [105] 1764 K using a

of the uncertainties of these data as discussed above The estimated uncertainty at a

coverage factor of two varies from 3 near the triple point to 1 for temperatures from

273 K ture region from 400 K to the

al boiling point at 62977 K for tem

int

sti

s

are 26-

de

this pro

REP

T

Guest R

Harvey

from

Wagner-type equation We have determined the uncertainties to be associated with the

equation through our comparisons with the primary experimental data and consideration

to 400 K 015 for the intermediate tempera

norm peratures above the normal boiling point but

below about 900 K it is 05 and for temperatures between 900 K and the critical po

mate the uncertainty is abwe e out 5 The new correlation gives a normal boiling

point (101325 kPa) of 62977 K

This project was supported in part by the Western Research Institute and wa

d with the support of the US Department of Energy under Award Nprep o DE-FC

98FT40323 However any opinions findings conclusions or recommendations

expressed herein are those of NIST and do not necessarily reflect the views of the DOE

We thank the staff of the Department of Commerce Boulder Laboratories Library for

their dication and cheerful assistance in obtaining the historic literature necessary for

ject and Dr Harro Bauer (Physikalisch-Technische Bundesanstalt

Braunschweig Germany) for providing us with a copy of ref [22] We thank NIST P

student Justin Chichester for assistance with the preparation of this manuscript and NIS

esearcher Ilmudtin Abdulagatov for assistance with Russian literature We also

acknowledge helpful discussions with our NIST colleagues Mark McLinden Allan

and Gerald Mitchell and with Dr John Schabron of the Western Research

Institute

35

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 39: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

9 References

Selin NE Mercury is rising Is global action needed to protect human health and the environment Environment 47(1) 22-35 2

[1] 005

[3] H Fehlauer H Density of mercurymdashmeasurements and reference values Metrologia 41

[4] sical Properties of Mercury Moscow Standards Press

[5]

[6] m WA A

onductivity 24 Thermal Expansion 12 Joint Conferences Pittsburgh PA 1999

Physical Chemistry Science and Engineering ed Prausnitz

[8] and

[9] n the equation of state of mercury vapour Bulletin of

[10]

[11] e of pure substances Inorganic compounds Ind Eng Chem 39(4) 540-

[12] Powers MD The vapor pressure of liquid mercury from the triple point to the

[13] fluiden

[14] RW Gilmour JC The vapor pressures of monatomic vapors Rev Mod Phys 13

[15] quid elements RCA Review

e thermodynamic

[18] 0

n 383

[20] if CG The determination of enthalpies of sublimation by means of thermal conductivity

[21] if CG van Ginkel CHD Langenberg A Vapour pressure and thermodynamic function

[23] m (in Japanese) Trans JSME 17(62) 70-77

[24] pressure equations for the metallic elements

[25] e of the Elements (translated from the Russian by JI Carasso)

[2] Holman GJF ten Seldam CA A critical evaluation of the thermophysical properties of mercury J Phys Chem Ref Data 23(5) 807-827 1994 BettinS16-S23 2004 Vukalovich MP Fokin LR Thermophy1972 Gmelin Handbuch der Anorganischen Chemie Quecksilber No 34 Verlag Chemie WeinheimBergstrasse 1960 Sakonidou EP Assael MJ Nieto de Castro C Van den Berg HR Wakehareview of the experimental data for the thermal properties of liquid mercury gallium and indium in Thermal C

[7] Hensel F Warren WW Jr Fluid Metals The Liquid-Vapor Transition of Metals Princeton Princeton University Press 1999JM Brewer L 244 p Vargaftik NB Vinogradov YK Yargin VS Handbook of Physical Properties of Liquids Gases New York Begell House 1996 3rd ed 1359 p Sugawara S Sato T Minamiyama T OJSME 5(20) 711-718 1962 Hicks WT Evaluation of vapor-pressure data for mercury lithium sodium and potassium JChem Phys 38(8) 1873-1880 1963 Stull DR Vapor pressur550 1947 Epstein LFcritical point Atomic Energy Commision AECU-1640 1951 Goumltzlaff W Zustandsgleichung und elektrischer Transport am kritischen Punkt desQuecksilbers Dr rer nat Thesis Philipps-Universitaumlt Marburg Marburg Germany 1988 Ditchburn310-327 1941 Honig RE Kramer DA Vapor pressure data for the solid and li30(2) 285-288 1969

[16] Mukhachev GA Borodin VA Poskonon YA Temperature variation of thproperties of mercury Russ J Phys Chem 39(8) 1080-1083 1965

[17] Laby TH A recalculation of the vapor pressure of mercury Phil Mag 6(16) 789-796 1908 Ambrose D Sprake CHS The vapour pressure of mercury J Chem Thermodyn 4 603-621972

[19] Kelley KK Contributions to the data on theoretical metallurgy III The free energies of vaporization and vapor pressures of inorganic substances US Bureau of Mines BulletiWashington DC 1935 de Krumanometers PhD Thesis Rijksuniversitlit Utrecht Utrecht The Netherlands 1971 de Kruchanges of mercury Recl Trav Chim Pays-Bas 92 599-600 1973

[22] PTB Physikalisch-Technische Bundesanstalt (PTB)-Stoffdatenblaumltter SDB 12 Mercury PTB Braunschweig and Berlin 1995 Uchida H Mercury vapour tables and i-s diagra1951 Alcock CB Itkin VP Horrigan MK Vapour 298-2500 K Can Metall Q 23(3) 309-313 1984 Nesmeyanov AN Vapor PressurNew York Academic Press 1963 469 p

36

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 40: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

[26] Dalton J Experimental Essays II On the force of steam or vapour from water and various other liquids both in a vacuum and in air Mem Proc - Manchester Lit Philos Soc 5(2) 550-574

[27] g point of tin and the boiling point of mercury with a description of a

[28] mperature

[29] al Temperature Scalemdash1948 Revision Br J Appl Phys

[30]

Oxford UK 1987

[34] mpfs bei verschiedenen Temperaturen

[35] (in German) Ann Phys Chem 17 193-200 1882

an) Z Elektrochem Ang

[38] R Vapor pressure and Antoine

all KR Editor Landolt-Boumlrnstein

hem Soc 32 1434-1447 1910 7

2] hr

3] of ia PA 1968

mic s Heat of fusion and vaporization J Am Chem Soc 75 806-

[45] Colardeau E Riviegravere C Recherches sur les tensions de le vapeur de mercure

at

[47] he determination of high precision vapour pressure of mercury and its

tional Conference on Calorimetry and Thermodynamics Warsaw

[48] cells J Chem Phys 38(11) 2725-2735 1963

lumbia Vancouver Canada 1950

1801 Crichton J On the freezinself-registering thermometer Phil Mag (March) 147-148 1803 Beattie JA Blaisdell BE Kaminsky J An experimental study of the absolute tescale IV Reproducibility of the mercury boiling point The effect of pressure on the mercury boiling point Proc Am Acad Arts Sci 71 375-385 1937 Hall JA Barber CR The Internation1(4) 81-85 1950 Preston-Thomas H The international temperature scale of 1990 (ITS-90) Metrologia 27 3-10 1990

