30
The Top Errors (and Misconceptions) in LED Photometry LED Specifications: the Truth, the Whole Truth and Nothing but the Truth Ing. Daniel Kalina-Gaash Lighting Design Center

The Top Errors (and Misconceptions) in LED Photometry LED Specifications: the Truth, the Whole Truth and Nothing but the Truth Ing. Daniel Kalina-Gaash

Embed Size (px)

Citation preview

The Top Errors (and Misconceptions)

in LED Photometry

LED Specifications: the Truth, the Whole Truthand Nothing but the Truth

Ing. Daniel Kalina-Gaash Lighting Design Center

Can We Trust LED Specifications?

Many people distrust LED and SSL specifications. Why? We’ll consider how LED specifications are determined The importance of “absolute photometry” The common errors made in photometry (some are LARGE!) Understanding why CCT is a bad metric

Ing. Daniel Kalina-Gaash Lighting Design Center

In the Good Old Days.....

“Relative Photometry” ruled: Fluorescent lamp

output is constant regardless of what fitting it is put into

Multiply lamp flux by fitting LOR to calculate flux of luminaire

Photometric data formatted in units of candelas per 1000 lumens

Ing. Daniel Kalina-Gaash Lighting Design Center

Relative photometry is no longer applicable to SSL:

LED output depends upon operating temperature

In turn it dependsupon the thermal design of the fitting

For most SSL we have to perform absolute photometry

However with SSL...

Ing. Daniel Kalina-Gaash Lighting Design Center

How Are LED Specifications Tested? LED specifications are determined under idealised laboratory

conditions: short flash of current, junction temperature of 25°C An LED will typically operate at >60°C in a luminaire If you use ten 100 lumen LEDs in a luminaire, you must not

expect to generate 1,000 lumens from the luminaire, you will probably get 750-800 lm in practice

As LEDs get hotter: Luminous flux DECREASES CCT INCREASES CRI changes

Ing. Daniel Kalina-Gaash Lighting Design Center

LED Output Versus Temperature

Ing. Daniel Kalina-Gaash Lighting Design Center

Rendering Versus Temperature

Ing. Daniel Kalina-Gaash Lighting Design Center

Do and don’t do recommendations

Test the complete fitting – don’t extrapolate from rated LED flux

Test the fitting after it has reached thermal equilibrium – measure “hot lumens” and not “cold lumens”

Measure the CCT and CRI of the complete fitting – thermal and optical effects significantly shift the rated colour temperature and colour rendering of LEDs

Ing. Daniel Kalina-Gaash Lighting Design Center

Use a high quality integrating sphere – a wooden box or other geodesic shape painted with Dulux white vinyl matt will NEVER give good results!

Make sure your sphere is large enough – if you can barely squeeze the fitting inside you’ll get shadowing errors

Correct for self absorption – if you don’t, you’ll probably sell yourself very short!

Ing. Daniel Kalina-Gaash Lighting Design Center

Shadowing Effects in Spheres

The perfect sphere is perfectly spherical, has no holes and is painted with a 100% reflective, perfectly Lambertian coating. The aim is to achieve a perfectly uniform luminance distribution over the surface of the sphere

Ing. Daniel Kalina-Gaash Lighting Design Center

Low Reflectance = High ErrorsRecent studies have shown that low reflectance coatings introduce a significant directionality to integrating sphere readings:

The lower the reflectance, the more directionally sensitive

Significant errors with spotlights

+15% to -22% in a sphere painted with an 80% coating

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Sphere Size Does MatterThe perfect sphere is perfectly impossible! There is no “one-size-fits-all” policy when it comes to integrating spheres. If the light source is too big, the sphere won’t integrate properly, giving large errors. Rules of thumb:

For 4 measurements of 2D/3D luminaires, sphere diameter should be 10x source size or 1.5x for linear lamps (3% surface area per IES LM79-08)

For external 2 measurements, sphere diameter should be 3x source size

Ing. Daniel Kalina-Gaash Lighting Design Center

Goniophotometry & Photometric Data“Photometric Data” refers to standardised files containing the far-field luminous intensity (candelas) versus angle for a fitting:

Measured using a goniophotometer

Generated in .ies or .ldt formats

Major sources of error include too coarse an angular sampling interval and measuring intensity in the near-field

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Photometric Distance

Ing. Daniel Kalina-Gaash Lighting Design Center

Use the old 5x fitting size rule at your peril – placing the photometer at a distance of 5x the light source’s luminous aperture (e.g. 7.6m for a 5 foot fitting) was OK for extended, diffused sources but for narrow beam angle sources you could be measuring in the near-field and seeing very low candela readings

Think about your scan resolution – it’s no good scanning a 15° spot with a 5° increment – you’ll only be taking 2-3 slices through the beam (beam shape will be inaccurate)

Ing. Daniel Kalina-Gaash Lighting Design Center

CCT is a Really Bad Metric

Correlated colour temperature (CCT, Kelvin) is a simplified metric used to indicate the colour of white light produced by a lamp. The issue with CCT is that two light sources can have the same CCT but look completely different colours. The problem is down to the mathematical definition of CCT and our high sensitivity to colour difference.

Ing. Daniel Kalina-Gaash Lighting Design Center

The Definition of CCT

In 1960 CIE UCS, lines of iso-CCT fall within ± 0.02 duv

Two LEDs with the same CCT can have distinctly different colours. The difference can be as much as ± 0.02 duv which is about 20 times greater than the minimum perceivable colour difference

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

As a luminaire designer, under no circumstances should you use CCT as a purchasing metric – to stand any chance of colour matching LEDs or LED modules you have to specify colour in terms of the CIE chromaticity coordinates, Cx & Cy. And then negotiate binning tolerances with your vendor

Ing. Daniel Kalina-Gaash Lighting Design Center

White Light from Blue - FluorescenceDifferences in the thickness or optical path length through an LED phosphor can lead to significant differences in the correlated colour temperature (CCT) at different angles from the LED. When the phosphor is thinner, less blue light is converted and the CCT is higher; when it is thicker, more blue light is converted and the CCT is lower

Ing. Daniel Kalina-Gaash Lighting Design Center

Colour Shift Through an LED PhosphorThis is the colour variation from a remote phosphor LED spotlight. In the centre of the beam, the CCT is 7,500 Kelvin. At 30°, the CCT has dropped to 4,500 Kelvin. An integrating sphere measurement would only yield the average CCT.

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center

Ing. Daniel Kalina-Gaash Lighting Design Center