27
A-A128 995 ON THE SOLUTIONS IN THVER 1 IK FLOW OF A NON-VISCOU..CU) MISCON51N UNIV-MADISON MATHEMATICS RESEARCH CENTER H BEIRAO DA VEIGA SEP 92 UNCLASSIFIED RC-TSR-2424 DAAO29-8S-C-04i F/G 29/4 N E-Ehh~hhhi

THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

A-A128 995 ON THE SOLUTIONS IN THVER 1 IKFLOW OF A NON-VISCOU..CU) MISCON51N UNIV-MADISONMATHEMATICS RESEARCH CENTER H BEIRAO DA VEIGA SEP 92

UNCLASSIFIED RC-TSR-2424 DAAO29-8S-C-04i F/G 29/4 N

E-Ehh~hhhi

Page 2: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

WA .

166

-j S

liii

111.25 .4

I~I~IIMCROCOPY RESOLUTION TESI CHART

ftAT~t IMJU OF SI*MAKS Ii A

Page 3: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

MC Technical Sumary Rqozt 2424

( ON THE SOLUJTIONS IN THE 1ARGZ OfTHE Two-Din=WNAL rLow or A

NON-VSCOWUS INCO NRESS I FLUID

H. Delrio da Veiga

* Mathematics Research CenterUniversity of Wisconsin-Madison610 Walnut StreetMadison, Wisconsin 53706

September 1982 f(Received April 20, 1982)

Approved for public releaseiistributlou ulimited

Sponsored byU. S. Army Research OfficeP. 0. Box 12211Research Triangle ParkNorth Carolina 27709

82 11 02 063

Page 4: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

MMITX'U Y o summiUOZ-MUWISO.

OM TIM sowUs Iw m a or rIm "M -AOZfinuMzOaILOU OF A NOW-V COU ZII3N3ROSISl VIAD

UN. DeA. d VeLga,

1echnical SeMAry Report 02424September 1962

We study the ftler equatloms (1.1) for the motion of a non-vLsooms

comessible fluid in a plan. domain Q. Let a be the Saneeb speo

defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external

foroee fit) belong to Lo ). ts eorm 1 we prove the tr te"

oetinuity and the glob"l bmddm of the (muque) solution v(t), end in

theorem 102 we proe the stoug-otnum depends of v on the data WO

and t. In particular the vortiLty rot v(t) is a cotinummus fwxo in

5, for every t 6 t, if and oaly it thL property bolds for one value of

t. In theorem 1.3 we stAte ei propertis for the aa.ooLated group of

nonlinear operators S(t). Finally, in tborem 1.4 we give a quite general

sufficient condition on the data in order to got classical eolutions.

M (MG) SubJect ClassLfioatLons, 35330, 35125, 3SQ20

Key Words, non-viscoms iaaepresible fluids, nonlinear evolutionequations, continuous dependence on the data

Work Uit musber I (Applied Analysis)

'Department of Hathematics, University of Trento (Italy).

Sponsored by the United States Army under Contract wo. OMG29-00-C-0041.

W

Page 5: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

XSZrcaucin aD inmiauauOU

in this paper we study the Muer equations (0. 1) for the motion of a hoa-

viscous I oampressbl. flUid in a plane omn I.

Let a be the Damnef space consisting of all divergence free vetor

flws il 0, tanential to the bodezy r end having a oontinuoms courl in

As let the initial data v0 belong to And the external foroes f(t) be

integrable In time with values in Be Under these a -stions the (unique)

solution v(t) with values in a of the Soler equattone is globally bounded

And ontinmeo in time (theon 1,*1)* Nreover. we prove the strong

costinutimedpeed of the solution V with respect to the data V0 and

f mtho"M 1.2). in particalr, curl v(t) is a contiauous function La I,iP

for eveoy t a t if and coly if this property bolda for oe value of t.

In thevoem 1.,3 it is ithat if rot f l0# the nonlinear

operators Sit), mapping the initial data v0 to the solution at time t,

form a strongly ocntinuum gromp of Lsmetrisa. Irinally, a general eufficient

condition guaranteming the existenci of classical solutions is given in

theorem 1.4.Aeesston For"tS ORA&I

DTIC TAB

OD, ,_Distribution/

Aveila!lIty CodesAv.111 anI /or

The responsibility for the wording and vim exp resse in this descriptivesumry lies with MC, and not with the author of this report.