[31] Marsh KN ed Recommended Reference Materials for the Realization of Physicochemical Properties Blackwell Scientific

[32] Preston-Thomas H The international practical temperature scale of 1968 amended edition of 1975 Metrologia 12 7-17 1976

[33] Regnault V Forces eacutelastiques des vapeurs Mem Acad Sci Inst Fr 26 506-525 1862 Avogadro A Ueber die Spannkraft des QuecksilberdaPogg Ann 27 60-80 1833 Hertz H On the pressure of saturated mercury

[36] Ramsay W Young S On the vapour-pressures of mercury J Chem Soc (London) 49 37-50 1886

[37] Haber F Kerschbaum F Measurement of low pressures with a vibrating quartz filament Determination of the vapor pressure of mercury and iodine (in GermPhys Chem 20 296-305 1914 Dykyj J Svoboda J Wilhoit RC Frenkel M Hall Kconstants for hydrocarbons and sulfur selenium tellurium and halogen containing organic compounds in Vapor Pressure of Chemicals subvolume A HNumerical Data and Functional Relationships in Science and Technology Group IV Physical Chemistry Volume 20 Springer 1999

[39] Smith A Menzies AWC Studies in vapor pressure IV A redetermination of the vapor pressures of mercury from 250deg to 435deg J Am C

[40] Menzies AWC The vapour pressures of liquid mercury Z Phys Chem 130 90-94 192[41] Bernhardt F Saturation pressure of mercury up to 2000 kgcm2 (in German) Phys Z 26(6) 265-

275 1925 [4 Bessel-Hagen E Ueber eine neue Form der Toumlplerschen Quecksilberluftpumpe und einige mit i

angestellte Versuche Ann Phys Chem 12(2) 425-445 1881 [4 Burlingame JW Dilute solutions of mercury in liquid binary alloys PhD Thesis University

Pennsylvania Philadelph[44] Busey RH Giauque WF The heat capacity of mercury from 15 to 330degK Thermodyna

properties of solid liquid and ga809 1953 Cailletet L satureacutee Compt Rend 130 1585-1591 1900

[46] Callendar HL Griffiths EH On the determination of the boiling-point of sulphur and on a method of standardising platinum resistance thermometers by reference to it Experiments madethe Cavendish Laboratory Cambridge Phil Trans R Soc Lond A 182 119-157 1891 Cammenga HK Timportance as reference pressure for studies on vapour pressure and rate of evaporation in Proceedings of the 1st InternaPoland 1969 Carlson KD Gilles PW Thorn RJ Molecular and hydrodynamical effusion of mercury vaporfrom Knudsen

[49] Dauphinee TM The measurement of the vapour pressure of mercury in the intermediate pressure range PhD Thesis University of British Co

37

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 41: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

[50] Dauphinee TM The vapor pressure of mercury from 40degC to 240degC (5 microns to 6 cm) Measured by the streaming method J Chem Phys 19 389-390 1951

[51] Douglas TB Ball AF Ginnings DC Heat capacity of liquid mercury between 0deg and 450degC

[53] cadmium and mercury Phil Mag 33(193) 33-48

[54] micron range

[55] ure of the

[56] mercury

[57]

[58] EB On the tensions of saturated mercury vapor at low temperatures (in German) Ann

[59] ohen Drucken Ber Bunsenges Phys Chem 70(910) 1154-1160 1966

13

hem Phys 40(10) 2882-2890 1964 s

82-

[64] mination of the vapour tensions of mercury cadmium and zinc by a

[65] 4

t

[67] 0-842 1910

on (in German) Zeitschr f Physik 67 240-263

[70] re of the vapour of mercury at the ordinary temperature Report of

[71]

7

[75]

[76] 0degC (in German) Ann

1925

calculation of certain thermodynamic properties of the saturated liquid and vapor Nat Bur Stand(US) J Res NBS 46(4) 334-348 1951

[52] Durrans TH A treatise on distillation Perfumery and Essential Oil Record 11S 154-198 1920Egerton AC The vapour pressure of zinc1917 Ernsberger FM Pitman HW New absolute manometer for vapor pressures in theRev Sci Instrum 26(6) 584-589 1955 Galchenko IE Pelevin OV Sokolov AM Determination of the partial vapor pressvolatile component by the static method Industrial Laboratory 44(12) 1699-1700 1978 Galchenko IE Pelevin OV Sokolov AM Determination of the vapor pressure ofover melts in the Hg-Cd-Te system Inorganic Materials 20(7) 952-955 1984 Gebhardt A Uumlber den Dampfdruck von Quecksilber und Natrium Ber Dtsch Phys Ges 7 184-185 1905 HagenPhys Chem 16 610-618 1882 Hensel F Franck EU Elektrische Leitfaumlhigkeit und Dichte von uumlberkritischem gasfoumlrmigem Quecksilber unter h

[60] Heycock CT Lamplough FEE The boiling points of mercury cadmium zinc potassium and sodium Proc Chem Soc 28 3-4 19

[61] Hildenbrand DL Hall WF Ju F Potter ND Vapor pressures and vapor thermodynamic properties of some lithium and magnesium halides J C

[62] Hill CF Measurement of mercury vapor pressure by means of the Knudsen pressure gauge PhyRev 20 259-266 1922

[63] Hubbard SR Ross RG Slope anomaly in the vapour pressure curve of Hg Nature 295 6683 1982 Jenkins CHM The determodified manometric method Proc R Soc London A 110(754) 456-463 1926 Kahlbaum GWA Studies of vapor pressure measurements (in German) Z Phys Chem 13 14-55 189

[66] Knudsen M Experimental determination of the pressure of saturated mercury vapors at 0degC and ahigher temperatures (in German) Ann Phys 29 179-193 1909 Knudsen M An absolute manometer (in German) Ann Phys 32(4) 89

[68] Kordes E Raaz F Aufnahme von Siedediagrammen binaumlrer hochsiedender Fluumlssigkeitsgemische Z Anorg Allg Chem 181 225-236 1929

[69] Mayer H On a new method for measurements of the lowest vapor pressures the vapor pressuresof mercury and potassium III Communicati1930 McLeod FRS On the pressuthe Meeting of the British Association for the Advancement of Science 443-444 1883 Millar RW The vapor pressures of potassium amalgams J Am Chem Soc 49 3003-3010 1927

[72] Morley EW On the vapour-pressure of mercury at ordinary temperatures Phil Mag 7 662-661904

[73] Murgulescu IG Topor L Vapour pressure and molecular association of NaCl NaBr vapoursRev Roum Chim 11 1353-1360 1966

[74] Neumann K Voumllker E A torsion balance method for measurements of lowest vapor pressures(in German) Z Phys Chem 161 33-45 1932 Pedder JS Barratt S The determination of the vapour pressures of amalgams by a dynamicmethod J Chem Soc (London) 537-546 1933 Pfaundler L On the tension of mercury vapor in the interval 0degC to 10Phys Chem 63(3) 36-43 1897

