33
Cellulosic Supply Chains for Bioenergy Penn. State Bioenergy short course series 2010 Developments in Agronomic Biomass Paul Salon Ph.D. Plant Materials Specialist USDA-NRCS The USDA Biofuels Strategic Production Report A Regional Roadmap to Meeting the Biofuels Goals of the Renewable Fuels Standard by 2022

The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Cellulosic Supply Chains for BioenergyPenn. State Bioenergy short course series 2010

Developments in Agronomic Biomass

Paul Salon Ph.D.

Plant Materials Specialist

USDA-NRCS

The USDA Biofuels Strategic Production Report

A Regional Roadmap to Meeting the Biofuels Goals of the Renewable

Fuels Standard by 2022

Page 2: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Introduction USDA is developing a comprehensive strategy to help recharge the rural 

American economy through the development of a successful biofuels market.

The market must be  capable of achieving the U.S. Renewable Fuels Standards (RSF2), as set out in the Energy Independence and Security Act of 2007 (EISA). 

The RSF2 became effective on July 1st, 2010, and will create new market opportunities for American agriculture to help fulfill its mandate:  the American economy will be using 36 billion gallons (bg) of renewable transportation fuel per year in its transportation fuel supply by 2022.

Meeting The 21 Billion Gallon Advanced Biofuels Challenge 

Of the remaining 21 bg needed to achieve the total 36 bg goal:

‐ 16 bg must come from advanced cellulosic biofuels.  These are fuels that are made from cellulosic feedstocks that also reduce greenhouse gas emissions by at least 60%.

‐ At least 1 bg are currently required to come from biomass‐based diesel.  The final contribution level from this source that the RSF2 mandates will be determined at a later date by rule making. 

The Energy Independence and Security Act also mandates an additional 4bg of advanced biofuels by 2022.  This fuel is defined by the reduction of greenhouse gas emissions by at least 50%. 

Page 3: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Feedstock Assumption SummaryEPA Expects the following feedstocks and associated number of gallons by 

2022:

‐ Switch Grass (perennial grass)……………………………….………….... 7.9 bg

‐ Soy biodiesel and corn oil……………………………………………………. 1.34 bg

‐ Crop Residues (corn stover, includes bagasse)……………………… 5.5 bg

‐Woody biomass (forestry residue)……………………………………….. 0.1 bg

‐ Corn Ethanol……………………………………………………………………….. 15.0 bg

‐ Other (municipal solid waster)…………………………………………….. 2.6 bg

‐ Animal fats and yellow grease……………………………………………… 0.38 bg

‐ Algae…………………………………………………………………………………… 0.1 bg

‐ Imports……………………………………………………………………………….. 2.2 bg

Total        35.12

Feedstock Assumption SummaryUSDA estimates the following feedstocks and the associated gallons by 2022:

‐ Dedicated energy crops:Perennial grasses, energy cane, biomass sorghum.…………... 3.4 bg

‐ Oilseeds (soy, canola)……………………………………………………….. 0.5 bg

‐ Crop Residues (corn stover, straw)……………………………………. 4.3 bg

‐ Woody biomass (logging residues only)……………………………. 2.8 bg

‐ Corn Starch Ethanol………………………………………………………….. 15.9 bg

‐Total           26.9

The complement of feedstocks included in this USDA analysis and those identified by the EPA should not be considered an exhaustive list of all possible feedstock sources.

Page 4: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Central East Region States:  Delaware, Iowa, Illinois, Indiana, Kansas, Missouri, Ohio, Oklahoma, 

Maryland, Minnesota, Nebraska, North Dakota, Pennsylvania, South Dakota, Wisconsin, Virginia.

Feedstocks:  Perennial grasses, biomass sorghum, crop residues, soy beans, woody biomass.

Other Points of Interest: The Central East Region is one of two regions with the most potential for near and long term development of biofuels.  Based on feedstock and land, infrastructure, and demand, this region is key in implementing a successful biofuels market.  The current cap in the RFS2 as a result of the EISA is 15 bg of corn‐starch ethanol.  This region will produce the last 4.25 bg to reach the cap. 

Central East Region (cont…)Potential Production Capacity:  USDA estimates that on a volume basis, 

43.3% of the 20 billion gallons of advanced biofuel by 2022 will be produced in the Central East region. This will take $72 billion in cumulative investments to build 226 biorefineries with an estimated capacity of 40 million gallons per year. 

Land Use: This region has an acreage base of 241 million of cropland and cropland pasture plus 109.8 million acres of timber land that could produce 9.1 billion gallons from 10.8 million acres of dedicated bioenergy crops plus 2.0 million acres of harvested logging residue in a year Incremental advanced biofuel production will take up 4.5% of theavailable cropland and cropland pasture acreage base. 