Page 6: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

an in OIDIZU" to in t~US or in3 1210061011Mvie or a mup-viaw MOwzSSgaI ywi

a. so" s Votesg

lot b e n ope w mmste., ilsind est of the Pleas a~ avith a reyslar bommi"

r. asy of .aem C2A a S. ve13 ot by a the eatmau4 wit seat to 1. is this

pper we -tf the motor equationo

11.15p a1w. Ian

ubor the Velocity flow4 wit..) asi as am 1(ton) ft* tshesms. Ia (1.11 the

QNSWOa1 hem filW Men~) 410 the laitil 90eleet w*Iu) &M gILVW 0MMU,

Sulecomme of hemia eslatke of (1.11 was prees by I. Uteitels. Otl.st oeaiest

soluons were stmilsid bg smo asba n for Iaieem 3. )5des 5. smay. he C. soast fer

173, miS 0-ih VOASW1). 13rs mumM staftm no these et T. 16.O Leb (31, f. Kato

143. J9 C. W. magm tole a"i C. am*"m II)*

"ae ala of ow gmat Is to13 " sm properties Caed ~ soob luions at Spue

I11 -I e on" the problem An a very Natal heeotloelI f mieet t0 eam owDON fo

Sal ae"ta of an1 alweme free mect flt v.4 im) Wklok We tapyesal to the

bousiety a" her Iftc rat via) a CA). Ibe S p eso Of global selatioe Lo this sPas.

am be meima fellows,

Se0partmt of "allamtlee. Univesty of ?.ft13I Ital)

Ussoed by tine Dulted states hUnde mOft tat ft. DWA s--"41.

Page 7: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

MA for *valy Sal"I velocity we 0 Bid) ad for oeul auteur ou

t 0 L.181(f~)) the slutlas wit) isa sagely am"A"O. Ite. .6 g albw)) (ase

thmccm 1.18 o alas comgh LI).

IMl a* asla wit) depeds matlasi yev is the jMtftsleW, as the dats

g mad to l.,. vraml it Vi - Vsin 3d6) and it to-t to 1.S(,31) tor

OWWoI time UrmLtomGI ta OW Wit) 0 wit) isBiad No1) 8h Perace baIU

selfles as evry oms t tim Intervial I fthoaes 1.3a).

(1141 estimate 41.61) halfts Is joSUsI*U the slution to glo~bll beadied is time

it f 4L O3il). MOCOe Itt 130 thas @wit$@UaU.*g,. Yt 4Re@* US " h tM

mrm1 ofBd).

IS ae"" Pepsuty (L) apes a to bmv boom PM"n Is day 2001" qes. mone

thaeu m wm demma. with vSefte to meme acgoloess a be IL I& NNW a)

W~POOMM 11,14) abm thMe 3)1 01,0 be a -sutable qese OW 0 th y of aaprbe

prtefis MSGe tha Bil er to he the qpse of the E Vsplar tauIOM far WAM&a

Proerty cll) he&&*.

Ase for sAMLoIial thmat a of ad eathiae ame taoesults.am gone

thoarm 1.3. tIOAh OW ee VMS Me 28ali grOgeuUSS at knedUosi Ieqe at Offoere

bald ter equation Is. 1) La the spae 3().ams fel bm woe an am thathe I. 1 and 1.3 2 SUMPrve the afteiteso or

abometer lbs owl of the velocity field# o poesselye Eft wit) isa conetainus

tmus La I& hotr every 163.1 it Mady It this Pppaty holdS har ma (arbItrary)

welle at ts this saimmn holdi even La prsenc at yalta discontinu (to tuft)

GWLeAleaca o- Atuul. CMl it) se ai hoe a mtMUMOM fnction ia Go ta the

raasieh at this seoso lsttessm Notation aid state the &Oes malta &a complete

Coes. ftr simpiity we w ill aim that 0 a alql- I aoted. the rede otId

verity that ane usul davic. ism 131 is aid 1411 atilleodto treat the ,.st am0 atas

dmlse heOu pe atos ham the reita stated to our poar held for amsimplly omaua

.2-

Page 8: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

in th e mqwa dontes the OLmse of B ad CfiI) the wo at stisee

faftaw wt vwut vusa) ruase in I warne by INU a .qO16)B. no I. Vt

atepiscity we amia La sit asation m dists~ letas~aes sen ad vesew- ta

1k, a positie LateWs is the ppos ee al k Uwee sctawausly Ltfereatiable

fess~dQG JAI Aue dwWith th00n 60aMOSIIk bsaUeM we MLWill writ *o to

ueaete & gis£81iaUee of ads A. "ae mmlii &abe the RL~bbt wpai La (01

a toi a bSae grw# lisu) is d the mar was e" atl 3-valsd etrewgl

seabIesuraef eMM %U 4 6 Seek thet Ist)13 As Lategpable a cast Latervasa

(-9.13. 0 y9 T .0

Sawo *1 the doe dellaitis wiLl be GtiUaai "So with 0 replanei by 0 cc by

it O~lso)i M*N Wuis haB we anmasew ne by $It) the fwea *(to* I

naally a demete the sat swe ueimewer ass co%oc 1 .... dows"e staats

depesag at got as B. "cemn aining. a be donaed by dohe m 06"e a.