[77] Poindexter FE Mercury vapor pressure at low temperatures Phys Rev 26 859-868

38

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 42: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

[78] Raabe G Sadus RJ Molecular simulation of the vapor-liquid coexistence of mercury J ChePhys 119(13) 6691-6697 2003

m

s 925

or ury melts (in German) Z f Elektrochemie 60 431-454 1956

(in German) Z

[82] ethod Three-term vapor pressure equation for mercury (in German)

[83] vapor pressure of tellurium (in German) Z Elektrochem Ang

[84] Hensel F Unusual thermodynamic and electrical properties of metallic solutions

[85] ur pressures of cesium and rubidium and a calculation of

[86] of mercury by the boiling

583

ow 3-54 786-790 1929

ture

[91] essures of solid and liquid benzophenone between 0deg und

[92] 5 1935

[94] 35(9) 1065-1067 1913

nsorship of the Internation Union of Pure and Applied Chemistry Commission on

[96] Debenedetti Metastable Liquids Concepts and Principles Princeton NJ Princeton

University Press 411 p 1996 7] Koenigsberger J Uumlber die kritische Temperatur des Quecksilbers Chem Ztg XXXVI(135)

1321 1912 [98] Bender J On the critical temperature of mercury (in German) Phys Z 16 246-247 1915 [99] Birch F The electrical resistance and the critical point of mercury Phys Rev 41 641-648 1932 [100] Mathews JF The critical constants of inorganic substances Chem Rev 72(1) 71-100 1972 [101] Ambrose D Vapour-liquid critical properties Natl Phys Lab Div Chem Stand Teddington

UK p 60 1980 [102] Franck EU Hensel F Metallic conductance of supercritical mercury gas at high pressures Phys

Rev 147(1) 109-110 1966 [103] Kikoin IK Senchenkov AP Electrical conductivity and equation of state of mercury in the

temperature range 0-2000degC and pressure range of 200-5000 Atm Phys Metals Metallog 24(5) 74-89 1967

[104] Neale FE Cusack NE Thermoelectric power near the critical point of expanded fluid mercury J Phys F Metal Phys 9(1) 85-94 1979

[79] Rodebush WH Dixon AL The vapor pressures of metals a new experimental method PhyRev 26 851-858 1

[80] Roeder A Morawietz W Investigations on the occurrence of compound molecules in the vapof potassium-merc

[81] Ruff O Bergdahl B Studies at high temperatures XII The measurement of vapor tensions at very high temperatures and some observations of the solubility of carbon in metalsAnorg Allg Chem 106 76-94 1919 Schmahl NG Barthel J Kaloff H An apparatus for vapor pressure measurements at elevated temperatures with a static mZ Phys Chem 46(3-4) 183-189 1965 Schneider A Schupp K The Phys Chem 50 163-167 1944 Schoumlnherr Gnear the critical point of the almost pure solvent Ber Bunsenges Phys Chem 85 361-367 1981Scott DH A determination of the vapotheir chemical constants Phil Mag 47 32-50 1924 Shpilrain EE Nikanorov EV Measurement of the vapor pressurepoint method High Temp 9 585-587 1971

[87] Spedding FH Dye JL The vapor pressure of mercury at 250-360deg J Phys Chem 59 581-1955

[88] Stock A Zimmermann W Vapor pressures of mercury and some mercury compounds at ltemperatures (in German) Monatsh Chem 5

[89] van der Plaats JD Sur le poids et la tension de la vapeur de mercure satureacutee agrave la tempeacuteraambiante Recl Trav Chim Pays-Bas 5 149-183 1886

[90] Villiers MA Sur la vapeur emise par le mercure dans les gaz rarefies et sur les tensions maxima de vapeur du mercure Ann Chim Phys 30 588-633 1913 Volmer M Kirchhoff P The vapor pr48deg (in German) Z Phys Chem 115 233-260 1925 von Halban H H Die Bestimmung von Quecksilberdampfdrucken aus der Resonanzlicht-absorption Helv Phys Acta 7 856-87

[93] Young S The vapour pressures of mercury J Chem Soc (London) 59 629-634 1891 Menzies AWC The critical temperature of mercury J Am Chem Soc

[95] Guildner LA Terrien J Part 1 Mercury absolute manomoeters in Experimental Thermodynamics Volume II Experimental Thermodynamics of Non-reacting Fluids Prepared under the spo

Thermodynamics and Thermochemistry Le Neindre B Vodar B Editors Butterworths London 1975

PG

[9

39

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 43: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

[105] Kozhevnikov V Arnold D Grodzinskii E Naurzakov S Phase transitions and critical phenomena in mercury fluid probed by sound Fluid Phase Equilib 125 149-157 1996 Meyer G D[1

[106] ie kritische Temperatur des Quecksilber Phys Z 22 76-78 1921 07] Hubbard SR Ross RG Thermodynamic and electrical properties of fluid Hg up to the liquid-

AIChE J 42(6) 1723-1740 1996 Wagner W New vapour pressure measurements for argon and nitrogen and a new method for

ressure equations Cryogenics 13(8) 470-482 1973 [110 agner rigenda ew vapou ure me nts for ar n and nitr nd a ne

thod f lishing ra onal vap re e Cryogen s 14 63[1 gner ers J P termann vapo re measurements a ratio

our-p equation r oxyge Th 8(11) 1 9-1060[1 gner e mathem isch stat ethode zum Aufstellen thermodynamischer

ichun ezeigt am eispiel d druc iner fluid r Stoffe f FRI Ver bH Forts ritt-Beri DI- ten Vol eries 3 1 p4

[1 mon rties and vapor pressure equation for alkanes 2n+2 ers f rough n= J Phys ef D

1) 1- 0 [1 ing B usnitz JM OCon he p s of gase nd liqui ork

Graw th ed 741 2001 [1 ing M nchez Oc oa JC V sures onitrile d ermined rativ

lliom Chem En Data 4 200[1 vey emmon EW Corre the v ssure of avy wat trip

nt to cal point Phys C Data 173-181 002 [1 gner szlig A Int ational equations for the saturation properties of ordinary water

stanc ed Accor ng to the nal ture Scal of 1990 hema 22 7 1993

[1 gner szlig A Th APWS F n 19 e thermodynamic properties of inary bstance r genera tific hys Che Ref Da 3872

[1 g M ajjar H method lating ending v our pres o loperatures using therm data va ure equations for some -alkanes atur

ow th l boiling int Che ci 2 3-11 19 [1 ner-R A nonlin r regress is fo ing low-t peratur essu

enth vaporiza on appli geran Thermo ys 17(6 85[1 hr P r BN C DATA the fund ental p nstan

2 R Phys 77 ) 1-107[1 se M NIST-JA AF The cal T Phys Ch m Ref D ogra

9 F ition 19 [1 itin EB Lebedeva EG Paukov IE The heat capacity of me ry in th 300 K

ener mation a concent quil cancies mercury Physm 53(10) 1528-1530 1979

[1 kpatr elatt CD Vecchi MP Optimization by simulate annealin e 22-680

[1 ss W nery B Teukolsky SA Vetterling WT Num ical Rec Art oentif ting Cam ridge U ridg sity Pres 818 p 1