Page 5: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Biomass Crop Assistance ProgramBCAP Payments:• Producers in project areas will receive payment for up to 75 percent of the cost for establishing a perennial crop including:The costs of seed and stock for perennials; •The cost of planting the perennial crop; and •For non‐industrial forest land, the costs of site preparation and tree planting.

•The collection, harvest, storage, and transportation payments are provided to eligible producers or persons authorized to conduct these activities.•These funds will pay for the direct costs of the collection, harvest, storage, and transportation of crops to a biomass conversion facility. The funding will match dollar for dollar, up to $45 per dry ton.

56 million acat 5 t/ac

switchgrasswillowspoplars existing hayothers

Disputed!!

Currently approx. 31 million acres in CRP

Page 6: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Corn Residue Removal“It takes 4 to 10 times more residue to sustain adequate soil carbon levels and thus soil productivity than to protect against erosion alone.” 2.6 t/ac (+/- 1.9)Doug Karlen, ARS research leader and Soil Scientist, Soil, Water, and Air Resources

Unit, Ames Iowa and Coordinator of Renewable Energy Assessment Project .

•Inevitable source of large supply of cellulosic feedstock in near term especially in Midwest (reduced from million ton report by 1/8th) 4.7 t/ac DM total residue KS data•Higher corn yields = more residue•Based on soils and topography•Precision removal of residue is possible•Nutrients are also removed in stover which will need replacing

Bioenergy crop productions systems will need to have the following:

• Adapted, high yield plant materials with high bioenergy conversion efficiency, i.e. low energy inputs!!

• Complete, fully validated, sustainable production and management systems (on marginal land, not irrigated).

• Economically viable for both producer and biorefinery.• High net energy and energy yields per hectare.• Fully documented environmental impacts and credits.

( Lack of invasiveness).

Page 7: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

SustainabilitySustainability of production systems is key to their successful adoption – particularly if, as we expect, a broadly based consumer demand for sustainably produced biomass and biofuels. We expect major energy companies to respond to this demand by insisting that their biofuel providers, and the biomass feedstock providers that serve them, use sustainable practices.

Neal Gutterson President and CEO for Mendel Biotechnology collaborators with Monsanto and BP.

Biomass SorghumAugust 28, 200985 days after planting

Cornell University

Page 8: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Why is sorghum a good energy crop?Why is sorghum a good energy crop?

••Desirable agronomic traitsDesirable agronomic traits-Drought tolerant-Low nutrient input-Multiuse crop:

GrainSugarBiomass

Ethanol productionDirect combustion

Cellulosic ethanol-Low lignin content•Genetically diverse germplasm available

Sorghum (Sorghum bicolor)Enormous potential for unscreened genotypes from NPGS now being investigated.

Forage types (brown midrib), grain types, dual – purpose 5.7 - 9.2 t/ac

Photoperiod-sensitive sorghum –Biomass sorghums do not start flowering until daylength is 12 hr and 20 min or less usually close to frost in many locations. Total biomass reported to be 26 – 46% greater than those of corn and forage sorghums with less overall water use. The high lignin content reduces lodging but will reduce ethanol conversion efficiencies. 12 t/ac DM

Sweet sorghums- Use to be produced in PA. accumulate high levels of fermentable carbohydrates (15-23%) within the stalk , which can be extracted and directly converted into ethanol as well as high yields of lignocellulosic biomass, increasing its potential for use as an energy crop. 12.6 t/a DM (corn 9.9 t/a DM)

Studies have shown the dual conversion of sweet sorhum yielded higher yields per acre compared to corn with less fertilizer and water use.

Page 9: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

from Performance of Annual and Perennial Crops for Forage and Biomass Energy

Production by I.C. Anderson, D.R. Buxton and A. Hallam.

20

15

10

5

0

Yiel

d –

dry

t/ha

Sweet Sorghum

Sorghum Sudangrass

Corn

Big BluestemSwitchgrass

Reed Canarygrass

0 50 100 150 200 250 300Kg N/ha

*Sorghum produces more biomass**Sorghum produces more biomass*

Our first high-biomass sorghum hybrids, ES 5200 and ES 5201 with Skyscraper™, are now available under our Blade Energy Crops brand. These new seed varieties were developed as part of our long-term collaboration with Texas A&M University.We plan to commercialize sorghum hybrids that offer increased biomass, broader adaptability to cooler climates, greater drought tolerance and other agronomic and compositional improvements.

Page 10: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Perennial Grasses for Bioenergy:Not Only Switchgrass!