Ike ftepsmay 9 ~~1"us we claall ter a salar fessties o(u) ha a we

4511*. the astas ht. - 00iAX2 40u 1 S an heO fa vewe htien V . tv w 21 weIV IV

ftfe "he usles M Ve a* G1. .. aw Win "~t hat. "a* twat lot 1, thm

rotatiat am the aiin 19 by 12is Lan he pWe direfeum (O&t elmts)* tat- w

new~~-9. Ia bea9.1eo

IV the abaf ss"Oe V Not9 is the 9010"Oft OfIratv L B,

11*3) "T.. 9 aB

Wes 0 a s 1

Page 9: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

Lot l at A sm b a m as

£1.4) SCE) It (v QCIE) s 41Lv vo h. I, i s VO 0 an g.ote v C(AlI

evelps wit bs IdE l oaIst i * IV$ LNG toe bs qus 4 b""a S1N91-

sslsi) a Ab I I veast m

come"Mum "as sastas Ge seistlam we prw the sttawia statints

wo a SOn~ wet aall. "Wive

v*** a ) .MA& f@L.(SBL243)) M 9 tot S.MOCAIl"'. "MAei

~ am V's acllcof

(1.0)e U )45v owe In it C411141. VItSaE.

t" ad""= eqtu bm G. uEftu'e~ rm 41 1 s fal) asmme i&s ."w or~

sad saais (1.6) is .qsivsLu to

£1.0Is) Svt)a-6

ftv* a ls s ain (1. t e v*t_______

Page 10: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

A4 M to co f iuf) (2 1f W M~t * Wit)

Bi. the conwom bet"sw~o em 90MaM ernster &ootYe ~e * v .L

wmaem rot f g g O& 4Giwe. by S(t). t aR. te walLaea opeator "t ie" by

st)w* a w1 t),.9 9,0 S 3d), jio vi t) is tHo solutlies ot proem (11.pot also

as a -6. One the followiin seeots

jbwr 10 ie, t~j1~ hej~j --- d.-& a- - Awed ts~eiew bee

(Al 840110lI 0 sit .1. tot Ca b( * I

aft) *14-el *UtJ8. 9 t I

fill) $it) eveeimiweA wr o euteu ~.f ry *a C 3()

umtmts ISitS Is Bill-eeiimfeel.ha3~31

* ~(AV) mWovm t am a h ~etwertrS is a bieeMUlni ea (Is the

-5) emeawe AU of) SJt E3) GOO tdGf. ANeeMM i . -

sit)%~ - sitlois AeMMlIem we orett vLs

If also stf -sson in~gte glat" see"a itmee .1 olaeeal Gotsuie. OW

sae eswers Ului be the assutity Of TV ae 9. eiiltAe emofUwe an f In ordo

se Ist OWLasAty tor swot ass ft Will tham be tuiwial. est to O retocLe

QqiAcitu 4 OWN spam C.011. the d6a sos s that v 4 CIRIC'11 %ofewor

rot ve . 1 we.i rot f 4 limbc~.4

we dnt svoct one ao remit it we Jost "etime %1 (4) as C4). am the ther

NOwe. It 904e12 C.41o 46 ae " 1 i. A 31 S the remeit hmle "@&IV#, hine we vest a

iau~w qee. ge constut %4) as followsa for 4061, 0 0C(5Pl let ae deest by

* .io~r) the oneIlatie of 0 s w e of diweetar lose or eo"" ho e

oleo) NO) 2 Se lots) - 0(71I

S"I ato we simply oted we &ISO asm that at~.%, * in LIS)9l

Page 11: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

0awly M(r) -u(a). 9 Ir D I 41mt ge lo t set

1AMM spm C4). MWV Cd) Le a Dana& e. NO*e. by thg WW. that

PI, 4 shp,-- mt "IA is t" m A-Idw @"-inom.

66 gow do te4(.iL' gega

2OseeLJAbCEfl 1 I& n .ve ~ a .e Cdl M11 heM ean'i

Jo BB imge * Into escII I

oft)ma TV(&) AL.~., ..

28auv1 do t*ewu wee e~lmm by sasteas 11 11l~ A&a

T 3 0 a ftumv p-ef dqpa S.m to LinWVin 1-1

9 IV* 's t) Is ~vm b fit) fa c-l *M ) * IOU,~ 43) Tl

M mC wai tha t 0 c~lbVoIIP fm am* p 2.

Page 12: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

tooI~ dem te o mo aI C60) C116.IM41). K L ommm,63 .1ee a"n bumaiei

to Cli,). rwa am an a ams~ s abltram elemtG 6 am Ift 9 be the oltham

xa

sol UMt We9 -. 0%0 e selethaS GO (1.31# Glass wO 41 ( 91 Vl 9 F4 40 th u"Lo

00648tw I U1.) LI alswo It ha Well kwo theft thoe mle Itinem qtxo) bor the

"PIage qmpoew 6 with sme Ie OmmLthas Imm her Ltmm (II) Verifie the

£2.3) ISOMP.)I *4 si 71'. 3p13.)1 4 six - vi-

arWA inlag " fglwham i hWaN pm um"edo th at $goI 4 ofm0 Ga .ta

Ilam) - 'lIS 14 0 oIx - irk (lx - u11 atm ut) I 1.glmf), VIF r m 1,G a 41 1.m

lvt.E)x - YlTjil 4 *,six - Fixtlsin ) F11 v 60ro

clealy VO Clat). W4 3stfte be as meluift of. a m =a64 tieY affhnUA"

Soemes(~)6% M e..3

VILt)-ue. 1 a)

some 62 ale MA aIdl me - 4 *1SPe Kel (a) .04el 111t) *- stall E h

Other head the time@ui

In - x I 1 31-tI(6aft

Page 13: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

is the solution of *;() a oS(0)1(0 (e)). a 9 (0.?). with 01(t) -Is - x 1. news

51. 1 (a) fo b t. for a 4 t a omrtapedla awquost btds. 1%40

2.)Ifloot's) - u(sot~ 1 )1 4 (.5) 4x-x1 n-a1

amo .e ath oets luffatoa) - off1.t'aiI 4 aie - a I I sad

0see - afsla 4 of j5It - t 1I (aft (411# estimate (3.6) telirns.