[1 dy A Con rgence o aling m Math rog 34 1986[1 ber ctural op mization of vapor pressure correlations using simulated nnealing and

sho g appli tion to R mputers Chem Engng 18(10) 929-932 1994 [1 gs RH gers JE el R PACK S ftware for O hogonal

tanc ion NIS R 4834 Sta ol 1992[1 s R c weigh of the el ure A m 75(8) 1107-1122 2003

3

vapour critical point J Phys C Solid State Phys 16 6921-6931 1983 [108] Růžička K Majer V Simple and controlled extrapolation of vapor pressures toward the triple

point[109]

establishing rational vapour p] W W Cor N r press asureme go ogen a w

me or estab ti our pressu quations ic 1974 11] Wa W Ew en W New ur-pressu nd a new nal

vap12] Wa

ressure W Ein

foat

n J Chemistische M

ermodyn 04 1976

Gle gen - g B er Dampf kkurve re e Duumlsseldor G VD lag Gm ch chte der V Zeitschrif S No 39 18 197

13] Lem EW Goodwin ARH Critical propeCnH normal alkanes with nlt=36 and isom or n=4 th 9 Chem R ata 29( 39 200

14] Pol E Pra nell JP T ropertie s a ds New Y NY Mc -Hill 5 p

15] Ew B Sa h apor pres of acet et by compa e ebu

16] Haretry J AH L

g 9 486-491lation for

4 apor pre he er from the le

poi the criti J hem Ref 31(1) 217] Wa W Pru ern

sub e Revis di Internatio Tempera e J Phys C Ref Dat 783-78

18] Wa W Pru e I ormulatio 95 for thord water su fo l and scien use J P m ta 31(2) -535 200

19] Kin B Al-N A for corre and ext ap sure data t wer tembel

al po

pour pressm Eng S

n74

at temper es e norma 9(4) 100

20] Till oth R ea ion analys r estimat em e vapor pr res and alpies of ti ed to refri ts Int J ph ) 1365-13 1996

21] Mo J Taylo O recommended values of am hysical co ts 200 ev Mod (1 2005

22] Cha W Jr N rmochemi ables J e ata Mon ph No ourth Ed 98

23] Am rcu e range 5- and the gy of for nd ration of e ibrium va in Russ J Che

24] Kir671

ick S G 1983

d g Scienc 0

25] Pre H Flan P er ipes The f Sci ic Compu b K Camb e Univer s 986

26] Lun M Mees ve f an anne algorith P 111-124 27] Hu ML Stru ti a

thre ld acceptin ca 134a Co28] Bog PT Byrd Ro Schnab B ODR o rt

Dis e Regress TI Natl Inst nd Techn 29] Los

0] Lange NA ed Handbook of ChemD Atomi ts ements P

istry 10th ed McGraw-Hill New York 1967 ppl Che

[1

40

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 44: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

[131] Washburn EW ed International Critical Tables of Numerical Data Physics Chemistry and chnology e III McGraw-Hill New York 1928

[13 DR Handb ok of and Physics 85th Edition ed CRC Press Boca n FL

[13 Kor physic Prop bank ttpww cheric

Te Volum2] Lide ed CRC o Chemistry

Rato3] KDB

2004 ea Thermo al erties Data (KDB) h w orgkdb Korea

ersity[13 ley J ng W Osc Row DIADE DIPP tion a

Eval nager 70 oun ity Prov UT 2[135] Yaws CL l Prop rties H Phys modyna ics En l

sport Health elate s for amp Inorg ic Che Grawssion 784 p

[13 aftik les on e The l Pro Liquids nd Ga ork ted Pr 2nd e

[13 ley R al com unic ber M ham Yo g Uni vo Ut2 20

[13 e E w DN Evalu ermo unctions rom eq onstans Far 2 539- 47 1

[13 ard T d for Mercur and Analysis in Natural Gas by Atomic Fluorescence trosco 50-98 STM al R 2003

40] Egerton AC Note on the determination of chemical constants Phil Mag 39 1-20 1920 on vapour pressures of monatomic substances Phil Mag 48 1048-1054

24 [142] olmer M Estermann I On the evaporation coeff of solid a d liquid m (in

erman) Zeitschr f Physik 7 1-12 1921 [143] witt FB method of determ e llic vapou an

perimental application to the cases of sodium and y Phil Mag 4 546-554 1902 [144] ter ED usion m ate of the art in Proceedings o 0th Mat

search S m on C aracteriz f High T ture Vap rs and Ga at Bur S) Spec lication 61 1979

[145] itsau DH lechka Y U Kabo GJ Kolpikau AN Emely enko V intz Aerevkin S rmodynamics of t imation and of the vaporization of ε-caprolactam J em Eng 51 130- 5 2006

[146] Rohhaacuteč V ka K R žička V Zaitsau DH Kabo GJ Diky V Aim J Chem odyn 36 929-937 2004

n SP Paulechka YU Kabo GJ Sevruk VM Comprehensive study of thal es of vaporization of cyclohexyl esters Eng Data 48 1393

400 200[148 S 8307950 V por Pressur EPA Repo 712-C-96-043

ubstances (OPPTS) US Environmental Protection Agency 1996

Univ 2005

4] Row R Wildi V arson JL ley RL M R Informa nd Data uation Ma v2 Brigham Y g Univers o 004

Chemica e andbook ical Ther m vironmentaTran Safety amp R d Propertie Organic an micals Mc -Hill Profe al 1999

6] Varg NB Tab th rmophysica perties of a ses New YHals ess 1975 d

7] Row8460

L person06

m ation to Hu L Brig un versity Pro ah

8] Clark CW Gle ation of th dynamic f f ulibrium c ts Tran ad Soc 6 5 966

9] Stand est Metho y SamplingSpec py D-63 A Internation eapproved

[1[141] Egerton AC Note

19V icients n ercuryGJeex

A new ining the vapour-density of m ta rs and mercur

Ca The eff ethod at 69 current st f the 1 erials Re ymposiu h ation o empera o ses N Stan (U ial Pub 5 Za Pau an N He V P The he sublCh Data 13

Růžič ů K Vapor pressure of diethyl phthalate Therm

[147] Zaitsau DH Verevkiapor pres d env

1sures an3

pi J Chem -

] Product Properties Test Guidelines OPPT a e rt Office of Prevention Pesticides and Toxic S

41

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 45: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Appendix A Detailed Listing of Experimental Data for the Vapor Pressure of ercur

Al eratures have been converted to ITS-90 Data are arranged alphabetically by first

auDa brose and Sprake [18]

T p kP T K p kP

M y

l temp

thor ta from Am

T K p kPa K a a 379934 681168 23790046 92 635136 111503 400340 685426 2539 636491 114202

702724 3278 621615 87311 711623 3719 623249 89986 726554 4566 92662 739690 5430 95342 749788 6178 98055 771124 8025 100770