M.D. Casler, USDA‐ARS, Madison, WIK.P. Vogel, USDA‐ARS, Lincoln, NE

A.R. Boe, South Dakota State Univ., BrookingsW.F. Anderson, USDA‐ARS, Tifton, GAS.R. Larson, USDA‐ARS, Logan, UT

J. Clifton‐Brown, IBERS, Aberystwyth, WalesP.R. Salon, USDA‐NRCS, Big Flats, NY

“Active” Potential Energy Grasses• Switchgrass, Panicum virgatum

• Big bluestem, Andropogon gerardii

• Indiangrass, Sorghastrum nutans

• Prairie cordgrass, Spartina pectinata

• Bermudagrass, Cynodon dactylon

• Napiergrass, Pennisetum purpureum

• Miscanthus, Miscanthus x giganteus

• Reed canarygrass, Phalaris arundinacea

• Wildryes, Leymus spp.

• Tall Wheatgrass, Thinopyrum ponticum  N. USA

Eastern 2/3 of USA; Tallgrass prairie, Oak savanna

Southern USA

SE USA

E. & S. USA

N. USA

Intermountain West

Page 11: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

What is a Warm Season Grass

• WSG (C4) have a different photosynthetic pathway and leaf anatomy than CSG (C3).

• Energy fixed into 4‐carbon units vs. 3‐carbon units• C4 More efficient photosynthesis in hot  direct sunlight conditions no photorespiration (which wastes 40% energy).

• Allows for increased efficiency in use of water, C02, photosynthetic capacity, and nitrogen. 

• C4 higher C:N ratio more structural fiber.• Extensive and deep root system.

C4 vs C3

• WSG start growing at 55o F the rate increases until 90o F compared to 32o F and 78o F for CSG.

• 60‐70% of WSG  growth occurs after June 1st

• Longer establishment period.• Less competitive to weeds and cool season grasses.

• C4 more seedling root growth, less seedling top growth.

• C4 higher yield potential with single cutting.

Page 12: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

•High yielding •Lodge resistant •Low input •adaptability ?

Switchgrass Gene Pools

PP = Prairie ParklandGPS = Great Plains Steppe

LMF = Laurentian Mixed ForestEBF = Eastern Broadleaf Forest

Casler et al. (2007, 2008)

Page 13: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Switchgrass seed – a principal attribute

• Switchgrass seed is easy to harvest and plant.

• Seed yields can be high 1000 kg/ha. Seed cost less than for other native species.

• Limited amounts (3‐4.5 lbs PLS) needed to plant a field.

• Other natives have chaffy seed requiring special processing and planters.

Switchgrass germplasm contribution of USDA-NRCS Plant Materials Program

“Alamo” released by the Knox City Texas PMC collected TX, 1964, released 1975

“Blackwell” released by the Manhattan, KS PMCcollected OK 1934, released 1944

“Cave-in –Rock” released by the Elsberry, MO PMCcollected IL 1958, released 1973

“Kanlow” released by the Manhattan, KS PMCcollected OK 1957, released 1963

Other varieties of switchgrass, big bluestem, indiangrass and eastern gamagrass have been released for other conservation practices and may have biomass energy applications

Page 14: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Switchgrass Genetics• Upland cytotype (upland and drier areas)

– Found from Texas to Canada (Cave‐in‐Rock)– Reported chromosome numbers from 2n=2x=18 (diploid) to 2n=12x=108; 2n=4x=36 (tetraploid) cv (Summer) and 2n=8x=72 (octoploid) are most common.

• Lowland cytotype (riparian, wetland habitats)– Found from Mexico to Nebraska  (Kanlow)– Rare compared to upland type, some intermediates

– Chromosome number: 2n=4x=36 (tetraploid)

• Disomic (or mixed) inheritance (most likely)

Lowland vs. Upland Cytotypes

• Lowland cytotypes…– Greater plant height and biomass yield.

– Fewer tillers, greater tiller diameter, more phytomers.

– Lower cold/freezing tolerance.

– Greater heat tolerance.

– Up to 2‐3 weeks later in heading, anthesis, mature seed.

– Adapted to longer growing season with reduced photoperiod.

• Moving southern populations north provides a “quick fix” to boost biomass yields, provided that they survive.

Page 15: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Hybrid Vigor & Heterotic Groups

Group Biomass yield (t/ac)

Lowland parent (Kanlow 4x) 7.1

Upland parent (Summer 4x) 6.1

Lowland x Lowland 7.3

Upland x Upland 6.2

Lowland x Upland 9.4 (32% heterosis)

Vogel and Mitchell (2008)

