11
J Veg Sci. 2018;1–11. wileyonlinelibrary.com/journal/jvs | 1 Journal of Vegetation Science © 2018 International Association for Vegetation Science Received: 19 June 2017 | Accepted: 2 December 2017 DOI: 10.1111/jvs.12601 SPECIAL FEATURE: VEGETATION HISTORY The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia Niina Kuosmanen 1,2 | Laurent Marquer 3,4 | Miikka Tallavaara 2 | Chiara Molinari 3 | Yurui Zhang 2,5 | Teija Alenius 6 | Kevan Edinborough 7 | Petro Pesonen 8 | Triin Reitalu 9 | Hans Renssen 5, 10 | Anna-Kari Trondman 11 | Heikki Seppä 2 Special Feature “Millennial to centennial vegetation change” (Eds. Thomas Giesecke, Petr Kuneš & Triin Reitalu). 1 Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6, Czech Republic 2 Department of Geosciences and Geography, University of Helsinki, Helsinki, Finland 3 Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden 4 GEODE, UMR-CNRS 5602, Université Toulouse Jean Jaurès, Toulouse, France 5 Department of Earth Sciences, VU University Amsterdam, Amsterdam, The Netherlands 6 Department of Philosophy, History, Culture and Art Studies Archaeology, University of Helsinki, Helsinki, Finland 7 Institute of Archaeology, University College London, London, UK 8 Archaeological Field Services, National Board of Antiquities, Helsinki, Finland 9 Institute of Geology, Tallinn University of Technology, Tallinn, Estonia 10 Department of Natural Sciences and Environmental Studies, University College of Southeast Norway, Telemark, Norway 11 Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden Correspondence Niina Kuosmanen, Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Praha 6, Czech Republic. Email: [email protected] Funding information PEDECO; Czech Science Foundation (GAČR); EBOR; Academy of Finland Co-ordinating Editor: Thomas Giesecke Abstract Questions: We investigated the changing role of climate, forest fires and human popu- lation size in the broad-scale compositional changes in Holocene vegetation dynamics before and after the onset of farming in Sweden (at 6,000 cal yr BP) and in Finland (at 4,000 cal yr BP). Location: Southern and central Sweden, SW and SE Finland. Methods: Holocene regional plant abundances were reconstructed using the REVEALS model on selected fossil pollen records from lakes. The relative importance of climate, fires and human population size on changes in vegetation composition was assessed using variation partitioning. Past climate variable was derived from the LOVECLIM climate model. Fire variable was reconstructed from sedimentary charcoal records. Estimated trend in human population size was based on the temporal distribution of archaeological radiocarbon dates. Results: Climate explains the highest proportion of variation in vegetation composi- tion during the whole study period in Sweden (10,000–4,000 cal yr BP) and in Finland (10,000–1,000 cal yr BP), and during the pre-agricultural period. In general, fires ex- plain a relatively low proportion of variation. Human population size has significant effect on vegetation dynamics after the onset of farming and explains the highest vari- ation in vegetation in S Sweden and SW Finland. Conclusions: Mesolithic hunter-gatherer populations did not significantly affect veg- etation composition in Fennoscandia, and climate was the main driver of changes at that time. Agricultural communities, however, had greater effect on vegetation dy- namics, and the role of human population size became a more important factor during the late Holocene. Our results demonstrate that climate can be considered the main driver of long-term vegetation dynamics in Fennoscandia. However, in some regions the influence of human population size on Holocene vegetation changes exceeded that of climate and has a longevity dating to the early Neolithic. KEYWORDS climate, fire, human population size, pollen, REVEALS plant abundance, variation partitioning

The role of climate, forest fires and human population

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The role of climate, forest fires and human population

J Veg Sci. 2018;1–11. wileyonlinelibrary.com/journal/jvs  | 1

Journal of Vegetation Science

© 2018 International Association for Vegetation Science

Received:19June2017  |  Accepted:2December2017DOI:10.1111/jvs.12601

S P E C I A L F E A T U R E : V E G E T A T I O N H I S T O R Y

The role of climate, forest fires and human population size in Holocene vegetation dynamics in Fennoscandia

Niina Kuosmanen1,2  | Laurent Marquer3,4 | Miikka Tallavaara2 | Chiara Molinari3 |  Yurui Zhang2,5 | Teija Alenius6 | Kevan Edinborough7 | Petro Pesonen8 |  Triin Reitalu9 | Hans Renssen5, 10 | Anna-Kari Trondman11 | Heikki Seppä2

SpecialFeature“Millennialtocentennialvegetationchange”(Eds.ThomasGiesecke,PetrKuneš&TriinReitalu).

