18
NEA 3 rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES AT CEA P. Anzieu , P. Carles, A. Le Duigou, F. Lemort, X. Vitart CEA, France

THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

Embed Size (px)

Citation preview

Page 1: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1

THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES AT CEA

P. Anzieu, P. Carles, A. Le Duigou, F. Lemort, X. Vitart

CEA, France

Page 2: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 2

A CEA R&D StrategyConcentrate efforts on a scientific approach

• data acquisition (development of specific analytical devices)• modeling (physical models, flow-sheet analysis, systemic approach)

Develop expertise on thermochemical cycles assessmentsBenefit from collaboration with international programs

Basic Research

ThermodynamicsData acquisition

ModelingFlow-sheet analysisCorrosion studies

TechnologicalAssessmentsLaboratory loopsDemonstratorsTechnological

improvementsIndustrial viability

Collaboration with USA : GA, Sandia, Argonne, IdahoCollaboration with Europe : HYTECH programCollaboration with Japan : JAERI

Data acquisitionAnalytical devices

ModelingFlow-sheet

Analyticalmethods

Collaboration with USAArgonne

Collaboration with EuropeHYTECH program

Page 3: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 3

CEA’s program for nuclear hydrogen

Hydrogen massive production using nuclear heat

Thermochemical cycles HTE

Assessment Sulfur family Other cycles

Methodology

Flowsheet

Plant design

Reactor coupling

Sulfur-iodine Hybrid sulfur

Flowsheet

Process breakthroughs

Modeling

Materials

Materials for membranes

Flowsheet

Flowsheet

Technology

Modeling

Plant design

Economics

Reactor coupling

Economics

Bunsen: stoichiometry

H2SO4: high temperature part

HI: reactive distillation, membranes, catalysts

Hydrogen massive production using nuclear heat

Thermochemical cycles HTE

Assessment Sulfur family Other cycles

Methodology

Flowsheet

Plant design

Reactor coupling

Sulfur-iodine Hybrid sulfur

Flowsheet

Process breakthroughs

Modeling

Materials

Materials for membranes

Flowsheet

Flowsheet

Technology

Modeling

Plant design

Economics

Reactor coupling

Economics

Bunsen: stoichiometry

H2SO4: high temperature part

HI: reactive distillation, membranes, catalysts

Modeling Experiments Lower priority →

Page 4: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 4

Where are we today ?

• A R&D program was defined to get better and better

• 3 years work give an estimated efficiency of 35±5%• A lot of key points are identified

Effi

cien

cyes

timat

e

Time in year

25%

50%

75%

0%

35% ± 5

20042001

• But will they come more and more ?

Page 5: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 5

Main issues of Sulfur-Iodine cycleHI HI separationseparationHI HI decompositiondecomposition::•• catalystcatalyst ((reactivereactive distillation)distillation)•• incompleteincomplete reactionreactionHeatHeat demanddemand

SOSO33 decompositiondecomposition::•• catalystcatalyst•• couplingcoupling to to reactorreactor

450°C850°C H2SO4 Decomposition

H2

HIDecomposition

HIVaporization

O2

BunsenReaction

SO2

H2SO4Concentration

H20I2

SideSide reactionsreactionsStoichiometryStoichiometry

GeneralGeneral::Corrosion Corrosion IodineIodine losseslosses

Page 6: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 6

Bunsen section: objectives

xI2 + SO2 + (n+2)H2O ⇄ [H2SO4 + (n-m)H2O] + [2HI + (x-1)I2 + mH2O]

Bunsen Reaction

H2SO4(aq) phase HIx phase

Objectives:• Reduce excess of H2O and I2

while keeping phase separation

• Minimize side reactions

• Minimize heat losses

H2SO4 + 6 HI ⇄ S + 3 I2 + 4 H2OH2SO4 + 8 HI ⇄ H2S + 4I2 + 4H2O

Page 7: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 7

Bunsen section: experimental devices

Device Material Operating temperature Input chemicals

B0 Glass 30-60°C HI, H2SO4, I2, H2OB1 Glass 100-120°C (limit 1,5 bar) HI, H2SO4, I2, H2OB2 Ta 100-150°C I2, H2O, SO2

