36
The thermal model (at low energies) and the significance of hadron yields measurements at FAIR & NICA A.Andronic – GSI Darmstadt The thermal model in heavy-ion collisions [fits of abundances of light quark (u,d,s) hadrons] Relevance for the QCD phase diagram Charmonium in the statistical hadronization model Summary and outlook AA, P. Braun-Munzinger, J. Stachel, PLB 673 (2009) 142 AA, P. Braun-Munzinger, J. Stachel, H. St¨ocker, PLB 697 (2011) 203 NICA-FAIR workshop, FIAS, April 2-4, 2012

The thermal model in heavy-ion collisions [fits of

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The thermal model in heavy-ion collisions [fits of

The thermal model (at low energies) and the significance

of hadron yields measurements at FAIR & NICA

A.Andronic – GSI Darmstadt

• The thermal model in heavy-ion collisions

[fits of abundances of light quark (u,d,s) hadrons]

• Relevance for the QCD phase diagram

• Charmonium in the statistical hadronization model

• Summary and outlook

AA, P. Braun-Munzinger, J. Stachel, PLB 673 (2009) 142

AA, P. Braun-Munzinger, J. Stachel, H. Stocker, PLB 697 (2011) 203

NICA-FAIR workshop, FIAS, April 2-4, 2012

Page 2: The thermal model in heavy-ion collisions [fits of

Hadron yields (at midrapidity, in central collisions)

10-1

1

10

10 2

10 102

√sNN (GeV)

dN/d

y

Npart=350

AGS SPS RHIC

π+ π-

p p–

K+ K-

Λ Λ–

• lots of particles, mostly newlycreated (m = E/c2)

• a great variety of species:

π± (ud, du), m=140 MeVK± (us, us), m=494 MeVp (uud), m=938 MeVΛ (uds), m=1116 MeValso: Ξ(dss), Ω(sss)...

• mass hierarchy in production(u, d quarks: remnants fromthe incoming nuclei)

Page 3: The thermal model in heavy-ion collisions [fits of

The thermal model

grand canonical partition function for specie i (~ = c = 1):

lnZi =V gi2π2

∫ ∞

0±p2dp ln[1 ± exp(−(Ei − µi)/T )]

gi = (2Ji + 1) spin degeneracy factor; T temperature;

Ei =√

p2 +m2i total energy; (+) for fermions (–) for bosons

µi = µbBi + µI3I3i + µSSi + µCCi chemical potentials

µ ensure conservation (on average) of quantum numbers:i) baryon number: V

i niBi = NBii) isospin: V

i niI3i = Itot3iii) strangeness: V

i niSi = 0iv) charm: V

i niCi = 0.

Widths of resonances taken into accountShort-range repulsive core modelled via excluded volume correction (Rischke)(leads to an overall 10-20% decrease of densities; no effect on T )

Page 4: The thermal model in heavy-ion collisions [fits of

The thermal model

...is in a way the simplest model

the analysis of hadron yields within the thermal model provides a “snapshot” ofAA collision at chemical freeze-out

(the earliest in the collision timeline we can look with hadronic observables)

...but the devil is in the details ...one needs:

- a complete hadron spectrum- canonical approach at low energies (and smaller systems)- to understand the data well (control fractions from weak decays)

Page 5: The thermal model in heavy-ion collisions [fits of

The hadron mass spectrum as of 2008

Particle Data Group, Phys. Lett. B 667 (2008) 1

relative increase of calculated densities with mass spectrum 2008/2005 ↓

Additions (compared to 2005):

Many new resonances up to 3 GeV+(86)4 (non)strange mesons+(36)30 (non)strange baryons

σ meson [f0(600)]:mσ=484±17 MeV,Γσ=510±20 MeVGarcıa-Martın, Pelaez, Yndurain, Phys. Rev. D 76

(2007) 074034

in total 485 hadron species, includingcomposites (t, He, hypernuclei)

vacuum masses

0.95

1

1.05

1.1

1.15

1.2

1.25

10 102

103

104

√sNN (GeV)

Rel

ativ

e pr

oduc

tion

π+

with high-mass resonances

with res. and σ(484,510)

50

100

150

200

250

300

350

400

450

T (

MeV

)

