40
The Total Synthesis of Mitomycins Bob Moreau Organic Supergroup April 25, 2007

The Total Synthesis of Mitomycins Bob Moreau Organic Supergroup April 25, 2007

  • View
    216

  • Download
    1

Embed Size (px)

Citation preview

The Total Synthesis of Mitomycins

Bob Moreau

Organic Supergroup

April 25, 2007

Mitomycin A was isolated from the culture broth of Streptomyces caesipitosus in 1956 and mitomycin C in 1958.

Their gross structures as well as their relative and absolute stereochemistries were determined by X-ray crystallographic analysis in an effort that took about 20 years.

These mitomycins are active against Gram-positive and Gram-negative bacteria, and also show broad activity against tumor cells.

Mitomycin C has proven to be more potent and is a widely prescribed antitumor agent.

These molecules exert their powerful biological activity by crosslinking DNA strands.

N NH

O

O

Me

X OMe

OCONH2

Mitomycin A X = OMeMitomycin C X = NH2

Mechanism of Action

reduction -MeOH

alkylationof ds DNA

DNAcrosslinkingoxidation

N NH

O

O(H)

Me

H2N OMe

OCONH2

N NH

O

O(H)

Me

H2N

OCONH2

N

O

O(H)

Me

H2N

NH2

DNAN

O

O

Me

H2N

DNA

NH2

DNA

N

O

O(H)

Me

H2N

DNA

NH2

DNA

N NH

O

O

Me

H2N OMe

OCONH2

Mitomycin C

DNA

OCONH2

Tomasz, M.; Lipman, R.; Chowdary, D.; Pawlak, J.; Verdine, G. L.; Nakanishi, K. Science 1987, 235, 1204.

Covalent Crosslink Adduct

Tomasz, M.; Lipman, R.; Chowdary, D.; Pawlak, J.; Verdine, G. L.; Nakanishi, K. Science 1987, 235, 1204.

Molecular model of the Mitomycin C/DNA crosslinked complex showing the mitosene unit snugly fit into the minor grove. Based on this model, the mitosene unit protrudes less than 1 Å beyond the edges of the DNA backbone

Mitomycinoid Structures

N NH

O

O

Me

X OMe

OCONH2

N

O

O

Me

MeO OMe

OCONH2 O

O

Me

MeO

Mitomycin A X = OMeMitomycin C X = NH2

Isomitomycin AAlbomitomycin A

N

NHOMe

OCONH2

N

H

N NMe

O

O

Me

X OH

OCONH2

Mitomycin B X = OMeMitomycin D X = NH2

N NMe

O

O

Me

X OMe

OCONH2

Mitomycin F X = OMePorfiromycin X = NH2

N NMe

O

O

Me

X OR

Mitomycin G X = NH2, R = MeMitomycin H X = OMe, R = HMitomycin K X = OMe, R = Me

“The complexity of the problem arises from the need to accommodate highly interactive functionality in a rather compact matrix and to orchestrate the chemical progression such as to expose and maintain vulnerable structural elements as the synthesis unfolds. The synthesis of a mitomycin is the chemical equivalent of walking on egg shells.”

Danishefsky, S. J.; Scheryantz, J. M. Synlett. 1995, 475.