1DepartmentofForestEcology,FacultyofForestryandWoodSciences,CzechUniversityofLifeSciencesPrague,Praha6,CzechRepublic2DepartmentofGeosciencesandGeography, UniversityofHelsinki,Helsinki,Finland3DepartmentofPhysicalGeographyandEcosystemScience,LundUniversity,Lund,Sweden4GEODE,UMR-CNRS5602,UniversitéToulouseJeanJaurès,Toulouse,France5DepartmentofEarthSciences,VUUniversityAmsterdam,Amsterdam,TheNetherlands6DepartmentofPhilosophy,History,CultureandArtStudiesArchaeology,UniversityofHelsinki,Helsinki,Finland7InstituteofArchaeology,UniversityCollegeLondon,London,UK8ArchaeologicalFieldServices,NationalBoardofAntiquities,Helsinki,Finland9InstituteofGeology,TallinnUniversityofTechnology,Tallinn,Estonia10DepartmentofNaturalSciencesandEnvironmentalStudies,UniversityCollegeofSoutheastNorway,Telemark,Norway11DepartmentofBiologyandEnvironmentalScience,LinnaeusUniversity,Kalmar,Sweden

CorrespondenceNiinaKuosmanen,DepartmentofForestEcology,FacultyofForestryandWoodSciences,CzechUniversityofLifeSciencesPrague,Praha6,CzechRepublic.Email:[email protected]

Funding informationPEDECO;CzechScienceFoundation(GAČR);EBOR;AcademyofFinland

Co-ordinatingEditor:ThomasGiesecke

AbstractQuestions:Weinvestigatedthechangingroleofclimate,forestfiresandhumanpopu-lationsizeinthebroad-scalecompositionalchangesinHolocenevegetationdynamicsbeforeandaftertheonsetoffarminginSweden(at6,000calyrBP)andinFinland(at4,000calyrBP).Location:SouthernandcentralSweden,SWandSEFinland.Methods:HoloceneregionalplantabundanceswerereconstructedusingtheREVEALSmodelonselectedfossilpollenrecordsfromlakes.Therelativeimportanceofclimate,firesandhumanpopulationsizeonchangesinvegetationcompositionwasassessedusing variationpartitioning. Past climate variablewasderived from the LOVECLIMclimatemodel. Fire variablewas reconstructed from sedimentary charcoal records.Estimatedtrendinhumanpopulationsizewasbasedonthetemporaldistributionofarchaeologicalradiocarbondates.Results:Climateexplainsthehighestproportionofvariationinvegetationcomposi-tionduringthewholestudyperiodinSweden(10,000–4,000calyrBP)andinFinland(10,000–1,000calyrBP),andduringthepre-agriculturalperiod.Ingeneral,firesex-plainarelatively lowproportionofvariation.Humanpopulationsizehassignificanteffectonvegetationdynamicsaftertheonsetoffarmingandexplainsthehighestvari-ationinvegetationinSSwedenandSWFinland.Conclusions:Mesolithichunter-gathererpopulationsdidnotsignificantlyaffectveg-etationcompositioninFennoscandia,andclimatewasthemaindriverofchangesatthat time.Agricultural communities,however,hadgreatereffectonvegetationdy-namics,andtheroleofhumanpopulationsizebecameamoreimportantfactorduringthelateHolocene.Ourresultsdemonstratethatclimatecanbeconsideredthemaindriveroflong-termvegetationdynamicsinFennoscandia.However,insomeregionsthe influenceofhumanpopulation sizeonHolocenevegetationchangesexceededthatofclimateandhasalongevitydatingtotheearlyNeolithic.

K E Y W O R D S

climate,fire,humanpopulationsize,pollen,REVEALSplantabundance,variationpartitioning

Page 2: The role of climate, forest fires and human population

2  |    Journal of Vegetation Science

KUOSMANEN Et Al.

1  | INTRODUCTION

Pollen-based reconstructions of Holocene vegetation dynamicshavedemonstratedtheinfluenceofanthropogenicactivityonfor-estcompositionandlandscapeopennesssincethemid-HoloceneinCentralandNorthernEurope(Fyfe,Woodbridge,&Roberts,2015;Marquer etal., 2014, 2017). Fennoscandian pollen data demon-stratetheregionaldifferencesinforestcompositionthroughouttheHolocene, and thisvariation has been generally connected to thechangesinclimate(Birks,1986;Heikkilä&Seppä,2003;Milleretal.,2008).Inaddition,fireisanimportantdisturbancefactorinborealforests that profoundly affects forest age, structure, compositionandsuccessiondynamics (Bradshaw,Lindbladh,&Hannon,2010).AlthoughMesolithichunter-gatherersmayhavealteredlocal-scalevegetation composition through fires and favouring food plants(Hörnbergetal.,2005;Regnell,Gaillard,Bartholin,&Karsten,1995),the regional scalevegetation change in Fennoscandia presumablyremained under natural drivers longer than in other European re-gions.Thecurrentintensiveanthropogenicinfluenceandpredictedacceleratedwarming of the boreal biome (Christensen, Kumar, &Aldrian,2013)maycausecompositionalandstructuralchangestothe presentvegetation.Therefore, understanding the complex in-teractionsbetweennatural-andhuman-inducedchangesinthepastregionalvegetationdynamics can shed light on the future effectsofachangingclimateonecosystemsthatareheavilyinfluencedbyhumanactivity.

The strongest effect of human impact on vegetation inFennoscandia is connected to the onset of agriculture, which wasoftenaccompaniedby increasedhuman-induced fires (Granström&Niklasson 2008; Huttunen, 1980). The earliest signs of agriculturearefoundatca.6,000calibratedyearsbeforepresent(calyrBP)inSSweden(Sørensen&Karg,2012;Welinder,2011).InSWFinlandthefirstunambiguousevidenceofcultivationisdated4,000–3,500calyrBP (Lahtinen,Oinonen,Tallavaara,Walker, & Rowley-Conwy, 2017;Taavitsainen,Simola,&Grönlund,1998).InEFinland,earliestsignsofcereal cultivation inpalynological recordsare reportedalready fromthe early Neolithic ca. 6,400–5,200cal yr BP (Alenius, Mökkönen,Holmqvist, & Ojala, 2017; Alenius, Mönkkönen, & Lahelma, 2013),whereasfirstarchaeologicalevidenceofcultivation,alongsideincreas-ingpalynologicalevidence,isdetectedafter3,200calyrBP(Lavento,2001;Taavitsainenetal.,1998).

