27
The Use of Critical Process Parameters and Quality By Design to Improve Biopharmaceutical Product Quality Howard L. Levine, Ph.D. BioProcess Technology Consultants, Inc.

The Use of Critical Process Parameters and Quality By ... · and Quality By Design to Improve Biopharmaceutical Product Quality Howard L. Levine, ... (ICH Q7A) Critical Quality

Embed Size (px)

Citation preview

The Use of Critical Process Parameters and Quality By Design to Improve

Biopharmaceutical Product Quality

Howard L. Levine, Ph.D.BioProcess Technology Consultants, Inc.

Presented atBioProcess International Asia Pacific

Mumbai, IndiaOctober 21, 2008

and2008 PDA Development and Regulation of Clinical

Trial Supplies ConferenceCambridge, MA

November 11, 2008

From Clone to Commercial®

What is Quality by Design?

“Means that product and process performance characteristics are scientifically designed to meet specific objectives, not merely empirically derived from performance of test batches.”

The product is designed to meet patient needs and performance requirements

The process is designed to consistently meet product critical quality attributes

The impact of starting raw materials and process parameters on product quality is well understood

The process is continually monitored, evaluated and updated to allow for consistent quality throughout product life cycle

Critical sources of variability are identified and controlled through appropriate control strategies

Ref: H. Winkle, BPI Conference, Oct 1 – 4, 2007

From Clone to Commercial®

Defining Critical Quality Attributes (CQAs)

“…those molecular and biological characteristics found to be useful in ensuring the safety and efficacy of the product…” (Q6B)

Can these attributes be properly defined for biologics?

• Often difficult due to complexity of biologic products

• Default is to look at many attributes

QbD focuses only on critical product attributes and the impact of those attributes across their ranges on safety and efficacy

• Product specifications based on mechanistic understanding of how formulation and process factors impact product performance

Need to develop a design space to be documented in application which is based on CQAs

From Clone to Commercial®

What are Critical Process Parameters (CPPs)

CPPs are independent process parameters most likely to affect the quality attributes of a product or intermediate

CPPS are determined by sound scientific judgment and based on research, scale‐up or manufacturing experience

CPPS are controlled and monitored to confirm that the impurity profile is comparable to or better than historical data from development and manufacturing

Quality attributes derived from CPPs include:

• Chemical purity

• Qualitative and quantitative impurities

• Physical characteristics

• Microbial quality

From Clone to Commercial®

QbD for Small Molecules vs. Biologics

Process control more difficult to define and implement

Process control readily defined and achieved

Characterization Complex Readily Characterized

Quality Attributes difficult to determine; defined late in product development

Quality Attributes determined early in product development

Variability derived from Drug Substance

Variability derived from formulated Drug Product

Biologic ProductsSmall Molecule Drugs

From Clone to Commercial®

The Application of QbD to Biologic Products

Quality by Design is an important element in achieving desired state, however, we’re not there yet

• Determining relationship between

Quality specifications and safety or efficacy results

Clinical Activity and Critical Quality Attributes 

Product Attributes and Critical Process Parameters

Process Validation and the Design Space

• Insufficient Data on “Key” versus “Critical”

• Strong Conservatism on both sides

• “Traditional” development and validation approaches can be applied to QbD, especially in identifying CPP and defining the Design Space

From Clone to Commercial®Ref: B. Davis, FIP Conference 2007

Knowledge Space

From Clone to Commercial®

EstimatesBased on

Experience

Refined Based on Preclinical

and Safety Data

Refined Based on

Clinical and Process Data

Continually Reviewed and Refined Based on Increased

Clinical

Preclinical Phase 1 Phase 2 Phase 3 Post Approval

Defining CQAs Throughout a Product Life Cycle

Critical aspects throughout product life cycle define what is needed:To release productTo control the processFor post‐approval changes

From Clone to Commercial®

Linking Design Space and Control Strategies

Design space is based on our Knowledge Space

Control Strategy: Maintaining the process within the Design Space

Design Space is not intended to define critical attributes, rather these will follow from the “process flow”

The control strategy for a CQA is the selection and combination of different types of controls applied to the manufacturing process and associated systems to assure the right product quality at an acceptably low level of risk of manufacturing failure

From Clone to Commercial®

Defining Control Strategies

From Clone to Commercial®

Ran

ge o

f Raw

Mat

eria

lA

ndFa

cilit

y A

ttrib

utes

Process Designed toLimit Product Variability

Define API in terms of CQAs

Identify CPP that affect the CQAs

Determine range of each CPP that produces acceptable product to establish the Design Space