451381 1101 481650 3023 630924 103440 488128 3689 632343 106101

4 494925 4522 633750 108792 500619 5339 635136 111504 506657 6342 636492 114202 513690 7708 621622 87323 520258 9205 623266 90010 526171 10753 624853 92671 533782 13074 626418 95353 541589 15879 627958 98060 546934 18080 629466 100764 555219 21998 630924 103441 562504 26013 632343 106101 572032 32173 633750 108794

2 579202 37584 635130 111489 3 587994 45215 636492 114202

71 53760 621625 87331 623267 90014

597320 54686 612930 74144 624855 92672 605650 64484 621863 87728 626413 95348 611991 72866 628996 99929 627951 98043 6 7 629758 101311 629465 100764 6 8 630156 102037 630923 103440 628883 99711 621619 87316 632342 106098 629949 101643 623258 90004 633747 108789

624850 92667 635135 111501 6 100600 626421 95363 636488 114195

121141 627960 98061 133558 629464 100768

654707 155987 630923 103440 663194 179295 632340 106099 671779 205659 633748 108792

0139 33 417095 0293 08 426204 0424 75 432281 0538 09 624850 439292 0706 39 626410 441719 0774 83 627956 447681 0964 26 629467

454121 1213 56320 1309

462634 1627 469182 2024 474565 2414 479040 2784 485150 3369 491856 4128 497530 4882 533454 12965 541345 15780 549473 19193

2

554721 1742 562759 572231

6162 2313

579977 38203 5964589082 46244 605005 63675

2114 86564 2780 97795

638367 118032 29365

639863 645494

42

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 46: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Beattie Blaisdell and Kaminsky [28] T K p kP T K p kPa T K p kPa a

6297632 101325 6356476 112 6311879 103940 492 6297648 101325 6354589 112121 6326278 106646

6341509 109565 6339426 109160 6328014 106976 6349149 111047 6314044 104344 6336486 108587

6297663 101325 6299633 101688 6322578 105943 6284226 988973 6306593 102963

6245575 921883 6268527 961257 6291704 100244 4 6253936 93 6276159 974703 6232927 90 6260489 947299 6230797 89 6245171 921186 6249884 92 6229920 895730 6267624 959670 6282268 985483 6297562 101

Data from Bern

p kPa T p T K p kPa

6297666 101325 6297676 101325 6297632 101325

6229608 895232

6260545 94739 6046 6276855 975908 0733 6290765 100075 7188 6305802 102819 9141 6320069 105472 6334298 108168 6347126 110655 312

T K

hardt [41] K kPa

693 3432 1074 9807 1619 125500 693 3138 1114 12750 1663 146100

1174 14910 1674 155900 1199 16670 1685 164400 1368 46090 1685 173600 1488 88260 1685 181400 1553 104000 1706 198100 1608 105400 1614 111800 1619 118700

Dat ess ]

743 5688 753 5198 794 9807 794 1079 844 1618 854 1471 944 3334

1004 6865

a from B el-Hagen [42T K p kPa 273 000197 293 000268

43

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 47: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Burlingame [43]

Dat usey que [44]

Data

a from B and Giau

Data from Cailletet Colardeau and Rivigraveere [45]

from Callendar and Griffiths [46] TK p kPa

62979 101325 62995 101325

T T K p kPa K p kPa T K p kPa 3772 456010-2 4736 2318 4089 204510-1

3771 461310-2 4736 2321 3436 718610-3

3436 699910-3

3437 714610-3

3436 714610-3

3437 703910-3

3437 709310-3

4736 2314 4736 2353

-1 4736 2333 4736 2337

1 2 2

T p kPa

4432 812610-1

3771 454610-2 4432 806910-1

3770 461310-2 4432 808310-1

3770 456010-2 4432 816210-1

3771 450610-2 4432 819410-1

3772 442610-2 4735 2297 3771 461310-2 4735 2306 4089 207410-1

4089 207010-1

4088 2122104088 213410-1

44088

089 97110-1 4736 2341 4736 203810-1 316

4089 204210-1 4736 322

T K p kPa K 23432 30710-7 50001 5256 2 2 52502 1044101

55003 1947101

57503 3429101

-4 60004 5757101

3 2 62504 9274101

62992 1013102

65003 1437102

67503 2156102

70002 3140102

72501 4452102

75000 6165102

p T K p kPa

5002 2410-6

27500 29815 267

3311010

-5

-4

29998 311102498 0510-3

-234997 10310-237497 414410

39998 139710-1

42499 407710-1

44999 1054 47500 2458

T K p kPa T K kPa 673 213102 924 3 1154 16410445103

723 431102 974 5 7

1 3 10 103 874 226103 1124 1393104

07103

774 811102 1024 30103

824 4010 74 104

44

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 48: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Carlson Gilles and Thorn [48] T K p kPa T K p kPa

3 3 -4 4 2 -10138 506410 0628 7181032408 194710-3 44829 1652 33697 462610-3 49921 8371 34827 930610-3 54883 3145101

37217 422610-2 Dat auph 50] a from D inee [49

T K p kPa T K p kPa 45488 12407 34508 7 -3447391044455 8 1 -2

6 361 31 20031710-2

39641 1198410-1 40529 1788510-1

-1 48327 32547 4 2 -1 5

36 0-1 -3

58 0-1 -4

17 --4

Dat ougl nd Ginnin s [51]

T K p kPa

635310-1 35345 264961038291 096810-2

40517 16799101390 579410 1353 77820

42197 6501 33282 346241043336 1421 31402 9217910

32372 8119103 30500 4170310

a from D as Ball a gT K p kPa T K p kPa

23430 292110-7 41313 2466310-1 61319102 74557101

25317 3 62977102 10133102

2 63318102 10772102

1 47 15 23029 65318102 152074102

29814 258010-4 49316 42859 67318102 210201102

31313 845310-4 51317 75902 69317102 285011102

53317 12863101 71317102 379714102

3 1 -2 5 2 1 7331 4973 3 753 6431 5 773 819

Dat gerto

T p

11410-6 43314 5572210-1

27315 66110-5 45315 11697 29314 69110-4 3

33312 3472810-3

5312 212610 5318 096310 6102 80102

37312 694410-2 57318 2986101 15102 00102

39313 002810-1 59319 0299101 15102 32102

a from E n [53] T K p kPa T K p kPa K kPa

30683 532010-4 29804 242610-4 30 557853 310-4

30693 502610-4 29586 20 -4 29 16820 -4 30 50655 -4 30 55455 -4 30 55455 -4 30 55416 -4 30 55420 -4 30 55720 -4 5

2310 414 010-4

30743 522610-4 29586 2310 723 610-4

30718 514610-4 30823 4610 833 610-4

28864 861310-5 30853 7310 833 610-4

30733 488010-4 30853 7310 833 610-4

27315 252010-5 29414 8010 833 610-4

30173 337310-4 29586 1310 853 310-4

29804 238610-4 29586 131030173 329310-4 30823 54610-4

45

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 49: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Ernsberger and Pitman [54] T K p kPa T K p kPa