Datiftewthesep COOP6) by

t

4 II)Am Em 13.61 and ee ane usaw essmaSA r ois. List a prove the

I t

M111 0(soa

1211 19 a sur tIf 16e,71d -0 48tha1" 1

Ume EISA) 4 241) sad L~As)S t~ or Menet &al a@ 16,1n, it 611amw

ftr- %me Labeso e isidum~, them t~ to ON& v * thete moroeedtes

0 isf taen

Page 14: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

12.12) w (eiO)da ( '0

Vur re to e 0 > 0 there corrsponds a A 2 0 such that

( 2 13 ) m a ( t - t SI Olz - l 1) < 13 ) IU ( S~ t x ) - U (s ,t i #X I) I < C o0

uniformly with respect to I thls follows from (2.6)- IOO

(if) 1 *le,49Utt))ds - jt I(s.g(st,.x,))|M < 2V0 0

if MAclit - t11I Oi X1I -mia(A IA . fbs equicatinuity of the family O(K) i

proved. Tbs last statmnt falloen fro hecoli-rsea's oaoiaety theorem. 0

Thoorw 29 . fte m 0 1 K K bee a f ine Point .

Pof It ONaMSe ptoroVe tbOe ontinity of the Oa 0. lst S0 6 eS *

mfo m y m as 4.DOW" by W. the solutin of (1.3) with data $ it is clear thatS0 v unifory asa?.Lt £ 0 b given and % be ah that Iv- %IlQ < 9

* 2 Be. 90% Ws) - U(Stu). VD() a U(setex), and p(s) - IX(o) - a (s)I,

Awe % demotes theesolutioai 12.S) with v replaced by V. Por ) w one has

Ipelal 41 Iue) - X6()l 4 € * o1 IaX() - %(*d)l xlliis) - xW1)I. Bance

1014)1 4 a o + xo l Q%) because 2X(r) I an Lo Lag fusotn an (0,). Noreoer

*It) * S. OeMsqeu tly |O4o0t.n) - 1m6o t*x)| 4 ?(a * o1U9x(61)1 V a 9 (0,T1, and

0s(to,,x) 1 0LtnIon0ml moms to D(st) an (O,.]2 x 6l, wben 0 - 4-. It follows

"will from MG)0 and 42.12) theat Ca 0 9 uniformly in %~, Where Ca a(On). hotually.

It Duffl ee" to vow te poistwiss moverl e of t to Co uniform convergence follows

then Irm t"e C mpactes of swhme,, of $fl). 0

jL&Ta. bs "a aebmh of prowl etron continuity of C(t) in C() seems

net to work I& Older speces, evs if f a 0. ta tat if C0 9 C0 (6) we cannot prove

tet C*U(t'll) * C(.bCOA )) by asiag (only) regularity results for U(t.x) (other

arusamt mest eventually be addeud in fact, it C(l a '7 and u(t,x) a t - x the

twocics 41toa) a COiUlte)) verfies it) - C(tal - ;C(t.y) M :.y)I - Ix - Y1 1/2

if got. yt.

-9

iI

9 4+

Page 15: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

fte situation become woere with respeo t to the strong continuous dependence on the

data.

Now V verify that the functoe v oorrespoeding to the f ixed point C is a

solution of 01.1h see alao (41.

We start by eowiAg that for fixed (set) the mp a* U(st.s) is mare

preserving in 0. Lot 0 e S C1 to 1tjC1 (6)), on 0 u lo&ly a t . it v i

the solution of (.3) with data s mee bag v a (O(TIOC I ) I I and div va - 0. soe

x* ist.,x) Is sear preseeving. On the other band we kno from the pro of theoren

2.1 that U. - U fonmly on 0,-]2 x 6. it followe that U is easure preeerving.

Vor, define 1% - U(s~tex). Tmx - 0,(@Ot#u), x 0 and let 9 be a compect subeet of

A1 and A an arbitrary open et verifying ?(a) C a C 0. Meslg that Tax* In

uniformly and that tIM) Is o op e ow that there exists an ite e each that

I (a) C As bene IT (a)J- 9 19 4 A onequently 191 4 S~i, -ee |*g demotes

Imbeaque measure. An analogou property bolds for the no 1y - O(t,.y). beo the

measure preserving property bolds.

Line 2.3 . € C 0 be t find osatrusted above. 'bhi

Proof We show that

(2.161 L (got) * (;vY) * (9,?)s v Y a 1).