B3 Bunsen section of the I-NERI loop

B1

B0

B2

Page 8: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 8

0

0.2

0.4

0.6

0.8

1

200 210 220 230 240 250

Longueur d'onde (en nm)

Abs

orba

nce

H2SO4 = 0.5 I-

H2SO4 = 5 I-

H2SO4 = 50 I-

Bunsen section: analytical methods• Objectives:

– Composition of the phases– Control of parasite reactions

• Available methods (ex situ):– I: UV-visible measurements

after reduction of all ioded species– S: ICP-AES– H+: potentiometric titration

• Under development:– Voltamperometry (ex situ)– γ-absorptiometry– ATR probe– Anti-Stokes Raman diffusion

insi

tu

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

fraction molaire HI

fract

ion

mola

ire I 2 Brut

HIxH2SO4

CEA results

Page 9: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 9

Issues for the iodine section

Bubble Pressure of HI-H 2O Mixture

100°C

125°C

150°C

0

1

2

3

4

5

6

0 0.05 0.1 0.15 0.2 0.25

[HI]

P (b

ar)

Vapeur très pauvre en HI vapeur

Vapeur très riche en HI

[HI]azéotrope

• Exit of Bunsen section: HI/I2/H2O mixture (HIx)• HI/H2O(/I2) azeotrope: no simple separation• Slow and incomplete decomposition of HI

Azeotrope composition as a function of temperature for the binary mixture HI-H20 (models)

No experimental data available up to now in relevant conditions :flow-sheet calculations based on assumptions, extrapolations, best estimates

Page 10: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 10

Main options for the iodine section

H3PO4 I2

HI/(H2O/H3PO4)

HI

HI/H2/I2

H2O/H2

HI/I2/H2O

HI/I2/H2O

H2O

I2

H2O

I2

HI

H2O/H3PO4Distillate

Add third body

Recycle

HIx mixture from Bunsen section

H2

Concentrate HIx

Distillate

Separate H2

Reactivedistillation

Extractive distillation Electrodialysis Reactive distillation

Separate H2

Decompose HI

H2O

Page 11: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 11

HI section: experimental devicesObjective: HIx liquidObjective: HIx liquid--vapor equilibrium data in process vapor equilibrium data in process

Device Material Operating temperature Pressure Measurements

I1 Ta 100-300°C 1-100 bar Total pressure

I2 Glass up to 150°C 1,5 bar Partial pressures

I3 Ta 100-300°C 1-100 bar Partial pressures

conditionsconditions

Total Pressure of the ternary HI-H20-I2

0

200

400

600

800

1000

0 20 40 60 80 100 120

Temperature (°C)

Pres

sion

(mba

r)

LSRM

Littérature

I2

Page 12: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 12

Corrosion of materials• Bibliographic study• Preliminary screening tests:

– Bunsen section– HI section

• Study of associated mechanisms

0,1

1

10

100

1000

10000

Tantale Zirconium Hastelloy B3

Cor

rosi

on/ µ

m/y

aer

H2SO4

HI

mixte

0,1

1

10

100

1000

10000

Tantale Zirconium Hastelloy B3

Cor

rosi

on/ µ

m/y

aer

H2SO4

HI

mixte

1,E-10

1,E-09

1,E-08

1,E-07

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

1,E+00-1,2 -1 -0,8 -0,6 -0,4 -0,2 0 0,2

Potentiel / V/ESS

Den

sité

de

cour

ant /

A/c

tantale

zirconium

Hastelloy B3

H 2SO 4 9 m ol/LT=95°CVb = 600 m V/h

Electrochemical tests in H2SO4

Tantalum, Tantalum, ZirconiumZirconium : stable passive layer

HastelloyHastelloy B3B3: anodic dissolution

Page 13: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 13

New devices for the study of corrosion• Bunsen section: from 2006

A new device for longer tests in more representative conditions

– Ta Reactor– Maximum temperature : 150°C150°C– Maximum pressure : 7 bars7 bars– Volume : 1.5 L1.5 L– Possible sampling of the