Experiment Name Big Flats 4 replications Exp Number SpeciesSwitchgrassNE Summer late mat.-High vigor selection PC PV-0617-01i SwitchgrassNE Late Syn HYLD-HDMD C4 Syn 2 PV-0620-FS SwitchgrassNE SUMMER Elite late mat. selection PC PV-0618-03i SwitchgrassCIR HYD-HDMD C3 polycross PV-0405-14i SwitchgrassS x K HP1 C1 High yield PC PV-0611-14i SwitchgrassK x S HP1 C1 High yield PC PV-0609-02i SwitchgrassK x S HP1 C1 High NETO2 index PC PV-0610-26i SwitchgrassS x K HP1 C1 High NETO2 index PC PV-0612-28i SwitchgrassKanlow N1 early mat.-High yield PC PV-0605-07i SwitchgrassKanlow N1 Syn. 2 increase PV-0629-28i SwitchgrassKanlow N1 late mat.-High yield PC PV-0606-35 SwitchgrassKanlow N1 NETO3 Index selection PC PV-0608-21i SwitchgrassKanlow N1 NETO2 Index selection PC PV-0607-27i Switchgrass

Page 16: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Cornell  University, Ithaca NY established 2006Warm season grass plots 76 Kg/ ha nitrogen (2007 & 2008) 

20082009

Cornell  University, Ithaca, NYWarm season grass plots no nitrogen, established 2006

Page 17: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Genetic Diversity of Switchgrass Populations in the Northeast L. Cortese1, S. A. Bonos1, J. Crouch1, E. N. Weibel1, C. Miller2, and B. Skaradek2

1Rutgers University, New Jersey Agricultural Experiment Station, 2USDA-NRCS Cape May Plant Materials Center

INTRODUCTION

•Although a significant amount of genetic diversity exists within switchgrass (Panicum virgatum), little research has been conducted on the level of genetic diversity and local adaptation among different populations/ecotypes of switchgrass currently recommended for habitat restoration in the Northeast region of the US.

•Upland ecotypes (Fig 2) are commonly octaploids (2n=8x=72) and occasionally hexaploids (2n=6x=54) and are shorter, finer stemmed and more adapted to drier habitats (Lewandowski et al., 2003).

•Lowland ecotypes (Fig 2) are typically tetraploid (2n=4x=36), and are coarse-stemmed, tall growing and more robust than the upland ecotypes (Lewandowski et al., 2003).

MATERIALS AND METHODSPlant Material

• Switchgrass seed from 14 populations (Fig. 1) were obtained from various sources.

• ‘Carthage’, ‘Timber’, ‘Contract’, ‘Shelter’ and ‘High Tide’ germplasm sources were obtained from the Natural Resources Conservation Service – USDA Plant Materials Center in Cape May NJ. Carthage, Timber, Contract and High Tide represented Northeast ecotypes.

• Standard cultivars developed in the Midwest and other germplasm sources from other countries included ‘Caddo’, ‘Shawnee’, 196 (PI 337553), Pav12, Turkey (PI 204907), ‘Sunburst’, ‘Kanlow’, ‘Pathfinder’, and ‘Blackwell’, obtained from the Plant Introduction (PI) collection curated by the Germplasm Resources Information Network (GRIN).

• Kanlow and Timber represented lowland ecotypes. All other populations expressed characteristics of upland ecotypes (Fig. 2).

• Seed of each population was germinated in Pro-Mix HP (K.C. Shafer, York, PA) in 12 x 15 inch flats.

• Individual plants were transplanted, grown under greenhouse conditions for approximately 8 weeks, and planted to a spaced-plant nursery in the spring of 2005 at the Rutgers University Plant Biology Research and Extension Farm at Adelphia, NJ (Fig. 2 and 3) for a total of 432 plants.

REFERENCES

Lewandowski, I., J.M.O. Scurlock, E. Lindvall, and M. Christou. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy 25:335-361.

Pritchard, J.K., M. Stevens and P.J. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.

Tobias, C.M., D.M. Hayden, P. Twigg, and G. Sarath. 2006. Genic microsatellite markers derived from EST sequences of switchgrass (Panicum virgatum L.). Molecular Ecology Notes 6:185-187.

OBJECTIVES

• The objectives of this study were to determine molecular and morphological differences within and between 14 different switchgrass populations.

Figure 1. Switchgrass populations utilized in morphological and molecular marker analysis.

2006 Morphological Data• Similar results were observed for Structure analysis of 2006 morphological data compared to

2005 morphological data.

• Kanlow(7) and Timber(13) again formed a distinct group based on morphology.

• Carthage(14) and High Tide(9) formed another cluster (Fig 5) in 2006.

• Upland and lowland ecotypes were grouped based on morphological data, but Northeast and Midwest populations were not completely distinguished using morphological data even though populations looked distinct.

Populations1) Caddo †

2) Shawnee3) 1964) Pav 12 ‡

5) Turkey 6) Sunburst7) Kanlow8) Shelter9) High Tide10) Pathfinder11) Contract12) Blackwell ‡

13) Timber14) Carthage

Figure 6. Structure bar plot at K=3 for molecular marker data. Populations are listed in Fig 1.