28522 845310-5 31515 994910-4

28815 111310-4 31817 124210-3

29110 144810-4 32115 153910-3

29411 185210-4 324 12 190 10-3

29722 241210-4 32663 226010-3

-4 29324 173510-4

3 3 2 2

Dat ebh

T K p kPa T K p kPa

0

30025 3116100318 93410-4 9622 22610-4

30617 500510-4 29920 286510-4

30923 635810-4 31211 792910-4

a from G ardt [57]

40313 14710-1 45315 123 4 2 46315 173

47315 236 48316 320

44314 84010-1 Data from Haber and Kerschbaum [37]

T K p kPa

1313 4010-1

42313 37310-1

43314 57310-1

293142 168010-4

Data from Hagen [58]

T K p kPa 27315 20010-3

32313 56010-3

37312 28010-2

42313 25610-1

47315 2126 Data from Hertz [35]

T K p kPa T K p kPa 36252 21310-2 45785 1472 39013 94710-2 46355 1719 42734 46510-1 47615 2713 43894 73610-1 48006 3010 45054 109

Data from Heycock and Lamplough [60]

T K p kPa 62889 101325

Data from Hildenbrand Hall Ju and Potter [61]

T K p kPa T K p kPa 2954 20810-4 2950 21010-4

2968 22610-4 2998 30510-4

2970 23310-4 3316 30110-3

46

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 50: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data ill [62]

p from HT K kPa T K p kPa

27245 4 4010-5 29714 34910-4

27885 7 1 1 1 1 2 3 2 3

Data nkins [

p

3310-5 29814 36410-4

28454 2310-4 29873 38910-4

28474 1510-4 29993 41910-4

28474 0910-4 30173 49310-4

28614 2910-4 30303 54310-4

29344 4910-4 30393 56710-4

29594 0710-4 30743 71710-4

29614 9910-4 30803 76710-4

29614 1310-4

from Je 64] T K kPa T K p kPa

47916 227 60019 556101

49366 380

1 1 1

2 13 13 14

ata from Kahlbaum [65] T K p kPa T K p kPa

60419 607101

51117 647 61519 776101

52067 827 62319 885101

52617 01101 63119 103102

53267 21101 63771 116102

54968 85101 64374 127102

56168 513101 65377 508102

57668 56101 66431 789102

58168 79101 67083 987102

58969 47101

DT K p kPa

3 11 42734 46410-1 45905 1527 9253 610-1

39783 1 43224 56410-1 46425 1797 39903 16810 43424 58510-1 46625 1867 40423 28110-1 43574 61710-1 46985 2212 40723 22110-1 43824 68310-1 47255 2332 40813 24310-1 44184 80310-1 47495 2549 41173 29310-1 44624 101 47795 2805 41333 35310-1 44834 104 47906 2864 41483 31310-1 44944 105 48206 3097 41743 26710-1 44994 109 48376 3357 41833 38110-1 45004 105 48746 3836 42023 36910-1 45275 117 48976 4117 42133 39610-1 45405 126 49296 4573 42213 42510-1 45475 125 42464 43710-1 45615 1409

8310-1

-1

47

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 51: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Knudsen [67] T K p kPa T K p kPa

26316 1 1010-5 28884 11410-4

27315 2 55 8

Dat nudse

9010-5 29374 16710-4

28005 010-5 29754 22610-4

28424 2010-5

a from K n [66] T K p kPa T K p kPa

27315 2 46110-5 30863 571310-4

28025 4 1 1 3

Dat ordes 8]

90210-5 31293 795410-4

29274 51710-4 31933 128010-3

29304 55310-4 31283 777810-4

30333 74110-4 32393 177510-3

a from K and Raaz [6T K p kPa

63019 101325 63219 101325

48

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 52: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Mayer [69] T K p kPa T K p kPa T K p kPa

26216 62710-6 27245 24510-5 29584 21510-4

26326 77310-6 27275 24910-5 29684 23710-4

29814 25910-4

26146 61310-6

26216 68010-6

26276 74710-6

26316 81310-6

26446 94710-6

26486 10110-5

279 5 52 10-5 26546 11110-5

27140 20910-5 28094 58810-5 26566 11210-5

28229 65210-5 26656 12910-5

2 2 28324 71510-5 26755 15110-5

2 28404 78110-5 26775 14710-5

3 28494 85210-5 26975 18110-5

3 28604 94710-5 27235 23610-5

27700 39210 28704 10310-4 27295 25210-5

-5 28814 11310-4 27315 25510-5

2 4 28924 12510-4 27315 25610-5

29034 13610-4 27335 26010-5

29134 14810-4 27385 27210-5

29244 16110-4 27445 29210-5

28324 71710 29374 17910-4 27505 30310-5

-5 29454 19110-4 27575 34410-5

2 1 2 27675 37610-5

27695 38810-5

27795 42910-5

Dat cLeod

26466 92010-6 27345 26710-5

26566 10410-5 27385 27610-5

26665 11510-5 27465 29910-5

26765 12910-5 27575 34810-5

26855 14810-5 27670 39110-5

26895 15310-5 27765 42510-5

26960 16510-5 27875 48710-5

27045 18510-5 7 7

27225 23210-5

7310 5910-5

27320 5910-5

27465 0110-5

27605 5110-5

-5

27810 440107805 4010-5

27930 44910-5

28084 57610-5

28079 57610-5

-5

28554 901108804 1310-4 9574 20810-4

28994 13210-4 29254 16110-4

27200 23110-5 29389 18010-4

a from M [70] T K p kPa

29314 0000765

49

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 53: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Menzies [40 94] T K p kPa T K p kPa T K p kPa

39492 1105210-1 60272 60942101 64554 102133664 3 -1 6 6 1 6 102

1 2

2

2

6 682 19012102

6 705 22335102

101 62506 93022101 67994 23255102

1 97609 1 68343 102

5 2 1 6 9 1 3 102

1 2 02

2

10 02 2

1 2 2

1 2

Dat illar [7

2310 735710 0701 639610 6514 1478146458 7359 61105 71667101 65674 161401052692 10943101 61566 78228101 65945 168731053329 12911101 61997 84660101 66235 176801053710 14201101 62057 85622101 654092 15604101 62495 93023101 754475 1714154861 1880510

264110 62766

10970010

24629271595653 2879 6899

56597 28103101 63013 020510 69287 28342157123 31592101 63054 10256102 69929 311211057763 36429101 63386 8921 70678 346531058362 41294101 63524 115110 70747 349881058720 44652101 63843 180910 59951 57186101 64134 12434102

a from M 1] T K p kPa T K p kPa

46830 1960 57533 3449101

51802 8319 61304 7475101

61394 7605101

Dat orley [

p

57193 3264101

a from M 72] T K kPa T K p kPa

28914 1 -4 13310 32313 5110-3

30313 3 333 2 285 -3

-4 53910-3

Data urgules opor [73]

6010-4 1 1031313 69310 34312

from M cu and T T K p kPa T K p kPa

46565 191 53217 127101

47615 257 54658 1808101

48516 336 54958 193 101

49416 444 55918 2438101

50757 663

3

50

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 54: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Neumann and Voumllker [74] T K p kPa T K p kPa