D ng by C 2(tx) the second toer in the rimt bend side of (2.4) and taking nteo

ac ount the easure preeerving propert one get, by the shnge of variable y - U(st., ),

t

Nonce

d t(C201) f(tr.yydy do I *(e~ylv.t~yl*y

0 0 ABonaa

and returning to the variable x - (toy) in the last Integral one get (42.16) for C2.

One argues similarly vith the first tom on the rijbt hand aide of (2.0).

II -10-

1"

Page 16: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

L w 2.4. v 4v 1 2 (o) d01v,& & 0 ad _V=0 o 0 .

rot v . ram rotl(V)v3 a div(vc) 12 the son" of diatributioe in 0# i.e.

((WI)v~rot V) - (M.O1Y) V Y C"(01.

po i. a direct omtaton am that for a regalar v, say v 0 C (0), the above

equatio bolds polatwis. For a gemeral v osider a equee of regular C Eu 8d that

C In C Is L a2CO) Deaoting by 9 the solution of (1.2) with data C and" deani""

v- not 9 t followstbtat v *v la 1' 2(a). Ibis allows to pass to the limit

whem a* # in Atheab" Week fogm. 0

now we verify that v is a solstie of (1.1). Coearly %v 9 W(OMIsLP(M)),

9 p 4 00 rWOVOWS C 91Sj 2 CO)) hescefrnlmml2.3 amsgts

3; 1t a (0.YeV 1 '2 0)). aosaiUlig that 0 a C euatios (1.2) yilds

-&1mf4i1 a sl t is as atfit a * as r. ammammay wflt e L is,.,,2l'(a)) an4

*widt a IPst(&$it) 6 Ll.(0Y,1 LA)). is a 11/&W + (ve)v - f a LI I0,5L2()).

Moreover, t($Vwit) + (vDD) - f- a 0 in the rLdbttlOSJS oaee I lame 2.4 and

2.3. Comeeqetly there Mj*WA , 41 L I vowl1,2()) that (1.1)1 bolds. 0 the other

ban4 i41* i i.e. o a C L-et co La O, daV fm-diWv0-s Ro lA, and

wieo -a ve -a em on '. easev - v* 0 .finall the emiquemes afth Owolution

v Conom a S mrdoe 111 th m 2 slae fee emvery p 12 + a1 the eetimate

lVl)li 4 e ,It)iP) bolde, this follow from (1.2) and frem well n eset teem

for I*&Upt partial Wforential equsotoseI LO iP epeses for inetance (31. theorm

2.1).

3. too fteoe .. Z this setion we write C a 0IC,* instead of

C a 9O() since Ce e # ae variable. For convenience we demoto by 01, 3

respectively the gqp v - 9I0I detimed by (1.3), - 2( l deftni b, (2)S) and

C * 3 00 o#) dfined i M2O). Ieaee *(O.C0*) - #3 (902 (9 1 (l),C 0 ,t). the mp

Is defined for every 0 A,. 0) a Cas) a aff) I. i(6.18c(5i. vote that V is the

M0Sotlom of Problem (1.I) if and cal - 1(C) for a C verifying C -I*C,00.

-11-

• ,jA

Page 17: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

Ibeowem 3.1. b , e A relatively-aimot Ot An C(A), a2 " ultively copfat

se I LIRIOYCCU)) Ad aha o is C(67). Ibnt ft # Ki * 1 W 1 x 2 ) it

relatvelyomit lk)

Let 'I. % as" IL be Contained Is balls with cete is the Ocila ad

radim hki, ka a"i 91 mepeaively. fte got of ftnotIMe ,O(D(@,t,x))* for 1e 0 1

and C K.I. is heemd in 41) by k1. 91 the mesear esDFLtLmof .1 &oLi-&Arellae

theovem the tematlefe4 N eo eqletAWm I By 12.6) the femothas

u(Sptea) ewe eq iaain M emos the family M*W(Otax)) isa euosatimmes s

aaiby AaoiAaletbeore, 0eometutee a rotatively omact Oet inLa )

Amalogaely the familyr

t

Is bamed by h2 In C62). w e ova that every 1egeemee otalms a

o-- "I,gt etheaoe in C(§,). Ibla gevue comatsems for tdo fomlly (3.1).

Net I S41 ad #n 1 2 he arUr sameo m'omi

(3.2) ;U(tux) -J *(8.U (epton))d

Dy the omeates of % 12 hr inlte a subseeemoe of ad a funotion

9 L 1. (601104) ech that * JA* La I (GOVICt(E)I 14 ), forver a wel, Iau theorem

emeuces the ealetemoe of a euemam sa& that

(3.3) to (see) * #(so*) In ctal for alse" all 6 (0.to?)

Daeot by *(seg) the metltn of countinuity of #U(m,.) ina losie (3.11)) ad

*0. 1e~n u a a" a (14). ftem (3.4) aid ECM AeOoIL-Arsels'u theorem it follow that

(3.5) no j(.6) - a. for aast all a a (0.?)eg

(4)v Par cmemee we moe the auma iabs a for sems ana ftw subeeem.