The Kishi Lab Approach

N NH

O

O

Me

MeO OMe

OCONH2

HN

MeO

Me

O

O

NH

OCONH2

O Me

HN

MeO

Me

O

O

NH

OCONH2

XOMe

MeO

Me

PO

PO

OPX

OMe

NH2

NH

MeO

Me

OMe

MeO

Me

PO

PO

Mitomycin A

Kishi’s Model System

N

O

O

Me

MeO OMe

HN

MeO

Me

O

O

O Me

HN

MeO

Me

O

O

XOMe

MeO

Me

PO

PO

XOMe

NH2

MeO

Me

OMe

MeO

Me

PO

PO

Synthesis of a Key Aromatic Intermediate

mCPBA

CH2Cl2, 0 °C

NaOMeMeOH, 0 °C

98%, 3 steps

MeO

Me

MeO

K2CO3

acetone, reflux

MeO

Me

MeO

O H

MeO

Me

MeO

O

O

HTiCl4

CH2Cl2, 0 °C

ClMeO

Cl

MeO

Me

MeO

OH

MeO

Me

MeO

O Br

PhNMe2, reflux

96%, 2 steps

MeO

Me

MeO

OH

Synthesis of a Key Aromatic Intermediate

Zn

AcOH, 0 °C

BnBr, K2CO3DME/DMF

reflux

67%, 3 steps

MeOH/dioxane

77%

HNO3

AcOH

MeO

Me

OBn

OBn1. LDA, CH3CN

-30 °C

2. CrO3, H2SO4aq. acetone

71%, 2 steps

MeO

Me

OMe

OH

MeO

Me

O

O

MeO

Me

OH

OH

MeO

Me

OBn

OBn

OPh O

NH

OHMeO

Me

OBn

OBn

O

CN

Medium Ring Formation

LAH

H2, Pd/CMeOH

O2

MeOH

MeOH, H+MeO

Me

OBn

OBn

O

CN

NC

MeO

Me

OBn

OBn

OMeOMe MeO

Me

OBn

OBn

OMeOMe

NH2

MeO

Me

OH

OH

OMeOMe

NH2

MeO

Me

O

O

OMeOMe

HN

MeO

Me

O

O

OMeOMe

NH2

40-50%, overall

Transannular Cyclizations

BF3.OEt2

MeSH, -45 °C

H+ in MeOH,SiO2, or heat

HN

MeO

Me

O

O

OMeOMe

HgCl2, Et3N

CH2Cl2

N

O

O

Me

MeO

N

O

O

Me

MeO OMe

HN

MeO

Me

O

O

SMeOMe

N

O

O

Me

MeO OMe

Transannular Cyclizations

BF3.OEt2

MeSH, -45 °C

H+ in MeOH,SiO2, or heat

HN

MeO

Me

O

O

OMeOMe

HgCl2, Et3N

CH2Cl2

N

O

O

Me

MeO

N

O

O

Me

MeO OMe

HN

MeO

Me

O

O

SMeOMe

N

O

O

Me

MeO OMe

Ketal Formation Problems

1. BH3 xylene reflux

2. H2O2

1. H2CO, NaOMe MeOH, 0 °C 69% (2. BnBr)

MeO

Me

OBn

OBn

O

CN

MeO

Me

BnO

BnO

CN

MeO OMe

MeO

Me

BnO

BnO

OH

CN

MeO OMe

MeO

Me

BnO

BnO

OR

CN

O

ketalformation

this compound wasobtained in only very

low yield

A Solution to the Ketal Formation Problems

Et3N, MeOH

71% overall

1. H2CO, NaOMe MeOH, 0 °C 69% 2. Ac2O

MeO

Me

OBn

OBn

O

CN MeO

Me

BnO

BnO

OAc

MeS SMe

NH

SMe

BF3.2AcOH

MeSH, -30 °C

MeO

Me

BnO

BnO

OAc

CN

MeS SMe

MeO

Me

BnO

BnO

OAc

CN

O

HgCl2, Et3N

MeOH/THF

85%, 3 steps

1. NaOMe MeOH/CH2Cl2 2. BnBr, KH DMF

MeO

Me

BnO

BnO

OBn

CN

MeS SMe

MeO

Me

BnO

BnO

OBn

CN

MeO OMe

Sidechain Functionalization

1. NaBH4 MeOH CH2Cl2, 0 °C2. Ac2O, py

66% overall

1. LDA; PhSeBr THF, -78 °C 2. 30% H2O2 EtOAc/THF

DIBAL

CH2Cl2, 0 °C

3 eq. OsO4

py/THF

87%

MeO

Me

BnO

BnO

OBn

CN

MeO OMe

MeO

Me

BnO

BnO

OBn

CN

MeO OMe

MeO

Me

BnO

BnO

OBn

MeO OMe

O

H

MeO

Me

BnO

BnO

OBn

MeO OMe

OAcMeO

Me

BnO

BnO

OBnOMe

OMe

OAc

MeO

Me

BnO

BnO

OBnOMe

OMe

OAc

OHOH

OHOH +

this reaction took over a week to go to completion

Installation of the Aziridine

steps

56% or 93%

MeO

Me

BnO

BnO

OBnOMe