34382 68 -38110 31198 73210-4

33882 50 -3

39 -3

32

32533 196410-3 29779 25610-4

29639 19610-4

3 1 2 11

88 -4

Dat dder and tt [75]

p

0510 30913 60310-4

33562 5610 30633 49110-4

33402 55710-3 30563 45710-4

32938 59710-3 30038 29910-4

32123 144810-3 1953 3110-3 9404 7910-4

31693 10910-3 28954 2010-4

31408 410

a from Pe BarraT K kPa

55668 2249 55718 2261 57318 3313

Dat aundler [

p a from Pf 76]

T K kPa28814 10 -4801032943 24 -3

35 -2

ata from Poindexter [77]

T K p kPa

011037192 0710

DT K p kPa

2 1 2 13534 8410-7 6744 3410-5

24044 36310-7 26917 1 -5

4 -7 2 -5

7 -7 2 -5

1 -6

2 -6 7 -5

3 -6 9 -5

6 -6 1 -4

19358 40010-10 21631 69110-9

22330 31610-8

2 5 22 916 -9 1 -7

6 -9 1 P triple p ot included in analys

651024220 9510 27336 521024503 6010 27491 921025043 5610 28113 57610-5

25260 3410 28400 711025594 2810 28618 611026116 9510 29287 611026235 78610-6

20325 80010-10

0630 3310-9 975 7510-8

20947 910 23038 001021543 4710 23139 1410-7

oint below oint n is

51

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 55: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Dat amsay and Young [36]

a from R

T K p kPa T K p kPa T K p kPa 49531 459 63067 10244102 63187 10106102

54398 16579101 63067 10223102 7 7

Dat egnaul

2046 38622102

55338 20952101 63246 10240102 2146 38723102

63165 10260102 63246 10214102 63165 10269102 63187 10181102

a from R t [33] T K p kPa T K p kPa T K p kPa

29671 90710-3 47365 2934 62779 10109102

31114 13110-2 63166 1022102 6 7 7 7 7 78208 9319310

37372 74710 60479 64836101 77342 79543102

61808 83313101 62779 10109102

45104 1429 6 1 2 Da debu n [79]

8634 20393102

37372 74010-2 52425 988 0177 35813102

29852 45310-3 52577 104101 1751 42405102

32228 11610-2 52862 113101 4924 61513102

34586 24410-2 57039 31781101 8522 97548102

37323 54310-2 58725 46103101 2

-2

41943 46110-1

2802 015710

ta from Ro sh and DixoT K p kPa T K p kPa

44354 83910-1 46275 1644 45124 111 47035 2104 45325 117 47595 2520

Dat oeder a ietz [80]

T K p kPa

45705 1351

a from R nd MorawT K p kPa

41313 243310-1 52317 9930 43314 546610-1 56318 2646101

19 7363101

48316 3160 45315 1187 613

52

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 56: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Ruff and Bergdahl [81] TT K p kPa T K p kPa K p kPa

47815 16 57318 291101 62519 101102

50817 43 58318 423101 6

Dat hmahl Barthel and Kaloff [82]

T K p kPa

3019 101102

51317 47 59719 504101 53317 12101 61519 687101 54318 13101 62819 100102

a from ScT K p kPa T K p kPa

44664 9310-1 51917 892 61769 8121101

44964 10 52917 115101 62119 8765101

47815 272 53167 125101 62819 9806101

47966 284 54068 1540101 62969 1010102

48216 304 54968 1919101 63718 1148102

48766 360 55168 2034101 63968 1211102

49266 423 56268 2604101 41243 23710-1

49366 436 57268 3260101 41533 26910-1

49866 499 57418 3350101 42043 33210-1

49866 507 57918 3746101 42564 41510-1

49916 513 58268 4041101 43064 50310-1

50416 584 59619 5313101 43554 60310-1

50717 636 60619 6467101 43864 68110-1

50967 697 60919 6819101 51067 697 61669 7923101

Data from Schneider and Schupp [83]

T K p kPa T K p kPa T K p kPa 53968 1484101 50016 55018 1943101531 51917 800 49116 400 55218 2038101

48416 295 55318 2024101

51817 788 52317 101101 55418 2190101

50116 537 54518 1727101

50216 521 56318 2686101

16 507 55018 1933101

57518 3468101 55118 1993101

Data choumlnherr nsel [84] p a

51917 793

52167 905 51917 881 51967 967 502

from S and HeT K kPa T K p kP T K p kPa

105144 90 158199 991 171640 1490 118624 200 163252 1155 172605 1535 132214 382 166597 1275 173551 1575 142466 571 168668 1345 151037 782 170476 1430

Data from Scott [85]

T K p kPa 29314 17310-4

53

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 57: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

Data from Shpilrsquorain and Nikanorov [86] T K p kPa T K p kPa T K p kPa

55411 2152101 63561 1123102 78677 96252102

56061 2505101 63981 1210102 79686 10798103

56711 2893101 64211 1257102 81446 13057103

57891 3740101 64381 1293102 83625 163551103

60061 5854101 66430 18254102 80366 116117103

60411 6261101 70729 34921102 81546 131973103

62111 8635101 74278 56147102 82245 142302103

62221 8811101 75598 66372102 83185 156996103

62371 9038101 77467 83905102 84539 179551103

62681 9547101 64801 13862102 84724 182505103

62941 1002102 67730 22531102 85454 196728103

63521 1117102 68150 23779102 85644 199968103

64331 1279102 69470 29070102 86664 221186103

61971 8419101 72409 44107102 88043 251478103

62811 9815101 73239 49111102 88213 255352103

62831 9889101 75268 63837102 88323 257295103

63091 1034102 77457 83449102 Data from Spedding and Dye [87]

T K p kPa T K p kPa T K p kPa 533825 1306101 573610 33293101 613886 75568101

549811 19337101 586013 43390101 620254 85144101

558948 23954101 594741 51918101 630244 10222102

564721 27351101 597253 54588101 565743 27964101 604288 62792101

Data from Stock and Zimmermann [88]

T K p kPa 28314 73310-5

27315 23910-5

25317 44010-6

21319 65310-7

Point below triple point not included in analysis Data from Sugawara Sato and Minamiyama [9]

T K p kPa T K p kPa T K p kPa 60167 60389101 73522 52093102 87315 23650103

63083 10258102 76875 79022102 89271 28647103

66410 18162102 79555 10710103 91861 35883103

68399 24860102 82415 14651103 92962 38828103

70503 33804102 85324 19858103

54

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 58: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

55

Data from van der Plaats [89] T K p kPa T K p kPa T K p kPa

27315 62710 P

-4P 28714 13210P

-3P 28914 15310 P

-3P

28314 10710 P

-3P 28015 94710P

-4P 28614 13310 P

-3P

28714 13310 P

-3P 28314 10610P

-3P 28614 12510 P

-3P

28514 13510 P

-3P 28314 11210P

-3P 28714 13510 P

-3P

29114 17710 P

-3P 27315 64010P

-4P

27315 56010P

-4P 29214 17210P

-3P

27715 77310P

-4P 27315 58710P

-4P

28214 97310P

-4P 28414 11110P

-3P

28314 10310P

-3P 35412 14910P

-2P

27315 68710P

-4P 35812 16610P

-2P

29314 17710P

-3P 28514 77310P

-4P

Data from Villiers [90]