two liquid phases

• HI section: planned 2007

The CORBUN deviceThe CORBUN device

Page 14: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 14

A long route to viability: efficiency and cost optimization

Time

100%

0%

Theoretical efficiency

First approach Energetic efficiency More precise Flow-sheet

Exergetic efficiency

System & ComponentsOptimizationTarget efficiency

EvaluationR&D

Demonstration

• The challenges:– R&D activities with no iterative process

• flow-sheet assessment, heat distribution, materials, innovative concepts…– Answer questions about strategy for the hydrogen economy

• position vs. competitors (especially electrolysis), raw materials availability, safety, public acceptance, massive or dispersed production units…

Page 15: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 15

The UT_3 Cycle

Experimental Tests

Volatility Experimental evidence of high volatility of FeBr2 at 750°C

At 725°C/24h →→

At 750°C/24h Just above melting point of CaBr2→

CaBr2 ⇒ CaOCaBr2 ⇒ CaO Incomplete reactionParticle collapse

Hardened solidIncomplete reaction

Thermal cycling difficult

FeBr2 ⇒ Fe3O4 At 600°C/24h → Fe2O3 forms instead of Fe3O4→

At 700°C/24h

Incomplete reaction

Just above melting point of FeBr2� Fe2O3 forms instead of Fe3O4

The cycle is modified !

FeBr2 ⇒ Fe2O3

Page 16: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 16

The Hybrid Sulfur CycleElectrolysis

SO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO2 + ½ O2

H2

O2

H2O

SO2 (2-10 bar)

H2SO4 35-50% (20-110°C, 2-10 bar)

H2O + SO3(600°C)

H2O

H2SO4 90-98% (350°C)

DecompositionH2SO4-> SO3 + H2O H2SO4 Concentration

O2 + SO2 (20-30 bar)

O2 + SO2 (900°C)

900°C

Electrolysis sectionSulfur thermocycle section

ElectrolysisSO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO2 + ½ O2

H2

O2

H2O

SO2 (2-10 bar)

H2SO4 35-50% (20-110°C, 2-10 bar)

H2O + SO3(600°C)

H2O

H2SO4 90-98% (350°C)

DecompositionH2SO4-> SO3 + H2O H2SO4 Concentration

O2 + SO2 (20-30 bar)

O2 + SO2 (900°C)

900°C

Electrolysis section

ElectrolysisSO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO2 + ½ O2

H2

O2

H2O

SO2 (2-10 bar)

H2SO4 35-50% (20-110°C, 2-10 bar)

H2O + SO3(600°C)

H2O

H2SO4 90-98% (350°C)

DecompositionH2SO4-> SO3 + H2O H2SO4 Concentration

O2 + SO2 (20-30 bar)

O2 + SO2 (900°C)

900°C

Electrolysis sectionSulfur thermocycle section

ElectrolysisSO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO

ElectrolysisSO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO2 + ½ O2

H2

O2

H2O

SO2 (2-10 bar)

H2SO4 35-50% (20-110°C, 2-10 bar)

H2O + SO3(600°C)

H2O

H2SO4 90-98% (350°C)

DecompositionH2SO4-> SO3 + H2O H2SO4 Concentration

O2 + SO2 (20-30 bar)

O2 + SO2 (900°C)

900°C

Electrolysis sectionSulfur thermocycle section

ElectrolysisSO2 + 2 H2O + →H2 + H2SO4

O2/SO2 Separation

ReductionSO3-> SO2 + ½ O2

H2

O2

H2O

SO2 (2-10 bar)

H2SO4 35-50% (20-110°C, 2-10 bar)