OMe

OAc

MeO

Me

BnO

BnO

OBnOMe

OMe

OAc

OHOH

OHOH +MeO

Me

BnO

BnO

OBnOMe

OMe

OH

O

MeO

Me

BnO

BnO

OBnOMe

OMe

OMs

OMs

N3

1. LiN3, DMF 150 °C2. Ms2O, py

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

N P(OMe)2

O

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

OMs

N3

1. BnNH2 150 °C 2. BnBr, K2CO3 acetone reflux

51% overall

1. P(OMe)3 reflux 2. NaH, THF 81%, 2 steps

Advanced Medium Ring Formation

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

N P(OMe)2

O

MeI, K2CO3

acetone, reflux

LAH

Et2O, 0 °C

90%

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

NH

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

NMe

H2, Pd/CAcOH

MeO

Me

OH

OH

OHOMe

OMe

NH2

NMe

HN

MeO

Me

O

O

NMe

OHOMe

OMe

HN

MeO

Me

O

O

NMe

OHOMe

OMe O2

MeOH

32%, 3 steps

+

Reactivity of the Advanced Medium Ring

py, 0 °C

HN

MeO

Me

O

O

NMe

OCO2PhOMe

OMe

HN

MeO

Me

O

O

NMe

OCO2PhOMe

OMe

+

HN

MeO

Me

O

O

NMe

OHOMe

OMe

HN

MeO

Me

O

O

NMe

OHOMe

OMe

+

HN

MeO

Me

O

O

NMe

OPhOMe

OMe

CH2Cl2

MeO

Me

O

O

N NMe

OH

aq. HCl

MeOH

Cl OPh

O

Reactivity of the Advanced Medium Ring

py, 0 °C

HN

MeO

Me

O

O

NMe

OCO2PhOMe

OMe

HN

MeO

Me

O

O

NMe

OCO2PhOMe

OMe

+

HN

MeO

Me

O

O

NMe

OHOMe

OMe

HN

MeO

Me

O

O

NMe

OHOMe

OMe

+

HN

MeO

Me

O

O

NMe

OPhOMe

OMe

CH2Cl2

MeO

Me

O

O

N NMe

OH

aq. HCl

MeOH

Cl OPh

O

Failed Conditions from the Model System

COCl2, PhNMe2

CH2Cl2/PhCH3

HBF4

CH2Cl2

90%

NH3CH2Cl2PhCH3

0 °C

85%

HN

MeO

Me

O

O

NMe

OHSMe

OMe NH3

MeOH

HN

MeO

Me

O

O

NMe

OHOMe

OMe

BF3.OEt2

MeSH, -45 °Cx

N NMe

O

O

Me

MeO OMe

OH

N NMe

O

O

Me

MeO OMe

OCOCl

N NMe

O

O

Me

MeO OMe

OCONH2

N NMe

O

O

Me

H2N OMe

OCONH2

Porfiromycin

Completion of Porfiromycin

COCl2, PhNMe2

CH2Cl2/PhCH3

HBF4

CH2Cl2

90%

NH3CH2Cl2PhCH3

0 °C

85%

HN

MeO

Me

O

O

NMe

OHSMe

OMe NH3

MeOH

HN

MeO

Me

O

O

NMe

OHOMe

OMe

BF3.OEt2

MeSH, -45 °Cx

N NMe

O

O

Me

MeO OMe

OH

N NMe

O

O

Me

MeO OMe

OCOCl

N NMe

O

O

Me

MeO OMe

OCONH2

N NMe

O

O

Me

H2N OMe

OCONH2

Porfiromycin

Completion of Mitomycin A

1. H2, Pd/C AcOH 2. O2, MeOH

42%

1. acrolein CH2Cl22. BH3 THF/CH2Cl2 -78 °C to rt 3. Ac2O, py 78%

1. COCl2, PhNMe2 CH2Cl2

2. NH3 CH2Cl2, 0 °C

85%

HN

MeO

Me

O

O

NP

OHOMe

OMe

N NP

O

O

Me

MeO OMe

OH

N NH

O

O

Me

MeO OMe

OCONH2

Mitomycin A

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

NH

MeO

Me

BnO

BnO

OBnOMe

OMe

NBn2

NP

N NP

O

O

Me

MeO OMe

OCONH2

P = (CH2)3OAc

HBF4CH2Cl2

77%

1. NaOMe MeOH/CH2Cl22. DMSO, DCC TFA/py 3. HClO4, PhNMe2 CH2Cl2 35%

Nakatsubo, F.; Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1977, 99, 8116.Fukuyama, T.; Nakatsubo, F.; Cocuzza, A. J.; Kishi, Y Tetrahedron Lett. 1977, 49, 4295.Kishi, Y. J. Nat. Prod. 1979, 42, 549.