Studies concerning the role of human impact and climate onvegetation changes during themid- and lateHolocene inNEuropehavebeenmainlyqualitative,basedon interpretationofpollendataorarchaeologicalfindings.Recently,Reitaluetal. (2013),Kuosmanenetal. (2016)andMarqueretal. (2017)haveaddressed thisquestionbymeansofvariationpartitioning,usingdifferentproxiestoassesstheroleplayedby the anthropogenic influence.Reitalu etal. (2013) de-rived thehuman impactvariable frompollen records,Marqueretal.(2017) used the anthropogenic land-cover change scenario (ALCC;Kaplanetal.,2010),whileKuosmanenetal. (2016)utilizedahumanpopulation sizeproxy,basedon the temporal frequencydistribution

ofradiocarbon-datedarchaeologicalfindings(Lechterbecketal.,2014;Woodbridgeetal.,2014).Thisapproachassumesacorrelationbetweentheamountofarchaeologicalmaterialatanyparticulartimepointandthehumanpopulationsizeatthattime(Shennan&Edinborough,2007;Tallavaara,Pesonen,&Oinonen,2010).Anadvantageofthisproxyisitsindependencefromthereconstructedvegetationdynamics.

Here we employ this independent proxy of human populationsize together with climate and regional fires to statistically assesstheir relative importance on the variation in the Holocene vegeta-tioncomposition inFennoscandiaduring three timeperiods: (1) thewholestudyperiodinSweden(10,000–4,000calyrBP)andFinland(10,000–1,000calyrBP); (2)beforetheonsetoffarminginSweden(at10,000–6,000calyrBP)andinFinland(at10,000–4,000calyrBP);and (3)after theonsetof farming inSweden (at6,000–4,000calyrBP)andinFinland(at4,000–1,000calyrBP).ThelengthofthestudyperiodsbetweenSwedenandFinlanddiffersduetothelimitationsofdataonhumanpopulationsize.

2  | METHODS

2.1 | Study area

ThestudyareaislocatedinFennoscandiaandisdividedintofourre-gions;(1)southern(S)Sweden,(2)central(C)Sweden,(3)southwest(SW)Finlandand (4)southeast (SE)Finland (Figure1).Thenorthernlimitof thestudy region inSweden is locatedat61.5°N,while theborderbetweenSandCSwedenisat58.3°N.InFinland,thenorth-ern limitof thestudy region isat62.5°N,and theborderbetweenSWandSEFinland isat25.5°E (alongLakePäijänne).Thesestudyregionswerechosenbecausetheavailabilityofahighamountofdataforpollen-basedREVEALSestimates,humanpopulationsizedataandcharcoaldata.

2.2 | Regional plant abundances

Weusedpollen records from33 lakes selected from theEuropeanPollen Database (Fyfe etal., 2009; Giesecke etal., 2014), theLANDCLIMpollendataarchive(Marqueretal.,2017;Trondmanetal.,2015,2016)orprovideddirectlybydatacontributors(AppendixS1).An important criterion for the selected pollen records was robustchronological control and adequate Holocene time resolution. TheREVEALSmodel(Sugita,2007)wasrunseparatelyforeachstudyre-gionusingfivepollenrecordsforCSweden,17forSSweden,fiveforSEFinlandandsixforSWFinland(Figure1).

Withineachregion,theREVEALSmodelwasusedtoconvertpol-lenpercentagesofthe23mostimportantpollentaxaintoproportionalvegetationcover(AppendixS4)for200-yeartimewindowsfollowingMazieretal.(2012),Trondmanetal.(2015)andMarqueretal.(2017).Descriptions ofHolocene changes invegetation cover are depictedinFigure2andAppendixS4.Thestudyperiodcovers10,000–1,000calyrBPcorrespondingwiththetimeofavailablehumanpopulationsizedata.Additionallytotaxa-specificREVEALSestimates,nineplant

Page 3: The role of climate, forest fires and human population

     |  3Journal of Vegetation Science

KUOSMANEN Et Al.

functionaltypes(PFTs;AppendixS5),groupedintermsofbioclimaticlimits afterTrondman etal. (2015),were defined in order to assessbroad-scaletrendsindifferentplantecosystemsduringtheHolocene.