Temperature

Page 6: The thermal model in heavy-ion collisions [fits of

Strangeness suppression factor, γs

...a non-thermal fit parameter, to check possible non-thermalproduction of strangeness

for a hadron carrying “absolute” strangeness s = |S − S|: ni → niγss

Examples: K± (us, us): nKγs, Λ (uds): nΛγs,

Ξ(dss): nΞγ2s, Ω(sss): nΩγ

3s, φ(ss): nφγ

2s

in principle, usage of γs is to be avoided if one tests the basic thermal model

even as some models employ it (⇒ γs = 0.6 − 0.8), all agree that it is notneeded at RHIC energies (for central collisions)

here (central AA collisions) we fix γs=1

Page 7: The thermal model in heavy-ion collisions [fits of

The thermal fits

ni =gi

2π2

1

NBW

∫ ∞

Mthr

dm

∫ ∞

0

Γ2i

(m−mi)2 + Γ2i/4

· p2dp

exp[(Emi − µi)/T ] ± 1

Minimize: χ2 =∑

i(N

expi −N therm

i )2

σ2i

Ni: hadron yield (⇒ T , µb, V ) or yieldratio (no V )

Data: 4π or dN/dy (at y=0)

fit only STAR data: T=162 MeV, µb=24 MeV, V=2400

fm3, χ2/Ndf=10.9/12

µI3=-0.8 MeV; µS=6.6 MeV; µC=-3.5 MeV

dN/d

y-110

1

10

210

Data

STAR

PHENIX

BRAHMS

=31.6/12df/N2χModel, 3= 24 MeV, V=1950 fmbµT=164 MeV,

=200 GeVNNs

+π -π +K-

K p p Λ Λ -Ξ+

Ξ Ω φ d d K* *Σ *Λ He3/He3

The hadron abundances are in agreement with a thermally equilibrated system

Page 8: The thermal model in heavy-ion collisions [fits of

A thermal fit displayed differently

Mass (MeV)0 500 1000 1500 2000

dN/d

y/(2

*J+

1)

-210

-110

1

10

210

Data (STAR experiment)

)3Model, T=162 MeV (V=2400 fm

=200 GeVNNs

Au+Au, central

π

K

K*

p

φ

Λ

Ξ *Σ

Ω

d

Page 9: The thermal model in heavy-ion collisions [fits of

Energy dependence of T , µb

40

60

80

100

120

140

160

180

1 10 102

√sNN (GeV)

T (

MeV

)

new fits (yields)

dN/dy

parametrization

0

100

200

300

400

500

600

700

800

900

1 10 102

√sNN (GeV)µ b

(MeV

)

ratios

2005 fits, dN/dy data

yields

thermal fits exhibit a limiting temperature: Tlim = 164 ± 4 MeV

T = Tlim1

1+exp(2.60−ln(√sNN (GeV))/0.45)

, µb[MeV] = 13031+0.286

√sNN (GeV)

Page 10: The thermal model in heavy-ion collisions [fits of

Energy dependence of the thermal parameters

40

60

80

100

120

140

160

180

T (

MeV

)

Becattini et al. (4π)Letessier,Rafelski (4π)

dN/dyAndronic et al.4π

0

100

200

300

400

500

600

700

800

900

1 10 102

√sNN (GeV)

µ b (M

eV)

Cleymans et al. (4π)Kaneta,Xu (dN/dy)

Dumitru et al. (4π)

...a comparison of models

• Becattini et al.: +γs

Phys. Rev. C 73 (2006) 044905

Phys. Rev. C 78 (2008) 054901

• Rafelski et al.: +γs,q, λq,s,I3Eur. Phys. J. A 35 (2008) 221γS=0.18,0.36,1.72,1.64,...γq=0.33,0.48,1.74,1.49,1.39,1.47...

• Dumitru et al.: inhomogeneous freeze-out(δT , δµb)

Phys. Rev. C 73 (2006) 024902

• Kaneta, Xu, nucl-th/0405068

• Cleymans et al., Phys. Rev. C 57 (1998)3319

Page 11: The thermal model in heavy-ion collisions [fits of

Volume in central collisions

10 2

10 3

10 102

103

104

√sNN (GeV)

dNch

/dy

Npart=350

148⋅√s0.30

(hep-ph/0402291)

AGS SPS RHIC LHC

E895, E877

NA49,NA44

NA50,NA60

PHOBOS,BRAHMS

ALICE

(GeV)NNs10 210 310

)3V

olum

e (f

m

0

1000

2000

3000

4000

5000 y=1)∆ (chemV

HBTV

central collisions

Vchem(∆y = 1) = dNch/dy|y=0/nthermch

VHBT = (2π)3/2R2sideRlong ...data from ALICE, PLB 696, 328 (2011)