The Fukuyama Lab Approach

N NH

O

O

Me

H2N OMe

OCONH2

Mitomycin C

MeO

Me

O

O

N

NHH OMe

OCONH2

Isomitomycin A

N

O

O

Me

MeO OMe

OCONH2

N

H

MeO

Me

BnO

MeO

Ph

OTMS

N

OO

H SEtMeO

Me

BnO

MeO

Ph

OTMS

N3

OO

H SEtMeO

Me

MeO

Albomitomycin A

Intramolecular [3 +2] Cycloaddition

SnCl4CH2Cl2, -78 °C;

then py

95%, >20:1 dr

toluene110 °C

MeO

Me

BnO

MeO

Ph

O

N3

OEtS

OTMS

MeO

Me

BnO

MeO

Ph

OTMS

N3

OO

H SEt

MeO

Me

BnO

MeO

Ph

OTMS

N

OO

H SEt

NN

MeO

Me

BnO

MeO

Ph

OTMS

N

OO

H SEt

MeO

Me

MeO

13 steps

64% overall

H

86%

a triazoline

extrusionof N2

stereoselectivitylikely due to an endo Diels-Alder

Hydroxymethylene Installation

1. DIBALTHF, -78 °C

2. Ac2O, py

99%, 2 steps

MeO

Me

BnO

MeO

Ph

OTMS

N

OO

H SEtMeO

Me

BnO

MeO

Ph

OTMS

N

OOAc

H SEt

RuO2, NaIO41:1 EtOAc/H2O

84%

MeO

Me

BnO

MeO

N

OOAc

H SO2Et

H O

1. NaBH4, MeOH 97% 2.

CH2Cl2

MeO

Me

BnO

MeO

N

OOAc

H SO2Et

O NH

O

CCl3

O

N CCl3

O.O

Ozonolysis gavea complex mixture

Unveiling the Pyrrolidine

NH3

MeOH, rtMeO

Me

BnO

MeO

N

OO

H SO2Et

O NH

O

CCl3

O

MeO

Me

BnO

MeO

N

H

O NH2

O

OO

O

H

MeO

Me

BnO

MeO

N

NHOMe

H OH

O NH2

O

MeO

Me

BnO

MeO

N

NHH OH

O NH2

O

NaBH4

61% overall

NH3, -H2O

:NH3

the bridgeheadhemiaminal resistedreduction by NaBH4

Completion of Isomitomycin A

CSA

MeOH, rt

MeO

Me

BnO

MeO

N

NHH OH

OCONH2

1. H2 (1 atm) 10% Pd/C EtOH 2. DDQ, H2O acetone -78 °C

77%, 2 steps

MeO

Me

BnO

MeO

N

HN

H

OCONH2

MeO

Me

BnO

MeO

N

NHH OMe

OCONH2

MeO

Me

O

O

N

NHH OMe

OCONH2

60%

Isomitomycin A

Completion of Mitomycin C

NH3

MeOH, rt

85%

MeO

Me

O

O

N

NHH OMe

OCONH2

N NH

O

O

Me

H2N OMe

OCONH2

N

O

O

Me

H2N OMe

OCONH2

N

H

H2N

Me

O

O

N

NHH OMe

OCONH2

Al(OiPr)3

MeOH, rt

91%

Mitomycin C

Michael addition

β-elimination

Fukuyama, T.; Yang, L. J . Am. Chem. Soc. 1987, 109, 7881.Fukuyama, T.; Yang, L. J . Am. Chem. Soc. 1989, 111, 8303.

Completion of Mitomycin A

NH3

MeOH, rt

85%

MeO

Me

O

O

N

NHH OMe

OCONH2

N NH

O

O

Me

MeO OMe

OCONH2

N

O

O

Me

H2N OMe

OCONH2

N

H

H2N

Me

O

O

N

NHH OMe

OCONH2

Al(OiPr)3

MeOH, rt

91%

Mitomycin A

Michael addition

β-elimination

Fukuyama, T.; Yang, L. J . Am. Chem. Soc. 1987, 109, 7881.Fukuyama, T.; Yang, L. J . Am. Chem. Soc. 1989, 111, 8303.