2.3 | Explanatory variables of Holocene vegetation changes

2.3.1 | Climate

Theclimatevariables for thestudy regionswereobtained fromtheLOVECLIMclimatemodelaspresentedbyZhang,Renssen,andSeppä(2016).Theversionappliedinthisstudyexplicitlyrepresentscompo-nents of the atmosphere, oceans (including sea ice) and vegetationin the climate system with intermediate complexity (Goosse etal.,2010).Thespatialresolutionofthemodelis5.6°×5.6°andthreegridcellswereused toprovide regional temperaturedata for the studyregions.SandCSwedenfellintothesamelatitudinalband,andthusthe climatedata are the same for these regions.The climate varia-bles includewinterDecember–January–February (DJF)andsummer

June–July–August (JJA)temperaturesexpressedas30-yearaverageand as anomalies from the preindustrialmean (550–250cal yrBP).Climateparameterswereaveragedover200-yearbinsforthestatisti-calanalyses(Figure2;AppendixS4).Precipitationdatawereexcludeddue to the largeuncertainty in the simulations.Theappliedclimatesimulationprovidesrealistictrendsonlargesub-continentalscale,es-peciallyforFennoscandia,asdemonstratedbyinter-modelandmodeldatacomparisons(Zhang,Renssen,Seppä,&Valdes,2017a,b).

2.3.2 | Forest fires

The regional fire variable was reconstructed based on sedimentarycharcoalrecordsfrom19lakes.Charcoaldatacoveringpartorallofthelast10,000yearswereacquiredfromthelatestversionoftheGlobalCharcoal Database (GCD v3; Marlon etal., 2016), from previouslypublishedsyntheses(Clear,Molinari,&Bradshaw,2014)orprovideddirectlybytheauthors(AppendixS2).ToretrieveregionalcompositesofchangesinfireactivityovertheHolocene,charcoalaccumulationinsedimentswastransformedandstandardizedaccordingtoaprotocol

F IGURE  1 Locationofthefourstudyregions.Theradiocarbon-datedarchaeologicalsitesforhumanpopulationsizeproxyareshownasgreycircles,siteswithpollenrecordaremarkedasgreencirclesandsiteswithcharcoalrecordaremarkedwithblackpolygons.Thecorrespondencebetweenthelabelofeachsite,thesitenameandthecharacteristicsofeachsitearegiveninAppendicesS1andS2

Page 4: The role of climate, forest fires and human population

4  |    Journal of Vegetation Science

KUOSMANEN Et Al.

(b) Sweden C

% % % % % %% %% %% % % % % %% % % % % % %SPD

4,0004,5005,0005,5006,0006,5007,0007,5008,0008,5009,0009,500

10,000–1 0 1 2 –2 –1 0 1 –2–1 0 1 0 0.0006 10 20 40 10 20 40 10 20 40 10 10 10 20 20 10 10 10 10 10 10 20 10 10 10 10 10

SumT WinT

(a) Sweden S

(c) Finland SW

(d) Finland SE

°C difference frompreindustrial mean

z-score oftransformed

charcoal influx

Age

(Cal

yea

r BP

)Pice

aPinu

sAlnu

sBetu

la

Carpinu

s

Corylus

Fagus

Fraxinu

s

Quercu

s

Tilia

Ulmus

Salix

Junip

erus

Callun

a v.

Artemisi

a

Cypera

ceae

Filipen

dula

Gramine

ae

Plantag

o l.

Plantag

o m.

Rumex

a.

Cereali

a-typ

e

Secale

cRegional

fires

Humanpopulation

size

4,0004,5005,0005,5006,0006,5007,0007,5008,0008,5009,0009,500

10,000–1 0 1 2 –2 –1 0 1 –2 0 2 0 0.0006 10 20 40 10 20 40 60 20 10 10 10 20 10 10 10 10 10 20 10 20 10 10 10 10 10

SumT WinT

10% % % % % %% %% %% %% % % %% % % % % % %SPD°C difference from

preindustrial meanz-score of

transformedcharcoal influx

Age

(Cal

yea

r BP

)

PiceaPinu

sAlnu

sBetu

la

Carpinu

s

Corylus

Fagus

Fraxinu

s

Quercu

s

Tilia

Ulmus

Salix

Junip

erus

Callun

a v.

Artemisi

a

Cypera

ceae

Filipen

dula

Gramine

ae

Plantag

o l.

Plantag

o m.

Rumex

a.

Cereali

a-typ

e

Secale

cRegional

fires

Humanpopulation

size

1,0001,5002,0002,5003,0003,5004,0004,5005,0005,5006,0006,5007,0007,5008,0008,5009,0009,500

10,000–1 0 1 2 –2–1 0 1 –2–1 0 1 0 0.0006 20 40 60 20 10 20 40 60 10 10 10 10 10 20 20 10 10 10 10 10 10 20 10 10 10 10 10

SumT WinT

% %% %% % % % %% % % % %% %% % % % % % %SPD°C difference frompreindustrial mean

z-score oftransformed

charcoal influx

Age

(Cal

yea

r BP

)

Picea

Pinus

Alnus

Betula

Carpinu

s

Corylus

Fagus

Fraxinu

s

Quercu

s

Tilia

Ulmus

Salix

Junip

erus

Callun

a v.

Artemisi

a

Cypera

ceae

Filipen

dula

Gramine

ae

Plantag

o l.

Plantag

o m.

Rumex

a.