Page 12: The thermal model in heavy-ion collisions [fits of

General features of (relative) hadron production

(GeV)NNs10 210 310

dN/d

y ra

tio

-410

-310

-210

-110

1

10

+πp/-π/p

symbols: data, lines: thermal model

(GeV)NNs10 210 310

dN/d

y ra

tio0

0.05

0.1

0.15

0.2

0.25

0.3

+π/+K-π/-K

symbols: data, lines: thermal model

good agreement data-model

...but something special about protons (ALICE preliminary) at LHC?

p,p data of STAR (62, 130, 200 GeV) ad-hoc “corrected” by -25% for feed-down (STAR BES prelim. data)

Page 13: The thermal model in heavy-ion collisions [fits of

...and the state of other “horns”

0

0.05

0.1

0.15

0.2

Λ /

π-

E895 E896NA49

STAR (BES prel.)NA57,NA44

thermal model

0

0.05

0.1

0.15

0.2

10 x

Ξ /

π-

0

0.05

0.1

0.15

0.2

10 102

103

100

x Ω

/ π-

√sNN (GeV)

overall agreement model-data

Acta Phys. Pol. 40 (2009) 1005

STAR BES prelim., arXiv:1203.5183

Page 14: The thermal model in heavy-ion collisions [fits of

...and more exotic “horns”

AA, PBM, K.Redlich, NPA 765 (2006) 211

...if only such composites would exist Akaishi, Yamazaki, PRC 65 (2002) 044005

Page 15: The thermal model in heavy-ion collisions [fits of

Extending the range: (hyper-)nuclei predictions

(GeV)NNs10 210 310

eve

nts

6Y

ield

(dN

/dy)

for

10

-510

-410

-310

-210

-110

1

10

210

310

410

510

610 He3He, 3

He4He, 4

H3Λ

H5ΛΛ

He6ΛΛ

He7ΞΛΛ

STAR, Science 328 (2010) 58.

Ratio Exp. (STAR) Model3He/3He 0.45±0.02±0.04 0.42±0.033ΛH/3

ΛH 0.49±0.18±0.07 0.45±0.033ΛH/

3He 0.82±0.16±0.12 0.35±0.0033ΛH/3He 0.89±0.28±0.13 0.37±0.003

RHIC (√sNN=200 GeV):

T=164 MeV, µb = 24 ± 2 MeV

...discrepancy for 3ΛH/

3He?

could be resolved if an excited state of3ΛH exists

Phys.Lett.B697,203(2011)

a fertile ground for discoveries at FAIR - NICA

Page 16: The thermal model in heavy-ion collisions [fits of

The phase diagram of QCD 1

as T → Tlim, is chemical freeze-out a determination of the phase boundary?

0

20

40

60

80

100

120

140

160

180

200

0 200 400 600 800 1000

µb (MeV)

T (

MeV

)

E/N=1.08 GeVs/T3=7percolation

Cleymans et al.

Becattini et al.

Andronic et al.

if yes, how is thermalizationachieved?

• for low µb (<∼300 MeV):

driven by the deconfinement tran-sition

PBM, Stachel, Wetterich, PLB 596 (2004) 61

• for high µb:

is the quarkyonic phase transitionthe “thermalizer”?McLerran, Pisarski, NPA 796 (2007) 83

AA et al., NPA 837 (2010) 65

...or maybe not?

Floerchinger, Wetterich, arXiv:1202.1671

Page 17: The thermal model in heavy-ion collisions [fits of

The phase diagram of QCD 2

! "#"$

%&'!"# "$

K. Fukushima, PLB 695, 387(2011)

[PNJL, “forced” to agree withstat. model (for large µb)]

..but quarkyonic (confinedand chirally-symmetric) maynot exist

(justifies vacuum masses)

result predicted/confirmed by (RG) QCD approach;B.J. Schaefer, J.Pawlowski private comm.