Danishefsky’s Approach to FR-900482

NO

OH

H

O

OCONH2

OH

NH

FR-900482

NO

MeO

MeO

O

OMe

MeO

N

O

MeO

NRN

O

MeO

MeO

O

NR

OMeI

NO

MeO

MeO

O

OH

OMeI

O

IHO

OMe

intermolecularhetero

Diels-Alder

+

internalHeck arylation

An Intramolecular Approach to FR-900482

MeO

N

O

O

OMe

NO

OH

H

O

OCONH2

OH

NH

FR-900482

MeO O OMe

N

O

NO

MeO

MeO

O

OMeO

O

MeO

O

MeO

bridged mode

fused mode

MeO O OMe

N

OO

MeO

MeO

NO2

HO OMe

O

MeO

x

hν, 366 nm

MeOH

Inspiration for a Mitomycin Synthesis

MeO

N

O

O

OMe

NO

OH

H

O

OCONH2

OH

NH

FR-900482

MeO O OMe

N

O

NO

MeO

MeO

O

OMeO

O

MeO

O

MeO

bridged mode

fused mode

MeO O OMe

N

OO

MeO

MeO

NO2

HO OMe

O

MeO

x

hν, 366 nm

MeOH

The Danishefsky Lab Approach

MeO

Me

O

O

N

OMe

NMe

Mitomycin K

MeO

Me

MeO

MeO

N

O

OMe

NMe

MeO

Me

MeO

MeO

N

O

OMe

O

MeO

Me

MeO

MeO

N

O

O

OMeMeO

Me

MeO

MeONO2

HO OMeMeO

Me

MeO

intramolecularhetero

Diels-Alder

Hetero Diels-Alder

THF, -78 °C

80%

hν, 350 nmMeOH

MeO

Me

MeO

MeO

O

NO2

MeO

Me

MeO

MeO

MeO

Me

MeO

steps H

Li

OMe

NO2

HO OMe

MeO

Me

MeO

MeO

N

O

OMe

HO

+

45%

MeO

Me

MeO

MeO

N

O

OOMe

15%

A Sequential Photolytic Redox Mechanism

hν, 350 nm

MeOH

MeO

Me

MeO

MeO

NO

H

O

HO OMe

MeO

Me

MeO

MeO

O OMe

N

O

MeO

Me

MeO

MeO

N

O

OOMe

MeO

Me

MeO

MeO

N

OOMe

HO

MeO

Me

MeO

MeONO2

HO OMe

1,5 H abstr.

-H2O

MeO

Me

MeO

MeO

N

O

OOMe

H

[4 + 2]

hν1,5 H abstr.

Aziridine Fragmentation

BnN3

PhH, 80 °C

85%

1. hν, 254 nm 76%2. L-Selectride THF, -78 °C 81%

PDC

CH2Cl2

65%

MeO

Me

MeO

MeO

N

OOMe

HO

MeO

Me

MeO

MeO

N

OOMe

O

MeO

Me

MeO

MeO

N

OOMe

O

NN

N

Bn

MeO

Me

MeO

MeO

N

OOMe

HO

Im

S

Im

DMAP

CH2Cl2

66%

NBn

MeO

Me

MeO

MeO

N

O

OMe

S

NBn

S

Im

MeO

Me

MeO

MeO

N

O

OMeNHBn

AIBNBu3SnH

PhH, 80 °C

Synthesis of a Deoxygenation Precursor

PhH, 80 °C

90%

L-SelectrideTHF, -78 °C

77%

PDC

CH2Cl2

65%

MeO

Me

MeO

MeO

N

O

OMe

HO

MeO

Me

MeO

MeO

N

O

OMe

O

MeO

Me

MeO

MeO

N

O

OMe

O

N3PhS

NN

N

SPh

MeO

Me

MeO

MeO

N

O

OMe

HO

NN

N

SPhMeO

Me

MeO

MeO

N

O

OMe

O

NN

N

SPh

Im

S

Im

S

Im

DMAP

CH2Cl2, 35 °C

65%

A Successful Deoxygenation

hν, 254 nmPhH

48%

AIBNBu3SnH

PhH, 80 °C

52%

MeO

Me

MeO

MeO

N

OOMe

NN

N

SPh

MeO

Me

MeO

MeO

N

OOMe

O

NN

N

SPh

Im

S

Raney Ni

acetone, 60 °C

70%

MeO

Me

MeO

MeO

N

OOMe

NH2+

13%

MeO

Me

MeO

MeO

N

OOMe

NSPh

MeO

Me

MeO

MeO

N

OOMe

NMe

extrusion of N2

Completion of Mitomycin K

NaOAcMeCN/H2O

8-16%

THF, -10 °C

90%

MeO

Me

MeO

MeO

N

O

OMe

NMe

MeO

Me

MeO

MeO

N

OMe

NMe

LiTMS OH

TMS

MeO

Me

O

O

N

OMe

NMe

OH

TMS

MeO

Me

O

O

N

OMe

NMe

PPTS

CH2Cl2

81%

N

Ag OOOO

Mitomycin K

Benbow, J. W.; Schulte, G. K.; Danishefsky, S. J. Angew. Chem. Int. Ed. Engl. 1992, 31, 915.Benbow, J. W.; McClure, K. F.; Danishefsky, S. J. J. Am. Chem. Soc. 1993, 115, 12305.Danishefsky, S. J.; Scheryantz, J. M. Synlett. 1995, 475.