Cereali

a-typ

e

Secale

cRegional

fires

Humanpopulation

size

1,0001,5002,0002,5003,0003,5004,0004,5005,0005,5006,0006,5007,0007,5008,0008,5009,0009,500

10,000–1 0 1 2 –2–1 0 1 –2–10 1 0 0.0006 20 40 60 20 40 10 20 40 60 10 10 10 10 10 10 10 10 10 10 10 10 10 20 40 10 10 10 10 10

SumT WinT

% % % % % %% %% %% %% % % %% % % % % % %SPD°C difference frompreindustrial mean

z-score oftransformed

charcoal influx

Age

(Cal

yea

r BP

)

Picea

Pinus

Alnus

Betula

Carpinu

s

Corylus

Fagus

Fraxinu

s

Quercu

s

Tilia

Ulmus

SalixJu

niperu

s

Callun

a v.

Artemisi

a

Cypera

ceae

Filipen

dula

Gramine

ae

Plantag

o l.

Plantag

o m.

Rumex

a.

Cereali

a-typ

e

Secale

cRegional

fires

Humanpopulation

size

Page 5: The role of climate, forest fires and human population

     |  5Journal of Vegetation Science

KUOSMANEN Et Al.

describedbyPower,Marlon,Bartlein,andHarrison(2010)andwidelyused within the paleofire community (Daniau etal., 2012; Molinarietal.,2013).Thesmoothcurveswereconstructedbydeterminingfit-tedvaluesat200-year intervals (Figure2;AppendixS4).Compositecurveswereproducedwith theRpackagepaleofire (Blarquezetal.,2014;RFoundationforStatisticalComputing,Vienna,Austria).

2.3.3 | Human population size

Changes in human population size were reconstructed using thetemporalfrequencydistributionofarchaeologicalradiocarbondates(Shennan&Edinborough,2007;Shennanetal.,2013).TheSwedishdata were extracted from the EUROEVOL data set that containsover 14,000 archaeological radiocarbon dates from the NeolithicinNWEurope,spanningtheLateMesolithicandEarlyBronzeAge(Shennan etal., 2013; Timpson etal. 2014; Manning, Colledge,Crema, Shennan, & Timpson, 2016). The Swedish samples weresupplementedbyMesolithicdates(Edinborough,2005)anddividedintosouthern(414dates)andcentral(352dates)subsetsaccordingtothestudyregions.DuetotheNeolithicfocusoftheEUROEVOLdata, the Swedish sampleswere restricted to cover the period of10,000–4,000cal yr BP. The Finnish data set (Oinonen, Pesonen,& Tallavaara, 2010; Tallavaara etal., 2010) covers the period of10,000–1,000calyrBPbothinSW(692dates)andSE(315dates)regions.

Summedprobabilitydistributionsofcalibratedradiocarbondates(SPDs)werecreatedforeachregion,andevaluatedforrandomsam-pling bias and calibration effects using a Monte-Carlo simulationapproach (Shennanetal., 2013;Timpsonetal. 2014) andby imple-menting the methodology used in Crema, Habu, Kobayashi, andMadella(2016;AppendixS6).Toreducethepotentialbiasofoversam-plingwithinsites,multipledates from individual sitesweregroupedintonon-overlappingbins,suchthatafterorderingthedatesatonesite,thenextdatewasonlyassignedtoanewbinifthereweremorethan200radiocarbonyearsbetweenitandthepreviousdate(Shennanetal., 2013;Tallavaara etal., 2010). Finally, SPDswere binned intoconservative200-yearbinsby averaging summedprobabilityvalueswithineachbin(Figure2,AppendixS4).

2.4 | Statistical analysis

Variationpartitioning (Borcard,Legendre,&Drapeu,1992)wasper-formed to assess the relative importance of climate, regional firesandhumanpopulationsizeonvariationinHolocenevegetationcom-position. In the analysis, vegetation composition derived from theREVEALSestimateswereusedasresponsematrix,whileclimate,re-gionalfiresandhumanpopulationsizewereusedasexplanatoryvari-ables. REVEALS estimates were Hellinger-transformed (Legendre &

Gallagher,2001)toassessthesignificanceofeachconstrainingvaria-bleandanANOVApermutationtestwasrunwith999randomizations.

Variationpartitioningwas first performed for thewhole studyperiod inallregions,namelyat10,000–4,000calyrBPinSandCSweden, and at 10,000–1,000calyrBP in SWandSEFinland. Inorder toevaluate theeffectof theexplanatoryvariablesonvege-tationbefore theonsetof farming,variationpartitioningwasper-formedfortheperiodof10,000–6,000calyrBPforCandSSweden,andfortheperiodof10,000–4,000calyrBPforSWandSEFinland.To assess the relative importance of the explanatoryvariables onvegetationchangesafterthebeginningofagriculture,variationpar-titioningwasperformedfortheperiodof6,000–4,000calyrBPforS andCSweden, and for theperiodof4,000–1,000calyrBP forSWandSEFinland.Toseparatelyevaluatetherelativeimportanceofsummerandwintertemperaturesonvegetation,variationparti-tioningwithsummerandwintertemperatureasindividualexplana-toryvariableswasperformedforallthreestudyperiods,thewholeHolocene,thepre-agricultureandtheagriculturalperiods,forallthestudyregions.

Inordertoassessthechangeintheroleofclimate,regionalfiresandhumanpopulation size during theHolocene, amovingwindowapproach(Reitaluetal.,2013)wasemployed.Thisapproachenablesperformingvariationpartitioning for subsetsofdata in shorter timeperiods, hence providing information on how the relative roles ofclimate and human population size change over time.Movingwin-dowanalysiswasperformedforallstudyregionsin2,000-yeartime windows,withten200-yearbinsineachtimewindow.