Page 18: The thermal model in heavy-ion collisions [fits of

The chemical vs. kinetic freeze-out

0

20

40

60

80

100

120

140

160

180

T (

MeV

)

central collisions (Au,Pb)

chemical freeze-out

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 102

103

√sNN (GeV)

<β>

FOPIEOSE802NA49PHENIXSTARALICE preliminary

not quite the right ordering atlow energies

begs for a clarification (atSIS100)[together with a host of flowfeatures]

-0.1

-0.05

0

0.05

0.1

10 102

103

Collision energy (GeV)

v 2 at

mid

rapi

dity

out-of-plane

in-plane

semi-central collisions

FOPIE895,E877NA49STARALICE

log(√s)

SIS AGS SPS RHIC LHC

Page 19: The thermal model in heavy-ion collisions [fits of

Fits at AGS: 6 and 10.5 AGeVdN

/dy

1

10

210

Data

=0.8/3df/N2χModel, 3=610 MeV, V=5600 fm

bµT= 86 MeV,

=3.8 GeVNNs

+π −π +K−

K p ΛdN

/dy

−210

−110

1

10

210

Data

=3.9/7df/N2χModel, 3=550 MeV, V=1020 fm

bµT=126 MeV,

=4.9 GeVNNs

+π −π +K−

K p p Λ Λ φ d

AGS, 2-8 AGeV: a rather small set of hadron yields measured

this may lead to a downward bias on T

Page 20: The thermal model in heavy-ion collisions [fits of

Importance of including interactions4

/Tε

2

4

6

8

10

12

14

R=0

0.05 fm±R=0.3

43P

/T

1

2

3

4

5

6

7

8

LQCD, Borsanyi et al.

T (MeV)

100 120 140 160 180 200 220 240

3s/

T

2

4

6

8

10

12

14

16

• need to go beyond Dashen, Ma andBernstein (dilute limit) when densitieslarge enough (even below Tc)

• it is not only a “technical” correc-tion (thermodynamic consistency ful-filled, free of acausal behavior)

reference for Lattice QCD (for T < Tc)Borsanyi et al., arXiv:1011.4229

• NB: Tc is not THagedorn...but rather Tc ≃ Tlim...THagedorn is no more

Page 21: The thermal model in heavy-ion collisions [fits of

The end?

...not quite... we need something more

we need to look at hadrons for whichthe statistical model doesn’t work inelementary (pp and e+e−) collisions

...because it works (albeit less welland with extra parameters than inAA) for the large majority of hadrons(and gives similar T )

e+e− collisions (LEP) −→V - volume of 1 jetmix of qq jets (EW) from data

(full canonical calc.)

Mul

tiplic

ities

−310

−210

−110

1

10

Data

=494/28df/N2χModel,

=0.66s

γ, 3T=170 MeV, V=16 fm

=91 GeVs

+ π 0 π +K

0K η ’η 0f ± 0a 0 ρ ± ρ ω

±K

* 0K

* φ(1

285)

1f(1

420)

1f2f ’ 2f

0 * 2K

p Λ 0 Σ − Σ + Σ − Ξ ++

∆−

(138

5)Σ

+(1

385)

Σ0

(153

0)Ξ

−Ω (152

0)Λ

PLB 675 (2009) 312, 678 (2009) 350

Page 22: The thermal model in heavy-ion collisions [fits of

Statistical hadronization of heavy quarks: assumptions

P.Braun-Munzinger, J.Stachel, PLB 490 (2000) 196

• all charm quarks are produced in primary hard collisions (tcc ∼ 1/2mc ≃ 0.1 fm/c)

• survive and thermalize in QGP (thermal, but not chemical equilibrium)

• charmed hadrons are formed at chemical freeze-out together with all hadronsstatistical laws, quantum no. conservation; stat. hadronization 6= coalescence

is freeze-out at(/the?) phase boundary? ...we believe yes

• focus on J/ψ: ...can it survive above Tc? ...not settled yet (LQCD)

Asakawa, Hatsuda, PRL 92 (2004) 012001; Mocsy, Petreczky, PRL 99 (2007) 211602

we assume no J/ψ survival in QGP (full screening)

in our model the full yield is from generation at the phase boundary

if this supported by data, J/ψ looses status as “thermometer” of QGP...and gains status as a powerful observable for the phase boundary

Page 23: The thermal model in heavy-ion collisions [fits of

Statistical hadronization of charm: method and inputs

• Thermal model calculation (grand canonical) T ,µB: → nthX

• Ndircc = 1

2gcV (∑

i nthDi

+ nthΛi) + g2

cV (∑

i nthψi

+ nthχi)

• Ncc << 1 →Canonical (J.Cleymans, K.Redlich, E.Suhonen, Z. Phys. C51 (1991) 137):

Ndircc = 1

2gcNthocI1(gcN

thoc )

I0(gcN thoc )

+ g2cN

thcc → gc (charm fugacity)

Outcome: ND = gcV nthDI1/I0 NJ/ψ = g2

cV nthJ/ψ

Inputs: T , µB, V∆y=1(= (dNexpch /dy)/nthch), Ndir

cc (pQCD or exp.)