CPP Drive CQA to Create the Design Space

From Clone to Commercial®

Comparing CQAs and CPPs

Graphic adapted from Kozlowski and Swan (2006)

Process validation should provide “documented evidence that the process, operated within established parameters, can perform effectively and reproducibly to produce an intermediate or API meeting its predetermined specifications and quality attributes…” (ICH Q7A)

Critical Quality Attributes derive from …… Critical Process Parameters

From Clone to Commercial®

Design Space: Identification of CPPs

Using data from development identify parameters that affect the defined product characteristics, for example• Level of key impurity• Desired glycoform content• Desired yield

Impurity 1

Gly

cofo

rm

Yield

Column Loading CapacityFl

ow R

ate

pH

From Clone to Commercial®

Design Space: Process Optimization

Use Factorial Analysis without interactions to map boundary conditionsUse Full Factorial to fully define response surfaces and examineinteractions

Column Loading Capacity

Flow

Rat

e

pH

Column Loading Capacity

Flow

Rat

e

pH

From Clone to Commercial®

Summarize results of multiple experiments to define response surface

Validate the process within the Design Space to demonstrate consistent production of product with desired characteristics

Design Space: Putting it All Together

Impurity 1

Gly

cofo

rm

Yield

[Fe] in Media

Agi

tatio

n R

ate

Final OD

Design Space

From Clone to Commercial®

Application of QbD to Cell Culture

Optimizing clone selection to achieve maximal product titer within a Design Space

Potential Critical Process Parameters in cell culture production…

• Temperature

• pH

• Agitation

• Dissolved oxygen

• Medium constituents

• Feed type and rate

From Clone to Commercial®

Optimization of Cell Culture

Many potential process parameters can impact the Critical Quality Attributes of the cell culture process, including:

• Cell viability and number

• Product titer

• Product Characteristics (e.g. glycosylation)

• Impurity profile

Identify those which are critical through process development evaluating impact of each parameter on the CQA

Create Design Space by optimization of these parameters through a two factorial design of experiment

From Clone to Commercial®

Optimization of Cell Culture Conditions

Optimization performed using SimCellTM technology from BioProcessors Corp.

50 conditions (10 T x 5 pH)n=9 (450 total chambers)

Two factorial design monitoring product titer (yield) as a function of pH and temperature

From Clone to Commercial®

Mapping Downstream Process Design Space

Critical Process Parameters in column chromatography…• Column bed height and packing efficiency• Media selectivity• Dynamic capacity for product and total protein• Buffer conditions  (pH, conductivity)• Temperature• Flow rate ranges• Sample load ranges• Media particle size and size range

All impact product purity and yield

From Clone to Commercial®

Defining Ion Exchange Column Conditions

Purification of a natural protein by anion exchange chromatographyAnion exchange column equilibrated with 10 mM TRIS‐Phosphate bufferVariation of load solution pH will impact product yield and purity

From Clone to Commercial®

Anion Exchange Column Yield and Purity

Best yield at pH 7.0, however, additional contaminant present in pool not seen at higher pH’s

Can subsequent process steps remove this contaminant?

Product

Contaminant

From Clone to Commercial®

Final Product Purity

Subsequent purification of Anion Exchange Column pool removes process contaminant regardless of pH at which Anion Exchange column is run

A – Anion exchange column pool, pH 7.0B – Anion exchange column pool, pH 8.6

C – Column 2 pool following loading with “A”D – Column 2 pool following loading with “B”

From Clone to Commercial®

Summary and Conclusions

Application of QbD to biopharmaceutical products is often difficult reflecting the complexity of these products

Process development of biologics has always included some aspects of QbD, including science‐based decisions and the use of scale down process models 

Once optimized, CPP ranges can be used to define the design space for biologic manufacturing processes

From Clone to Commercial®

Summary and Conclusions

Combining DOE with science‐based decisions can decrease the time required to optimize production, speed the development of robust processes, and reduce risk in biologics product development

Using QbD can facilitate the technology transfer by describing the design space for complex products and allowing process variability

From Clone to Commercial®

AcknowledgementsBioProcess Technology Consultants

• Sheila Magil, Ph.D.

• Susan Dana Jones, Ph.D.

• Alex Kanarek, Ph.D.

BioProcessors, Inc.

• Cell culture optimization

Neurobiological Technologies, Inc.

• Chromatography optimization

From Clone to Commercial®

THANK YOU!

For more information, contact

Howard L. Levine, Ph.D.

BioProcess Technology Consultants, Inc.

289 Great Road, Suite 303

Acton, MA 01720

978‐266‐9153

978‐266‐9152 (fax)

[email protected]

www.bioprocessconsultants.com