3  | RESULTS

3.1 | Variation partitioning results

3.1.1 | The Holocene

Climatealoneexplainedthehighest fractionofvariation invegetationduringthewholestudyperiodforallregions(Figure3).Therelativeim-portanceofwintertemperaturehadhighexplanatorypowerforthevari-ationinvegetationcoverinSandCSweden,whilesummertemperatureexplainedahigherproportionofthevariationinvegetationinSWandSEFinland(AppendixS7).Thevariationexplainedbyhumanpopulationsizeandforestfireswasrelativelylow.Humanpopulationsizehadasignifi-cantimpactonvegetationchangesinCSwedenandSWFinland,whileforestfireshadasignificanteffectinSSwedenandSEFinland.Climate,forestfiresandhumanpopulationsizetogetherexplainedatleast70%ofthevariationinlong-termvegetationinallregions.VariationpartitioningperformedwithPFTsshowedsimilarresultsasthetaxa-basedanalysis,withoverallhigherexplanatorypoweroftheusedexplanatoryvariablesineachstudyperiod(AppendixS8).

F IGURE  2 Holocenechangesintheexplanatoryvariables:simulatedsummer(SumT)andwinter(WinT)temperatures(fromtheLOVECLIMmodel),fires(charcoalinfluxz-scores)andhumanpopulationsizedataexpressedassummedprobabilitydistributions(SPD)ateachstudyregion(a)SSweden,(b)CSweden,(c)SWFinlandand(d)SEFinland(seeFigure1)andthemeanofREVEALSestimatesof23taxa

Page 6: The role of climate, forest fires and human population

6  |    Journal of Vegetation Science

KUOSMANEN Et Al.

3.1.2 | Pre- agriculture

Beforetheonsetoffarmingclimatealoneexplainedmostofthevari-ationinvegetation,withwintertemperaturesexplainingahigherpro-portionofvariation than summer temperatures (Figure3;AppendixS7). Fires had a significant effect on vegetation composition inFinland,explaining3%of thevariation invegetation inSWand4%inSEFinland.Humanpopulationsizeexplained5%of thevariationinvegetationinSWFinland,butwasnotsignificantinotherregions.Climate,forestfiresandhumanpopulationsizeexplainedatleast65%ofthevariationinvegetationcompositionbeforetheonsetofagricul-tureinallregions.

3.1.3 | Agricultural time

HumanpopulationsizeexplainedthehighestamountofthevariationinvegetationcompositioninSSwedenandSWFinland(6%and9%,

respectively;Figure3).Individually,climateexplainedarelativelylowfractionofvariationinvegetationinallregions,withsummertemper-aturedrivingahigherproportionofvariationthanwintertemperature(AppendixS7).Forest firesdidnotexplain individuallyanyvariationin vegetation.However, togetherwithhumanpopulation size, theyexplained 6% of variation in vegetation dynamics in SE Finland. Ingeneral,arelativelyhighproportionofvariationinvegetationwasleftunexplainedinallregions.

3.1.4 | Moving window approach

Results of the moving window approach (Appendix S9: Figure S1)demonstrate the strong impact of climate on vegetation dynamicsfrom the early to themid-Holocene in S andC Sweden, especiallybetween8,600–6,500cal yrBP,when climate explained40%–60%ofthevariationinvegetation.Inbothregionstherelativeimportanceofclimatewasnotably lowerat6,500–5,000calyrBP.Therelative

F IGURE  3 Percentageofvariationinvegetationcompositionexplainedbyclimate(wintertemperature:WinT,summertemperature:SumT),forestfires(Charc)andhumanpopulationsize(Pop)inSSweden,CSweden,SWFinlandandSEFinlandduringa)thewholestudyperiod(10,000–4,000calyrBPinSwedenand10,000–1,000calyrBPinFinland),b)beforetheonsetoffarmingat10,000–6,000calyrBPinSwedenandat10,000–4,000calyrBPinFinland,and(c)aftertheonsetoffarmingat6,000–4,000calyrBPinSwedenandat4,000–1,000calyrBPinFinland.Values<0arenotshowninthefigure.Statisticalsignificance(***p < .001;**p < .01,*p < .05andp < .1)ofeachparameteronvariationinvegetationisshownnexttothecorrespondingVenndiagram

Sweden S

Sweden S

Sweden S

Sweden C

Sweden C

Sweden C

etamilCetamilC etamilCetamilCForestfires

Forestfires

Forestfires

Forestfires

Populationsize

Populationsize

Populationsize

Populationsize

14

13 21435 3

Unexplained variation = 19

39

28

4

Unexplained variation = 30

Finland SW

Finland SW

Finland SW

Finland SE

Finland SE

Finland SE

27

23

18

3

1

Unexplained variation = 27

27

12

37 2

Unexplained variation = 22

WinT***SumT*Charc**Pop

WinT***SumT***CharcPop **

WinT ***SumT *CharcPop *

WinT***SumT***Charc**Pop

(a)

(b)

(c)