Minimal volume for QGP: V minQGP=400 fm3

Page 24: The thermal model in heavy-ion collisions [fits of

The “null hypothesis”

0

0.05

0.1

0.15

0.2

0.25

10 102

103

104

√sNN (GeV)

σ ψ, /

σ J/ψ

Statistical model

pApp(p

–)Data

PbPb

dataaverage

charmonium in pp(A) collisions

...is far from thermalized(model is for AA)

...while a thermal value isreached in central PbPb(NA50, SPS)

Page 25: The thermal model in heavy-ion collisions [fits of

Charmonium in the thermal model

partN0 50 100 150 200 250 300 350 400

ψ J

/A

AR

0

0.2

0.4

0.6

0.8

1

1.2

1.4 =2.76 TeVNN

sALICE (2.5<y<4.0 ),

=0.2 TeVNN

sPHENIX (1.2<y<2.2),

/dy=0.030 mb)cc

σ=0.2 TeV (dNN

sModel,

=2.76 TeVNN

sModel,

forward y

/dy=0.25 mbcc

σd

/dy=0.15 mbcc

σd

• ”suppression” at RHIC

• ”enhancement” at LHC

NJ/ψ ∼ (Ndircc )2

“generic” predictions

validated by data

What is so different at LHC?

(compared to RHIC)

σcc: ∼10x, Volume: 2.2-3x

A.Andronic et al., arXiv:1106.6321

...an ultimate observable to measure the phase boundary (how low in√sNN?)

...after melting and with charm quarks equilibrating in the deconfined stage

Page 26: The thermal model in heavy-ion collisions [fits of

Summary and outlook

the thermal model provides one clear way to obtain “experimental” pointson the QCD phase diagram(with fits of hadron yields; higher moments to follow)

• thermal fits work remarkably well (AGS-RHIC) ⇒ (T ,µb,V )

• limiting temperature ⇒ phase boundary (Tlim ≃ Tc)

→ for the skeptics... LHC case decissive ...smaller exp. errors expected

...would we be able (do we need?) to constrain also δT ?

• indications (bad fits) around the critical point? ...maybe, at SPS...

...but not a strong case due to disagreements between experiments

→ RHIC low-energy run (and CBM?) will clarify this

Needed: a better freeze-out line (or phase boundary?) for µb >500 MeV

• Good agreement with J/ψ (and ψ′) data ...is scrutinized further (LHC)

[email protected]

NICA - FAIR Workshop - FIAS, 04.04.2012

Page 27: The thermal model in heavy-ion collisions [fits of

Backup slides

Page 28: The thermal model in heavy-ion collisions [fits of

Canonical correction (“canonical suppression”)

needed whenever the abundance of hadrons with a given quantum number isvery small ...so that one needs to enforce exact QN conservation

in AA collisions:strangeness at low energies

nCi,S = nGCi,S · Is(NS)I0(NS)

NS = V ·∑

S · ni,S,total amount of strangeness-carryinghadrons (part.+antipart.)

nCK,Λ = nGCK,Λ · I1(NS)I0(NS)

,

nCφ = nGCφ

...negligible for√sNN >5 GeV

1

10

10 2

10

√sNN (GeV)

supp

ress

ion

fact

or

I0/I1

I0/I2

I0/I3

VC=1000 fm3

[email protected]

Page 29: The thermal model in heavy-ion collisions [fits of

Fraction of yields from weak decays

...is not always well controlled in measurements

0

0.1

0.2

0.3

0.4

0.5

0.6

10 102

103

√sNN (GeV)

frac

tion

from

wea

k de

cays

π

p

Λ

[email protected]

Page 30: The thermal model in heavy-ion collisions [fits of

Fits at SPS: 30 and 158 GeVdN

/dy

−110

1

10

210

Data (NA49)=16.3/8

df/N2χModel,

3=380 MeV, V=1380 fmb

µT=138 MeV,

=7.6 GeVNNs

+π −π +K−

K p p Λ Λ −Ξ+

Ξ φdN

/dy

−110

1

10

210

Data

NA49

NA44+NA57

=24.4/10df

/N2χModel, 3=230 MeV, V=1240 fm

bµT=154 MeV,

=17.3 GeVNNs

+π −π +K−

K p p Λ Λ −Ξ+

Ξ −Ω+

Ω φ

only NA49 data: T=148 MeV, µb=215 MeV, V=1660 fm3, χ2/Ndf=36/10

only NA44+NA57: T=172 MeV, µb=245 MeV, V=700 fm3, χ2/Ndf=30/10

[email protected]