Population

RESULTS AND DISCUSSION

•Significant morphological (Fig 2) and molecular differences between switchgrass populations were observed.

2005 Morphological Data•Structure analysis of 2005 morphological data separated the populations into distinct groups (Fig 4). Kanlow’(7) and Timber’(13) grouped together based on morphological measurements. These two populations also looked phenotypically similar and represented the lowland ecotypes.

•Pathfinder(10), Contract(11), and Blackwell(12) were grouped together by morphological data.

•Morphological measurements also clustered Caddo(1), Shawnee(2), 196(3), Pav12(4), Turkey(5), and Shelter(8) .

•Morphological analysis in 2005 provided some delineation between upland and lowland ecotypes, but did not distinguish between Northeast and Midwest populations.

Figure 5. Structure bar plot at K=3 for 2006 morphological data. Populations are listed in Fig 1.

Population

Morphological Markers• Morphological measurements were taken on 12 individuals from each of the 14 switchgrass

populations listed in Fig. 1 in 2005 and 2006.

• Measurements included plant height, panicle height, and flag leaf height, length and width.

• Measurements were taken approximately 1-2 weeks after anthesis.

Molecular Markers• Leaf tissue was collected from 12 individuals from each population listed in Fig 1 for molecular

marker analysis. DNA was isolated from leaf tissue using the Sigma® GenElute™ Plant

Genomic DNA Miniprep kit (Sigma-Aldrich Co., St. Louis, MO).

• Publicly available switchgrass specific microsatellite (SSR) markers were utilized for the molecular marker analysis (Tobias et al, 2006).

• Thirty-two SSR primer pairs were tested. SSR markers were genotyped on all individuals using an ABI 3130 genetic analyzer. Fifteen primer pairs amplified polymorphic bands in our populations and these were used for molecular marker analysis.

Analysis• Morphological and marker data was analyzed using the program Structure (Pritchard et al.,

2000) which identifies clusters of related individuals from multilocus genotypes. The full data set was analyzed for all models from K=1 through 14.

Population

Figure 4. Structure bar plot at K=3 for 2005 morphological data. Populations are listed in Fig 1.

† Numbers in table correspond to population numbers in Structure barplots

‡ These populations did not yield enough DNA for molecular marker data analysis with Structure

•Molecular Marker Data•Structure analysis of molecular marker data from 15 primer pairs also divided the populations into distinct groups (Fig 6).

•Kanlow(7), Timber(13), and Contract(11) composed one group, while Pathfinder(10) and Carthage(14) comprised a second cluster.

•Shawnee(2), 196(3), and Turkey(5) grouped together based on molecular marker data. Shelter(8) and High Tide(9) also formed a group.

•Molecular marker analysis did distinguish Kanlow and Timber (lowland ecotypes), but Contract (upland ecotype) was also included in that grouping. This indicated that the analysis did differentiate between upland and lowland but it was not complete.

•The molecular marker analysis did not clearly delineate Midwest and Northeast populations.

•Molecular and morphological marker analysis did not produce similar results.

•Continued work with molecular markers is needed to further differentiate between switchgrass populations.

Figure 2. Upland (left) and lowland (right) ecotypes of switchgrass.

Figure 3. Panicumvirgatum ‘Carthage’.

Fall Switchgrass Harvestin Canada

Page 18: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

FALL

WINTER

SPRING

Case New HollandFall mow spring bale in Canada

Big Bluestem (Andropogon gerardii)

• Dominant over much of the lowland of the tallgrass prairie.

• Highly competitive with switchgrass and indiangrass in planted mixtures in the northern Great Plains.

• Higher tiller density and denser root system than switchgrass or indiangrass.

Page 19: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Big Bluestem•Was the dominate species of the tall grass prairie, comparable yield potential as switchgrass..

•Photoperiod governs onset and cessation of growth and flowering (similar to switchgrass)

•Grows best in and tends to dominate in rich, sandy soils but also persists on clay loams.

•Crosses with sand bluestem a rhizomatous species producing fertile offspring•Hexaploid 2n=6x=60.

•Predominately self incompatible high genetic variability.

•Typical of most C4 plants with slow establishment reaching full potential in 2 – 4 years after sowing. May be slightly slower than switchgrass.

•Decent forage for all livestock early in growing season better than switchgrass

•Lodging problem compared to switchgrass some gentic variablity for this trait noted.

•This species has shown greater in vitro fermentability than other warm-season grass species resultng in high ethanol production.

• New cultivars for forage production in Midwest Bonanza and Goldmine.

•Extensive collections of native big bluestem at USDA-NRCS Plant Materials Centers.