1

2

4

143

13 1949

1

Unexplained variation = 19

WinT**SumT*CharcPop

Climate Forestfires

Populationsize

42

27 0

1

Unexplained variation = 35

WinT***SumTCharcPop

Climate Forestfires

Populationsize

22 21

5

3

Unexplained variation = 33

WinT***SumT***Charc .Pop*

Climate Forestfires

Populationsize

30 17

1310

4

Unexplained variation = 27

WinT***SumT**Charc *Pop

Climate Forestfires

Populationsize

6

11

Unexplained variation = 110

WinTSumTCharcPop

Climate Forestfires

Populationsize

22

1

10

Unexplained variation = 94

WinTSumT *CharcPop

Climate Forestfires

Populationsize

9

31

Unexplained variation = 59

WinTSumTCharcPop*

Climate Forestfires

Populationsize

5

01 6

Unexplained variation = 97

WinTSumTCharcPop

Climate Foresfires

Populationsize

Page 7: The role of climate, forest fires and human population

     |  7Journal of Vegetation Science

KUOSMANEN Et Al.

importanceoffireswasgenerallylow,explainingca10%ofthevaria-tionbetween9,000–8,000calyrBPinbothregions,andalsobetween6,000–5,500calyrBPinSSweden. InSSwedentheimportanceofhumanpopulationsizeincreasedat7,000–6,500calyrBP,explainingupto60%ofthevariationinvegetation(Figure4).InCSwedentheexplanatoryvalueofhumanpopulationsizeremainedrelatively lowthroughouttheHolocene.

InFinland,theresultsofthemovingwindowapproach(AppendixS9:FigureS2)demonstratenotablefluctuations intheimportanceofclimateinbothregions.InSWandSEFinlandclimateexplained20%–60% of the variation during ca. 1,000-year periods around8,000,5,700and3,800calyrBPwithlowerimportanceinbetween.In SW Finland the explanatory value of fires was higher (20%)around6,000calyrBP,withlowervaluesduringthelateHolocene.In SE Finland fires explained the highest amount of variation invegetation during the early Holocene. In general, the importanceofhumanpopulationsizewas low,exceptaround5,000calyrBP,when it explainedover20%of thevariation invegetation. In SWFinlandtherelativeimportanceofhumanpopulationsizeincreased

from 3,500cal yr BP exceeding the explanatory value of climateby explaining 20% of the variation in vegetation (Figure4). In SEFinlandtherelativeimportanceofhumanpopulationsizeremainedlowduringtheHolocene.

4  | DISCUSSION

4.1 | Role of climate in Holocene vegetation dynamics

Theimportanceofclimateasadriverofvegetationchangewashigh-estduringthebeginningoftheHoloceneThermalMaximum(HTM)ca.8,000–7,000calyrBP,andagainaround6,000–5,000calyrBP,corresponding to themain temperature shiftsduring theHolocene.Thiscanbeseenespecially inSSwedenandSWFinland (Figure4).Asimilar trendofhigher relative importanceofclimate in theearlyHolocene is also suggested byMarquer etal. (2017; Figure4). ThestrongroleofclimateinvegetationdynamicsatthebeginningoftheHTMisinagreementwiththewell-establishednorthwardrangeshift

F IGURE  4 Relativeimportanceofclimate,firesandanthropogenicinfluenceonvariationinvegetationdynamicsthroughtheHoloceneinNEurope.Thefractionofvariationinvegetationexplainedbyhumanpopulationsize,regionalfiresandclimatein(a)SSwedenand(b)SWFinlandforten200-yearsubsetsofdatain2,000-yearmovingtimewindows.(c)Thefractionofvariationexplainedbyclimateandhumanimpactfor14subsetsofdatain1,200-yearmovingtimewindowinEstonia(Reitaluetal.,2013).(d)ThefractionofvariationexplainedbyclimateandlanduseaverageacrosssouthernScandinaviaandBalticcountries(Marqueretal.,2017).ForSSweden,SWFinlandandEstoniatheresultsofeachtimewindowareshownfromthemidpointofthetimeperiod.TheusedtimewindowsareshowninAppendixS9:TablesS1,S2

20 40 60 80 1000

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,000

Tim

e pe

riod

(Cal

yea

r BP

)

No data

20 40 60 80 1000

No data

Southwest FinlandSouth Sweden Estonia Scandinavia and Baltic

population sizeHumanClimate Fires% of RV variation explained

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

10,0000 20 40 60 80 100

20 40 60 80 100

% of RV variation explainedLand useClimate

Tim

e pe

riod

(Cal

yea

r BP

)

0

Human impactClimate% of RV variation explained

No data

0 20 40 60 80 100

20 40 60 80 1000 20 40 60 80 100 0 20 40 60 80 100

Page 8: The role of climate, forest fires and human population

8  |    Journal of Vegetation Science

KUOSMANEN Et Al.

oftemperatetreetaxasuchasCorylus,Tilia,Ulmus and Quercusduringthisperiod (Milleretal.,2008;Seppäetal.,2015), andcanbeseenasanincreaseoftemperatebroad-leafforestcoverinFennoscandia.Thiscorrespondswiththepresentecologicalunderstandingthattem-peratureisoneofthemainlimitingfactorsforthenorthernlimitsofthe temperate tree species (Jackson, Betancourt, Booth, & Grayd,2009;Woodward,Lomas,&Kelly,2004).