Page 31: The thermal model in heavy-ion collisions [fits of

“The horn”(s) as of 2009

0

0.05

0.1

0.15

0.2

0.25

K+ /

π+

E866,E895E802,E866NA49STAR

NA44PHENIX

thermal model

60

80

100

120

140

160

T (

Me

V)

T

0

0.025

0.05

0.075

0.1

0.125

0.15

0.175

0.2

10 102

103

Λ /

π-

E895 E896NA49

STARNA57,NA44

thermal model

0

100

200

300

400

500

600

700

800

µ b (

Me

V)

µb

√sNN (GeV)

rather well explained by the model

...as due to detailed features of thehadron mass spectrum...which leads to a limiting temperature(“Hagedorn”, T < TH)...and contains the QCD phase transition

the horn’s sensitivity to the phase bound-ary is determined (via strangeness neu-trality condition) by the Λ abundance(determined by both T and µb)

PLB 673 (2009) 142

Page 32: The thermal model in heavy-ion collisions [fits of

Thermodynamical quantities at chemical freeze-out

2 3

)3 (

MeV

/fmε

0

50100

150200

250

300350

400450

2 3

)3P

(M

eV/fm

0

10

20

30

40

50

60

70

80

)-3

s (f

m

0

0.5

1

1.5

2

2.5

3

3.5

(GeV)NNs10

210 310

)-3

n (f

m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

)bbaryons (b+mesons

...follow T dependence on√sNN

Page 33: The thermal model in heavy-ion collisions [fits of

Timescales for charm(onium) production

Karsch & Petronzio, PLB 193 (1987) 105, Blaizot & Ollitrault, PRD 39 (1989) 232

• QGP formation time, tQGP

– SPS (FAIR): tQGP ≃ 1 fm/c ∼ tJ/ψ– RHIC, LHC: tQGP . 0.1 fm/c ∼ tcc

survival of initially-produced J/ψ at SPS/FAIR energies? (Td ∼ Tc)

• collision time, tcoll = 2R/γcm

– SPS (FAIR): tcoll & tJ/ψ– RHIC: tcoll < tJ/ψ, LHC: tcoll << tJ/ψ

cold nuclear suppression (breakup by initial nucleons) important at SPS/FAIRenergies but not at RHIC and LHC

shadowing is yet another (cold nuclear) effect - important at LHC (RHIC?)

NB: the only way to distinguish: measure σcc in pA and AA

Page 34: The thermal model in heavy-ion collisions [fits of

J/ψ at RHIC: effect of shadowing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

-2 -1 0 1 2

σcc: pQCD FONLLσcc: PHENIX+shadowing(dAu)

Au+Au 0-20% (Npart=280)

RA

AJ/ψ

-2 -1 0 1 2

Au+Au 20-40% (Npart=140)

y

model describes data with PHENIX σcc (lower error plotted)J. Phys. G 35 (2008) 104155

Page 35: The thermal model in heavy-ion collisions [fits of

J/ψ production relative to charm

0

0.2

0.4

0.6

0.8

1

1.2

50 100 150 200 250 300 350

Npart

100

x (d

NJ/

ψ /d

y) /

(dN

cc /d

y)

SPS (dσcc/dy=5.7 µb)

RHIC (dσcc/dy=63.1 µb)

LHC (dσcc/dy=639 µb)

pp, PHENIX data • ...the most ”solid” observable

...with similar features as RAA

• similar values at RHIC and SPS

...with differences in fine details

...determined by canonical sup-pression of open charm

• enhancement-like at LHC

can. suppr. lifted, quadratic termdominant

Nucl. Phys. A 789 (2007) 334

Page 36: The thermal model in heavy-ion collisions [fits of

J/ψ at LHC

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

50 100 150 200 250 300 350

Npart

100

x (d

NJ/

ψ /d

y) /

(dN

cc /d

y)

dσcc/dy (mb)

0.32

0.43

0.64

0.85

1.28

J. Phys. G 35 (2008) 104155

solid expectations for LHC

...providing we know well (from mea-surements) the charm productioncross section in Pb-Pb

agreement that (re)generation is thegame at LHC?

Liu, Qu, Xu, Zhuang, arXiv:0907.2723Song, Park, Lee, arXiv:1002.1884

“2-component” (kinetic, coales-cence) models

...as Grandchamp, Rapp, PLB 523 (2001) 60, NPA

709 (2002) 415