H2O + SO3(600°C)

H2O

H2SO4 90-98% (350°C)

DecompositionH2SO4-> SO3 + H2O H2SO4 Concentration

O2 + SO2 (20-30 bar)

O2 + SO2 (900°C)

900°C

Electrolysis section

• Main issues: Electrolysis Section– Membrane (SO2 permeation)– Cell over-voltage

Page 17: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 17

The Cerium Chloride Cycle

Ce-Cl

250°C

650°C

Cl2 + H2O

192 t/hCondenser

Cl295 t/h

H2O

24 t/h

H2O73 t/h

Cl2 + H2O

119 t/h

CeCl3660t/h

800°C

Evaporator

H2O

24 t/h

H2O24 t/h

+ X t/h

H2 + H2O +HCl

2.7 t/h + X t/h +287t/h

H2

2.7 t/h

CeO2461t/h

HCl

390 t/h

O2

21.4 t/hSeparating

device

liquidgazsolid

HCl295 t/h

SeparatingDeviceH2 + H2O

2.7 t/h + X t/h

UV

Evaporation

250°C

650°C

Cl2 + H2O

192 t/hCondenser

Cl295 t/h

H2O

24 t/h

H2O73 t/h

Cl2 + H2O

119 t/h

CeCl3660t/h

800°C

Evaporator

H2O

24 t/h

H2O24 t/h

+ X t/h

H2 + H2O +HCl

2.7 t/h + X t/h +287t/h

H2

2.7 t/h

CeO2461t/h

HCl

390 t/h

O2

21.4 t/hSeparating

device

liquidgazsolid

HCl295 t/h

SeparatingDeviceH2 + H2O

2.7 t/h + X t/h

UV

Evaporation

- Membranes were suppressed- High & rapid efficiency of reaction 2- Viability of reaction 3

Lab tests :

Page 18: THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL STUDIES …€¦ · NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 1 THE SULFUR-IODINE AND OTHER TEHRMOCHEMICAL

NEA 3rd Meeting on Nuclear Production of Hydrogen, OARAI, Japan, 5-7 Oct. 2005 18

UT_3 cycle

Gas-solid reactions:

MO + H2O + SO2 → MSO4 + H2 exothermal - low T°

MSO4 → MO + SO2 + ½ O2 endothermal - high T°M could be Fe (T > 730°C), Ni, Co, Mn

Sulfate cycles --------------------

Hybrid Sulfur cycle -----------------

SO2 + 2H2O → H2SO4 + 2H+ + 2e- Low T° Electrolysis <120°CH2SO4 → 4H2O + SO2 + ½ H2 High T° Decomposition

• Main advantage : max T° lower than for S-I

• A lot of unresolved difficulties + bromine toxicity

=> negative conclusion. We have given up this cycle

• Advantage : 2 reactions cycles

• Difficulties : transfer of solid, parasites reactions (formation of MS, H2S)

=> Tests underway

Cerium Chloride cycle ---------------

CaO + Br2 -> CaBr + 1/2 02 (500-600°C)CaBr2 + H20 -> CaO + 2 HBr (700-750°C)Fe3O4 + 8 Hbr -> 3 FeBr2 + 4 H20 + Br2 (200-300°C)3 FeBr2 + 4 H2O -> Fe3O4 + 6 HBr + H2 (550-650°C)

Evaluation of Other Thermochemical Cycles

• High H2 purity, anode voltage lower than for water electro., H2 produced at low T°

• Comparable to S-I : same H2SO4 section, No iodine section.

=> positive First-analysis : seriously competing with S-I cycle

• Chloride and materials well none• Medium toxicity

=> study underway

H2O + Cl2 → 2HCl + ½ O2 ~ 650 °C8HCl + 2 CeO2 → 2CeCl3 + Cl2 + 4 H2O ~ 100 °C2CeCl3 + 4H2O → 2CeO2 + 6HCl + H2 ~ 750 °C