•Need special drills or special processing for sowing

Indiangrass (Sorghastrum nutans)

• Highly productive species in the central Great Plains.

• Several improved cultivars. Scout and Warrior

• Less abundant and competitive against big bluestem in the northern Great Plains.

Page 20: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Big bluestem, Indiangrass, and Switchgrass in Low‐Diversity, High‐Input 

Polycultures

• Each species has different primary growth period, may be better buffered to environment.

• May have greatest utility on highly variable sites.

• Seed cost will be higher than for switchgrass.

• Differences among species in tolerance to pre‐emergence herbicides.

• Agronomic production information needed for use of polycultures for bioenergy.  Existing information has been developed for use in grazing systems.

• Specialized planters needed for Big bluestem and Indiangrass.

• Differences in insect and disease susceptibility and resistance.

Big bluestem Switchgrass

Big bluestem has a finer and more extensively branched root system than switchgrass.  Carbon sequestration for all C4 grasses.

Brookings, SD 9/08

Page 21: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Comparison of Average yields of Switchgrass and Miscanthus Miscanthus 9.8 t/ac n=97; Switchgrass 4.5 t/ac n=77

M. x giganteus Production

• Extensively tested in Europe; Data sufficient to generate prediction models for biomass yields

• Biomass yield (Illinois) can exceed 40 Mg/ha (17.8 t/a)

• Switchgrass ‘Cave‐In‐Rock’ yield (Illinois) 15 Mg/ha (6.7 t/a)

Page 22: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Miscanthus x giganteus

• Sterile, triploid hybrid (most likely) between M. sacchariflorus and M. sinensis

• Propagated by rhizomes

• Only one known genotype in agronomic trials

• Extremely high biomass yields

Miscanthus Diversity

• Breeding work is done largely within M. sinensis

• Numerous interspecific hybrids possible

• Can be hybridized with Saccharum

a) M. sacchariflorusb) M. sacchariflorusc) M. sinensisd) M. x giganteus

Page 23: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

CeresThe greatest challenge to miscanthus production in the U.S. is the cost to establish fields. Because miscanthus is planted from cuttings or rhizomes, as opposed to seeds, it can cost thousand of dollars an acre just to establish a field — about 10 times more than a seeded perennial like switchgrass. .12 per cutting $620 for plant material.

To enable greater use of this promising crop, Ceres is developing diverse varieties that can be sown more economically by seed. our goal is to expand the scale and range where farmers can grow miscanthus. This work includes developing seeded varieties, increasing genetic diversity and developing plants suited to harsh conditions.

Reed canarygrass (P. Arundinacea)•Superior drought and water logging tolerance confer adaptation to a wide range of soil types.•Criticized for its opportunism that has taken advantage of nutrient loading in wetlands to colonize and form vast monocultures.•Highly productive yields of up to 6.5 t/ac with N and 2 cuts/year.•responding to N can be used as sink for manure or effluent.•Collaboration between ARS in Ithaca and Wisconsin and Cornell to categorize biomass traits.• Populations of reed canarygrass contain large amount of geneticvariability.•Morphological traits such as leaf width, leaf angle, Leaf rigidity, stem diameter and number of nodes to be used in future molecular marker mapping and assisted breeding.•Ignore alkaloid profiles used in more recent forage breeding. •Breed for improved seedling vigor and establishment potential.

Page 24: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Tall Wheatgrass (Thinopyrum ponticum)

•Non Native cool season bunch grass

•Used in Hungary as Biomass grass crop cv Szarvasi-1

•Late maturing lodge resistant

•Easy to establish spring or late summer

•Harvest end of July beginning of August, easy time to harvest

•85% of yield in one late harvest approx. 4 - 5 t/ac

•Full yield first year after late summer planting

•Recycles most of nitrogen and minerals so low in ash and nutrients

•Needs further testing on marginal soils, & to determine persistence

Potential late end of season harvest for Tall wheatgrass for improved chemical composition for combustion Photo 10/9/09

Page 25: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Intermediatewheatgrass9051920

“Chiefton”reed canarygrass

“Szarvasi-1”tall wheatgrass

Photo 7/1/091st cutting 2nd harvest year

Wheatgrass Biomass Study

4.08 4.235.32 5.33

6.085.02

4.144.91

3.54 3.83 3.984.83

01234567

Ch iefton 20

Bellevue 20

La rgo 40

La rgo 20

Intermedia te 40

Intermedia te 20

A lkar 2

0

A lkar 4

0

Jose 20

Jose 40

Szarvasi-1

20

Szarvasi-1

40

T/ac

Big Flats, NY 2008, two cuttings 1st harvest year

Page 26: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Tall Wheatgrass 2008 Yield Comparison of Cultivar, Cutting Dates and Seeding Rate