T K p kPa T K p kPa T K p kPa 33312 34710 P

-3P 37312 40010P

-2P 36512 25510P

-2P

34112 57310 P

-3P 33312 36710 P

-3P 37312 40110P

-2P

34912 10110 P

-2P 34112 58710 P

-3P

35712 16410P

-2P 34912 10310 P

-2P

36512 25710P

-2P 35712 16410 P

-2P

Data from Volmer and Kirchhoff [91]

T K p kPa T K p kPa 31293 829310 P

-4P 30863 593410 P

-4P

31293 817510 P

-4P 30863 599010 P

-4P

30333 404810 P

-4P 30863 600010 P

-4P

30333 395710 P

-4P 31293 825710 P

-4P

30333 396010 P

-4P 31293 821110 P

-4P

Data from von Halban [92]

T K p kPa 25516 37610 P

-6P

21979 33110 P

-8P

Point below triple point not included in analysis Data from Young [93]

T K p kPa T K p kPa T K p kPa 45695 133 49531 459 62995 101310P

2P

45685 131 51012 691 71660 386210P

2P

51007 6913 54348 165810P

1P 71760 387210 P

2P

45690 132 55338 209510P

1P

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice

Page 59: The Vapor Pressure of Mercury - Rutgers Physicseandrei/389/NISTIR.6643.pdf · representation of the vapor pressure of mercury. Numerous compilations and correlations of the vapor

56

Appendix B Detailed Listing of Supplemental Experimental Data for the Heat Capacity of Mercury

All temperatures have been converted to ITS-90 Data are arranged alphabetically by first

author Smoothed data from Amitin Lebedeva and Paukov [123]

T K C BpB J(molK) T K C BpB J(molK) 2343375 28543 2899958 27987 2400066 28473 2981437 27911 2500049 28359 2999932 27899 2600029 28255 2700007 28162 2731500 28134 2799984 28076

Smoothed data from Busey and Giauque [44]

T K C BpB J(molK) T K C Bp B J(molK) 2343206 28476 3499729 27606 2400264 28430 3999785 27359 2500185 28351 4499942 27204 2600103 28275 5000132 27129 2700024 28196 5500289 27117 2799953 28121 6000361 27146 2899893 28041 6500326 27217 2981452 27983 7000199 27338 2999843 27966 7500049 27514

Note Maximum temperature of their measurements was 330 K values at higher temperatures are based on measurements in the literature Smoothed data from Douglas et al [51]

T K C BpB J(molK) T K C Bp B J(molK) 2343006 28275 5131679 27158 253166 28147 5331743 27141 27315 28019 5531796 27132

2931376 27900 5731835 27130 2981352 27872 5931858 27137 3131293 27790 6131863 27150 3331245 27688 6297653 27167 3531229 27595 633185 27171 3731238 27511 653182 27198 393127 27435 6731776 27232 4131319 27368 693172 27274 4331382 27309 7131658 27321 4531454 27259 7331596 27374 473153 27217 7531541 27433 4931607 27183 7731501 27499

ltlt ASCII85EncodePages false AllowTransparency false AutoPositionEPSFiles true AutoRotatePages None Binding Left CalGrayProfile (Dot Gain 20) CalRGBProfile (sRGB IEC61966-21) CalCMYKProfile (US Web Coated 050SWOP051 v2) sRGBProfile (sRGB IEC61966-21) CannotEmbedFontPolicy Error CompatibilityLevel 14 CompressObjects Tags CompressPages true ConvertImagesToIndexed true PassThroughJPEGImages true CreateJDFFile false CreateJobTicket false DefaultRenderingIntent Default DetectBlends true ColorConversionStrategy LeaveColorUnchanged DoThumbnails false EmbedAllFonts true EmbedJobOptions true DSCReportingLevel 0 SyntheticBoldness 100 EmitDSCWarnings false EndPage -1 ImageMemory 1048576 LockDistillerParams false MaxSubsetPct 100 Optimize true OPM 1 ParseDSCComments true ParseDSCCommentsForDocInfo true PreserveCopyPage true PreserveEPSInfo true PreserveHalftoneInfo false PreserveOPIComments false PreserveOverprintSettings true StartPage 1 SubsetFonts true TransferFunctionInfo Apply UCRandBGInfo Preserve UsePrologue false ColorSettingsFile () AlwaysEmbed [ true ] NeverEmbed [ true ] AntiAliasColorImages false DownsampleColorImages true ColorImageDownsampleType Bicubic ColorImageResolution 300 ColorImageDepth -1 ColorImageDownsampleThreshold 150000 EncodeColorImages true ColorImageFilter DCTEncode AutoFilterColorImages true ColorImageAutoFilterStrategy JPEG ColorACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt ColorImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000ColorACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000ColorImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasGrayImages false DownsampleGrayImages true GrayImageDownsampleType Bicubic GrayImageResolution 300 GrayImageDepth -1 GrayImageDownsampleThreshold 150000 EncodeGrayImages true GrayImageFilter DCTEncode AutoFilterGrayImages true GrayImageAutoFilterStrategy JPEG GrayACSImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt GrayImageDict ltlt QFactor 015 HSamples [1 1 1 1] VSamples [1 1 1 1] gtgt JPEG2000GrayACSImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt JPEG2000GrayImageDict ltlt TileWidth 256 TileHeight 256 Quality 30 gtgt AntiAliasMonoImages false DownsampleMonoImages true MonoImageDownsampleType Bicubic MonoImageResolution 1200 MonoImageDepth -1 MonoImageDownsampleThreshold 150000 EncodeMonoImages true MonoImageFilter CCITTFaxEncode MonoImageDict ltlt K -1 gtgt AllowPSXObjects false PDFX1aCheck false PDFX3Check false PDFXCompliantPDFOnly false PDFXNoTrimBoxError true PDFXTrimBoxToMediaBoxOffset [ 000000 000000 000000 000000 ] PDFXSetBleedBoxToMediaBox true PDFXBleedBoxToTrimBoxOffset [ 000000 000000 000000 000000 ] PDFXOutputIntentProfile () PDFXOutputCondition () PDFXRegistryName (httpwwwcolororg) PDFXTrapped Unknown Description ltlt ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing The PDF documents can be opened with Acrobat and Reader 50 and later These settings require font embedding) JPN ltFEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002gt FRA ltFEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002egt DEU ltFEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002egt PTB ltFEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002egt DAN ltFEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002egt NLD ltFEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002egt ESP ltFEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002egt SUO ltFEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002egt ITA ltFEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002egt NOR ltFEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002egt SVE ltFEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002egt gtgtgtgt setdistillerparamsltlt HWResolution [2400 2400] PageSize [612000 792000]gtgt setpagedevice