Page 18: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

Now let k=1 b e a sequefce of real pelttva nmbers such that % .

a a

&imoe ~ ~ inci L OTCd)taemnsasbeumo# uhta

0

40Defime b,(e)I is(a - e 6 (0) a ilI Clearly %o Le iategrabl. Over 10.?).

Moreover wk($A) k S (a)# 4 2$.l *a(e) I ab(s) heoce ;(*,g) 4 3b(m) bee

to eftae reepect to the eeheeqmem a k and b(s) Le iat.grabte. Sy *&Lag (3.5) and

Laees lwamated man aerwemo theorem Lt follow that to every w )- 0 thae oorrempoale

en a Blac edthat

ST

a 04,60 )lds cve W k v

Uqaatiom (3.6) gumeralee (3.12) Is the proof of theorem 2.1.

On the other heal, by the heendaebege of 16 the functions vk " U Wf 24

ad (2.6) inileumiy with respect to k. Neaf. (2.13) holds for every Uk with

A20 2(90) an~paat of k. We am proceel as Ia the proof of theorem, 2.1 =A we show

the m fst"aety of the met of famouise" 2 k t ni (mote that (2.10) holde

unkfozuly with reepeat to k, siamsI k() 4 b(s)). From the equicontlauity follows the

existaft of a subeequence com eg 9- a 0(i,).0

"Wce 10 2* no 0(1) X C(O) X L (0,71C(d)) + vi? ) Is ataus

IVW! tat (0 A (a) A 1 *(019 ##). Acquing sa La the proof of the contirnilty of

the amp 0 In theorem 2.2 meon e that we 5 #,(0a) '0 va VI(e) uniformly am 1

conseuentl us a v)*41 #2(v) snlfozuly 'a 10,?) 2 xl A- ov one easily verifiLs

that (% *, 1 1 4(m), A 0 c a 0 MAO,) poLstwia. La elacei

3 0

tt4 J5(sU~~ ) ()3e1 (, 3 at))-*.UetuId

0 a

0,0

Page 19: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

NOW by miSU theorem 3.t 1With a O) K,(00) sad w (~ it folLow that the

oosvezgsmoe of C a to C is ""fors to (this as be ahown without reeowt to theem

3.1). 0

keel of theoren t .2. Asme the hypothesis of theorem 1. 2 and put C* rot

0 irotf to rotwe C 0 a Mot . *8 Mr tn, Ca lout. 98410. Dytbe

0~ 0

L fSe'votl)).

Detumite a,(e) - (C~) %m teos (2.6) it toile" that a set

03 1 8) to bacmded wbaev 0 and 82 are bomadede Indspendently of the

pwar lar set S. Womeequemtly X Ise boanied because CS a 3(- (1(s)I 0)

Vs 0 4. Now theosem 3.1 shom that *1 (KO 1.K2 ) Is a relatively oapct set is C(OJv)

homce a C 0 1(K.K 1 9 2 ) verifies the sam property.

Let C, he mny convergent subeequeam of C a ad put for convaesem CUis C

Pro. the idestity C, a-, (C VC ( ) ad tros theorem 3.2 it follows that V4

C0. .) 0 eeusl isC ia aolutiosof (1.1) hesoe v v and

C- C *It follows that all the eusC a ossverse to C osifoguly is C(AV) i.e.

vaO i 0C(ISfu)). 0

WAS~ 3.1n1 theorem 1.2 Coosvergem Of f~a) to t iO 00t reqUested since V is

determined by system (4.2). Oeverqsnce of f~m to f in L iI (0)) would implythe additional convargso Yw * wt in 1 2

a LlO(L (11)).

4. &ro" Of teorem 1,4. We start by grOoming that coSPOeltoO Of C-fWotioft. With

Older catisuous functions yields Ce-fursatioma.

ww"m 4.1. a 0 C*(l) adU a C1(did). 0 CI 1. Tbsa .U 0 S A

0 % r

is articular

Page 20: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

If RUa mi the aomd fma m tho rLdt be"d "do of (4.2) is -orngd Lt

PcoL ft C Ua * Uo (U1& 5 go One easily reati that

we

It= 4 L I ) (01C4 ad Mass)S

a atx fsoatuM

?ban4j c a. 0(QIlCC§)ao

2 , T 1e a foetiamern 1rn ,ariia

tt(4.4) ist~) I I *(e.W~ut sw 0

Ibi C6(tir,to )) m ea

bt VWith straigh1tforward oaloulatims one doAq that

(4.4 ((t), 4I del e t(s.u(*,tfx)) - (a.u(setoy)I0 0 9-(fx-v(t t

Page 21: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

t

0i%,t

bere 0l) a is,*) and ua It Us't.*). my "uLg (4.2) oa gets

(4. t)(* . 1 (j. . f wel(l-)"(' s.

L.o. equation (4.5).