Species 1st cut Date

Seeding rate

(lb/ac)1st cut t/ac 2nd cut

10/10 t/acTotal Yield

'Alkar' 7/3/08 20 4.70 abc 0.54 5.24Tall Wheatgrass 40 3.72 bcd 0.75 4.47

7/10/08 20 4.95 ab 0.52 5.4640 4.18 abcd 0.59 4.77

7/17/08 20 5.24 a 0.62 5.8640 4.07 abcd 0.80 4.88

10/10/08 20 4.00 abcd40 4.22 abcd

'Szarvasi-1' 7/3/08 20 3.81 abcd 0.52 4.33Tall Wheatgrass 40 4.58 abcd 0.75 5.33

7/10/08 20 3.26 d 0.49 3.7440 4.37 abcd 0.58 4.95

7/17/08 20 4.66 abcd 0.47 5.1340 4.11 abcd 0.73 4.84

10/10/08 20 3.50 d40 3.73 bcd

LSD.05 = 0.79

Tall Wheatgrass 2008 chemical composition comparison of cultivar, cutting dates and seeding rate

%

Cultivar 1st cut Date

Seeding rate

(lb/ac)NDF ADF Lig ash N K CL S

'Alkar' 7/3/08 20 82.2 52.0 5.4 4.1 0.97 1.33 0.20 0.10

Tall Wheatgrass40

7/10/08 20 82.8 53.2 7.8 4.2 1.02 1.43 0.18 0.1040 80.0 50.3 7.7 3.9 1.07 1.34 0.22 0.10

7/17/08 20 84.3 54.6 7.8 3.6 0.90 1.08 0.15 0.0840 80.6 51.4 6.3 4.5 1.02 1.29 0.20 0.09

10/10/08 20 84.7 55.5 10.0 3.2 0.70 0.65 0.14 0.0840 87.0 56.6 10.4 2.4 0.78 0.56 0.11 0.08

'Szarvasi-1' 7/3/08 20 81.3 52.5 5.7 3.6 0.78 1.30 0.17 0.07

Tall Wheatgrass40

7/10/08 20 81.2 52.0 8.2 3.4 0.88 1.20 0.15 0.0740 82.1 54.8 8.3 3.8 0.95 1.24 0.25 0.08

7/17/08 20 83.3 55.6 7.1 3.5 0.75 0.94 0.14 0.0740 80.9 52.0 7.6 3.7 0.88 1.08 0.19 0.08

10/10/08 20 81.0 53.4 9.7 2.9 0.65 0.72 0.14 0.0840 81.4 54.4 9.4 3.1 0.88 0.67 0.14 0.08

LSD.05 = 3.6 2.8 1.6 0.7 0.16 0.16 0.05 0.01

Page 27: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Alfalfa (Medicago sativa L.) •Potential for providing a dual crop consisting of a highly nutritious protein source from leaves for animal feed and a stem fraction to be used as a source of fermentable sugars to produce cellulosic ethanol or for pyrolysis. Potentially increasing profitability per acre.

•Nitrogen fixing requiring returning some N to soil which can be used for subsequent crops.

• But requires good fertile well drained soil and near neutral pH.

•Productive species when harvested 2 to 3 times per year. 5 - 7 t/ac.

•Species has well established cultivation, management, storage and breeding systems. (genetic maps have been published.)

•Biomass germplasm for increased stem biomass yielded 37% higherpolysaccharides than hay genotypes and under biomass harvest systems theoretical potential ethanol yield doubled. ARS Wisconsin JoAnn Lamb.

Cover Crops as Energy Crops:A Hidden Treasure

Tom Richard, Ryan Baxter, and Gustavo Camargo

Penn State University

Gary Feyereisen and John Baker

USDA‐ARS, St. Paul, MN

Page 28: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Gray: Counties excluded from consideration for winter rye production

What’s left? Available Winter Cropland…

Page 29: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

A Triple Bottom Line

200 million dry tons/year of winter crops =

• People: Off‐season jobs in rural communities.

• Planet: Improved soil and water quality, other ecosystem services.

• Profit: More income for farmers, local businesses, and biorefineries.

Page 30: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Big Flats Biofeedstock Collaborations•Genetic diversity study of big bluestem with Mike Casler ARS Wisconsin.•Evaluating southern cultivars and germplasm made 1st

cycle selection out of Kanlow and Atlantic coastal panicgrass at high elevation for winter hardiness.•Evaluating 4 lines from Oklahoma State Breeding program Dr. Wu from Charles Taliaferro’s program, 4 lines from Mike Casler and Ernst Conservation Seeds.•Evaluating 13 lines from Ken Vogels program from ARS Nebraska.•Evaluation of new advanced willow breeding lines of SUNY ESF (Released Hybrid Poplar with ESF)•Evaluation of Leymus Germplasm from NGPS & ARS Logan Utah.

NE Sun Grant

“A biofuels screening program for grass feedstocks: diversity, physiological traits and compositional characteristics for optimal yield”

In collaboration with Cornell University’s Plant Biology Department with Dr. Joss Rose. We provided existing mature warm season grasses and tall wheatgrass for initial chemical compositional analysis.

We initiated a collection of native switchgrass and big bluestem from NY and PA for breeding, resulting in 80 accessions of each species, started in 2007.

Page 31: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

80 Collections of native switchgrass and big bluestem primarily from NY and PA8 plants of each, replicated 4 times at Big Flats PMC and Cornell

The End

Switchgrass Cultivars on Market

Currently about 15 cultivars of switchgrass listed in Grass Varieties in the United States Agriculture Handbook no. 170, 1994. There are 2 other well known varieties since then. Several more are in seed increase or have been on the market for one or two years.

The following are the ones primarily used for breeding:

Kanlow - 1963 –Kansas & AES Manhattan KS., PMC

Alamo – 1978- Knox City Texas, PMC

Cave-In-Rock – 1973- Elsberry MO., PMC

There were 4 switchgrass breeders 18 months ago (in 2008) now there are 12.

Additional varieties under development from other germplasm withand without inclusion of these varieties.

Page 32: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Ken Vogel USDA-ARS NE.- ‘Shawnee’ switchgrass selected for IVDMD out of Cave-in-Rock (14 advance lines). Big Bluestems: Goldmine & Bonanza Indian Grasses: Scout, Chief and Warrior. Two switchgrass varieties in production for biomass selected out of ‘Kanlow’Hybrid production from crosses between improved ‘Kanlow’ and ‘Summer’

Mike Casler USDA-ARS WI. - One source ID better than Cave-In-Rock. One 3 cycles of selection from broad based Mid western collection, in production. One early flowering Kanlow seed production next year. Other tetraploid upland germplasm being worked on and molecular marker study.

Brian Baldwin MSU - 2 licensed – 1) collections from Mississippi and W. Alabama 7 cycles of selection for decreased dormancy “Expresso”. 2) Selection out of Alamo for resistance to Plateau herbicide.

Talifarro/ Yanqi Wu – 1 licensed to Johnstone Seed co. - 4 cycles of selection from Alamo. Working on a release out of Kanlow. (4 advanced lines) .

Sandy Bonos –Rutgers, NJ – 1 cycle of selection from Kanlow and Timber, 2 upland types out of Carthage, Hightide and other material. Collaborating with Casler, Ernst and Boes evaluating 14 existing cv on Marginal lands .

Arvid Boes – South Dakota SU- working with prairie cordgrass 7 populations 1 cycle of selection establishing breeders block in 2009, and little bluestem selections out of Camper.

CERES/ Noble Foundation – two licensed releases out of Kanlow and Alamo. Tested at 25% increase over those varieties. Sequenced 15,000 switchgrass genes. Undergoing marker assisted breeding and compositional analysis. Cooperative agreements with USDA and Monsanto. Blades Energy Crop brand

Page 33: The USDA Biofuels Strategic Production Reportbioenergy.psu.edu/shortcourses/2010_nov_SupplyChain/01_Update.pdf · American economy through the development of a successful biofuels

Ernst Conservation SeedsSwitchgrass- Bo-Master and Performer from NC state.

Timber and Hightide from Cape May PMC. Pangburn fromArkansas PMC.

Big bluestem – Niagara (NY), Prairie view (MI), Suther (NC), HamptonEastern Gamagrass – Highlander (MI), Meadowcrest (MD), Bumbers (AR)Coastal Panicgrass – ‘Atlantic’

Joann Lamb – USDA-ARS Minnesota – Alfalfa evaluation of utilizing the stem material after pelletizing leaves for forage. Working on 2 populations early maturing, higher lignin, solid vs hollow stems 2 cut system

In 2010, DOE will provide $7 million in funding over 3 years, while USDA will award $2 million over 3 years.

"Genome-Wide Analysis of miRNA Targets in Brachypodium and Biomass Energy Crops"

"The Role of Small RNA in Biomass Deposition and Perenniality inAndropogoneae Feedstocks"

"Development of a Low Input and Sustainable Switchgrass Feedstock Production System Utilizing Beneficial Bacterial Endophytes“

"Functional Analysis of Regulatory Networks Linking Shoot Maturation, Stem Carbon Partitioning, and Nutrient Utilization in Sorghum“

"Genomics of Energy Sorghum Biomass Accumulation"

"Identification and Genetic Characterization of Maize Cell-Wall Variation for Improved Biorefinery Feedstock Characteristics“

"Systems View of Root Hair Response to Abiotic Stress"