We am POW the contaInty statement. Asume for instance t o . oFrm dateinitiom

(4.4) ome gets

•t It

(4.8) (C(t) - C(to)* • I de I eu I$(mU(..t~u)) - $(eU(et,yl)) dr0 % 0 O(5a3-Y14r

+ do/ a* I$(so.u(et.)x) - $(eO(e.Ox)) -0 0 0(CIz1Ct

- ~~ ~ ! 91ftai% * *2~

As for (4.5) WO aho that 4 1 is bounded by the right band side of (4.7) vith the

interval (0,t) replaned by (tt) hne 51 goes to sr when It - tol goo to

Sero. we am prov tht a2 *0 a t t o oA tion (4.3) yields

V(tOter) 4 2r'%# (a) (K is) Where P(t%,to~sr) is the Lntegrand in 32. "e above

fwntion is Lnut ablo ovr• (0,) 10,R) ainie for anost all a 9 (0.T one has

0 3 0

as one shove by arguing as in the proof of leon 4.1. Moreover for ever e (OT for

Whiah #(a,*) 9 cdu), an for every r a 1oal, one has Li lto 0 totr) - 0. An

application of Lebequeo's dominated convergenc theorem proves that a 4 0 if t t 0 . 0

2o0

Page 22: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

IM~e .3. l 1) if Z ULU ie .assmion s of the Orcedinae laws. lot Co 0COO

4aaeJ CI t(x) 1 0 (0Otx)). Then . C((O.eT|C*(I)) moreover

* 6(4.9) [Cl I , a 0o

it Rti te (4.9) follow from 1i 4.1. the oontLauLty statement follows as in

the preceding lam (vith wany slqlpftcstLows).

3quations (2.4). (2.7), (2.0) dsfinition of 4 and the two preceding l s give the

following result I

Lm.4.~ Ase got kweOths"i 09 theorem 1.4 hold Wn lot C a rot v,* 9 c 6 t g rot v 0 T. " 4 C(3C.E)), moreover for every t a

(4.10) 1C(tl , e 0) ( 0 ( I) 0 O ci ) * 31 g08 + 31 01L (o.t Ic())

wher a • 01 + 1 t(Ott (i))

The followl theorem is cruiaRL for our proof.

fteorem 4.5. ge O4 C, (5) an lo h, e the solution of urobe Q(-2). Then

a C 2(g), moeoe

(4.11) 1" 2 4 cool. V O a C(I)

this result seem well known even if an exact reterance is not available to us (see

(2)# chapter 4, problem 4.2); ve are able to prove it for a uniformly elliptic second order

equation Lo - in a, s a 0 on r, at least it L has smooth coefficients and the

boundary operator % is regular (for Instanoe Diriohiet or Neumann boundary value

problem). ?his result doeenot depend an the dimolon a v 2.

The win statement in theorem 1.4 follows lmediately from v I Eot 0 and from

(4.10). (4.11)o recall that 0 - C. Moreover if g and VI are continuous in it

follows from (5.3) that V2 is continuous, from Yv - Tr that V8 Ls continuous

and from (1.1) 1 or (5.2)1 that 3v/St is continuous. 0

-17-

A.

Page 23: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

£AmeadiU 1. e recall sone well known tats about vector fields detLed Ln sam

shaply-coaaed domanls. lot 0 be an (W + 1)-tla onnected bounded regioe, the

boundary e come a to of ouAo c.losed mrve r 0vres...r. the oune r

oetakala the otrs. In that os the keg%l of the Linar yestm rot 0 Ia o

day v - 0 in 9, voa 0 an r bha finite dimsion U. lt m in a bas ele... 0%

and a&saw for mocaveolea that (uIa.u) - iah k - tos.. 1. ay taagtt" flow

(veetor fiel verifyLg Ulv v - 0 in Go von - 0 on r) Is uniqu ly deterLmod by the

field "t v La B1 m4 by the real mers (Vwluk), k I 1... to. n. quantity

ae - Iat V + I(v'up)l t a noa L 3(A). equivalent to the morakh,

I rot v + I v 2 0lt no f be an arbitrary vector fid La A. Solve the rblm - - rot f L

a, %o- a ar u Uoe g st 0 . clearly o -t%- ,rt t ivoo-o and

g a a on r. if f m go + IAftu%, A I k a (took) .t oll~owthat is a

tmagential flow, Moreover "t f - g) o 0 Ln a# (5 - gook) a s, k a I,....,on. Nw

there enists a scala: field amb that I - g -, I i .e. the vector fild g Is

the tangential flow In the camonical decomoition

(5.t) f 1- q 1 .

Uote that g 4Pn. only on rotru f aud 0 tbe U reel be (ftuk).

1

- Is

Page 24: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

Apo J a.lot w doomae the emtegel totes f insequatio (1-*1), es adicated

US. 51) mAolRt an omil the auxiliary pwobJlm

IVm

i V - 0L

Ihm geltins .1 (1.1) osasieta an the velooity MIoA v as Is (5.2) and on the

Pessur. tern Yo a Yt I YVI. Nmwver. Iro (5. 2) It follows that

IVI

.1

Aser that the rey"laity of Yv(t) Is komm. Ihes the *siLliti bmlery vain

Pgaum (5.3) givs the reguLaty otft Sod e (5.2) Oives the regularity of IV/It. in

portioula varios regslarity results foe Iw/St (Oel ftm Yi) are trivially obtainel byp

awrnig litfoeret ooeLioes on f. Seams the regalarity of Yv(t) Le the basic ose.

was by the way that Ye is the only tar leps"Lng fully an f. the other torn

osidre abwoe ImPes oly arOft * as as O (fluk). k usooo

Page 25: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

III C. ardoe. " tmes at malitS do I& soluton do I .quation 4lul '5 an disaloo

dsuae. J. Math. &a". Aggi. a 11972), 79-790.

(2) D. Gilbsr. U. 5. Yfuler. "B11pti* patial diffteatial equsatlome of emood

oudsr. ftrLa~s-Vezlag DIli. Uaidelb"r New Tort (1977).

131 T. 1. juieviobs "Moa-Ottloaery flow of a SIsal Lacosee lLiqmid Uur. Wyea.

Not. A Mt. 11,. 3(1962). 1032-1066.

14) 1. nato. 0 oaeiocal oautiose oil the 4-4--ON RM-UUtOaary WeArW

equatimap A"&b. rate Nsdcb. AMal. A (196?). 166-200.

15) p. 0", "gut lllu= d=e fGOmtIOuG de fta Ot do Ua demW W woisinae ft

CoMaau" he"a Math. 42 (193), M7-2679

(6 J.. C. W. Naguto, Emltmso ad =miqumm. theorms for Awaod Sampre"ibl,. foW,

4 Iheela U"*loIe (Vobruagy. 1906).

17) a. C. lobmeff at *xmiame theorem foc the fi., of sa ideal Isaapueeelle fluid in

two inaiOftg% lvi. am.e Raft. S. ai (193?). 497-513.

I W. weiibmer "me thsoinem O- l..iuteae do Mu m plai dove eluids part.t

haimogi. eupea . Iedn m tow Laialagt lougurn". math. 2. 3? (1933),

-D/ed

-20-

.. . ... .

Page 26: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

ISUMTY CIAMPICAww" OF Tla PIaE f w' - awo)J

REOT DOC ENTATION PAGE _________________raw5. EPOUTNUMUN 55 ACCUSIO 3. EPEOr C€O.~G irNSE

2424 I) t 2 & -??S4L tITL6 14W I & TYPE OP QBPORT a PiO0 GOVE4O

Summary Report - no specificon TH sOulOMs Zn TUE LANZ Or TUB TWO reporting period

. DZN8ZIISZML FLOW OF A NOVIS8 ZNIMWP3ZSIMZJ a. pw6o M Ione. won MuuRO

. MjTWOR4 . GAUTNACM T ON GANT iWUM5E

H. Dirgo a veiga DAAG29-80-C-00 41

Mathematics Research Center, University of U UNI

610 Walnut Street Wisconsin rck ULet Piber I -Madion. WIsconsin 53706 ,pplied Analys

I. CNTMLUO OPPIC8 1AllE mIN [email protected] IL EPORT DATE

U. S. Army Research Office 1 98"2P.O. Box 12211 I& w Or P.aResearch TranaL Parki North ( j~na 2770 20

UNCLASSIFIEDM~a& ~IWCATIODWNGR0 bU

M UITUUUTMN ITAVrl T (0 W MOW

Approved for public release; distribution unlimited.

1?.W8TIU StAtEME"t (oSf Me~ aw=oein we Usia, w wft~ am Ra

W UPPIMESSTAYM NOV3

Is. ItEY WORNS (Cenobweso 80" ow 0890M MI Pei- 94 8wm ~~ own"*ad

non-viscous incempressible fluids, nonlinear evolution equations,continuous dependence on the data

IL. AMSTRACT fC Qft MWN i 0e- N9 000N AM. d~ OFut ~p -NO :.bel0A

We study the iEler eqpations (le1) for the notion of a non-viscous

inco pressible fluid in a plane domain ' Let 9 be the Banach space(V -,r 0)

defined in (1.4), let the initial data W0 belong to i, and let the external

forces f(t) belong to i4(Msg). Zn theorem 1.1 we prove the strong

D- 1? , 147 ca or I UNCLASSIFIED

SECUIftY CL"S VICAVON OF Twa, PA42 f. eft" MiM

Page 27: THE SOLUTIONS IN THVER 1 IK A NON-VISCOU..CU) MISCON51N ... · Let a be the Saneeb speo defi ed is (1.4)o Ift the initial data v bel"n to Be and let the external foroee fit) belong

20. A3WRA-r (coat.)

continuity and the global boundedness of the (unique) solution v(t). and in

theresm t.2 we prove the strong-contnuous dependence of v on the data v-

and f. Zn particular the vwrtioity rot v(t) is a continuous function inI

J. for every t 38t. if and only If this property holds for one value of

t. In thoorm 1.3 we state m properties for the associated group of

nonlinear operators S(t). finally, in theorm 1.4 we give a quite general

sufficient condition on the data in order to get classical solutions.

e.

0

00 i iiii" m i|I l