Althoughtheimportanceofhumanpopulationsizeonvegetationdynamics increases from the early Neolithic in Sweden and duringthe late-Holocene (ca 3,500cal yr BP) in Finland, climate remainsanimportantdriverbehindvegetationcoverchanges,especiallyinCSwedenandSEFinland(AppendixS9:FiguresS1,S2).Similarly,there-sultsofReitaluetal.(2013)andMarqueretal.(2017)demonstratethestrongeffectofclimateonvegetationdynamicsinEstoniaandsouth-ernScandinaviaduringthelast1,000years.Ifthiscontrolofclimateonboreal forest compositionwill prevail, theprojected acceleratingfuturewarminginnorthernregions(Christensenetal.,2013)willactasthemaindriveroffuturechangesintheborealecosystems,atleastatregionalscale.

4.2 | Role of fires in Holocene vegetation dynamics

The change from a natural to amore human-induced fire impactonvegetationdynamicsisnotclearlydefinedinourdata.Ahigherinfluenceofforestfiresonvegetationcompositionduringthepre-agriculture periodwas detected for both Sweden and Finland. InSSweden,theslightincreaseintheroleoffiresduringthebegin-ningoftheagriculturalperiodcoincideswiththeincreasingeffectof human population size (Figure4.),while in C Sweden fires didnotshowanyeffectonvegetationcomposition.Itisplausiblethatduring this time human-induced fires were local fires, which didnothavenotableimpactonregionalvegetationcomposition.Sinceslash-and-burnpracticeswereoftenusedinconnectionwithearlyfarming (Alenius, Haggrén, Koivisto, Sugita, & Vanhanen, 2017;Huttunen,1980),thenotablylowimportanceofforestfiresonveg-etationduringtheagriculturalperiodinSWFinlandwassurprising.Although the charcoal dataused in this study reconstruct the re-gionalfirehistory,theunevendistributionofthesedimentarychar-coalrecords inthestudyregionsmightbiastheresults.However,changes in vegetation dynamics are partly explained by the jointeffectoffiresandhumanpopulationsize,whereaspre-agriculturefires and climate have a notable joint effect on variation in veg-etation.Therefore, it isplausiblethatthe increased jointeffectofhumanpopulationsizeandfiresindicatethechangefromnatural-tomorehuman-inducedfiresaffectingvegetationdynamicsduringthelateHolocene.

4.3 | Increasing anthropogenic influence from early Neolithic

The comparison between our results and those of Marquer etal.(2017) for S Scandinavia and the Baltic region demonstrate an in-creasingroleofhumanpopulationsizeonvegetationdynamicsfrom

themid-HoloceneinSSwedensuggestingincreasinglandusebythegrowingpopulation(Figure4).ItisplausiblethattherapidincreaseinhumanpopulationsizeinSSwedenwasduetosuitableclimatecon-ditions during theHTM (Tallavaara& Seppä, 2012) and the spreadofmore intensive land-usepracticesfromCentralEurope.Theshifttoagrariansocietygraduallychangedthelandscape,whenNeolithiccommunitiesstartedtomigrate inland.Broad-leaf forestswere firstusedaswoodlandpasturesandthenclearedforcultivation(Lagerås,1996;Sköld,Lagerås,&Berglund,2010).

The low human impact on vegetation dynamics in SW Finlanduntil3,500calyrBP is in linewith thesmallhumanpopulationsizeandwith the lateranthropogenic influenceonvegetation inFinlandcompared to S Scandinavia and theBaltic region (Fyfe etal., 2015;Marquer etal., 2017). The increasing importance of human impactin SWFinland correspondswith theonset of agriculture ca4,000–3,500cal yr BP (Taavitsainen etal., 1998), suggesting that humanpopulation sizewas themajordriverofvegetationdynamicsduringthelateHolocene,especiallyduringtheperiodof3,000–1,000calyrBP.Growingagrariancommunitiesclearedtheforestforpasturesandarableland.Cultivatedfieldswerecommonlyleftasfallowforafewyearsinordertomaintainsoilproductivity.ThismayhavecausedanincreaseintheproportionofBetula and Alnustogetherwithshrubsinthevegetationcover(Reitaluetal.,2013).

The lower importance of human population size on regionalvegetationchangeinCSwedenandSEFinlandcouldbeexplainedby the fact that these regionsweremore forested and less pop-ulatedduring the studyperiod.Alenius etal. (2013) showed that,forexample, inEFinlandforestclearancesandcultivation intensi-fiedonlyfromAD600onwards,coincidingwith increasinghumanpopulationsize.Duetothe landuplift,substantially largeareasofSEFinlandwereraisedrapidlyabovetheBalticsea levelafter thedeglaciation,incontrasttoSWFinland(Tikkanen&Oksanen,2002)andthereforeSEFinlandlacksthick,fine-grainedmineralsoillayers,such as clay and silts,whichprovide fertile soils for cultivation inSW Finland. It is plausible that, due to the lack of suitable areasformoreintensivefieldcultivation,humanpopulationsizeremainedrelativelylowinSEFinlandandanimalhusbandrytogetherwithspo-radicslash-and-burncultivationwerepracticed longer than inSWFinland(Taavitsainenetal.,1998).

4.4 | Issue of causality in the variation partitioning analysis

It is also important to note that variation partitioning as amethoddoesnot consider the causality, but only the co-variationbetweenvariablesthroughtime.Thecausalitybetweenclimateandvegetationisrelativelyclear,whilethecausalitybetweenchangesinvegetationand inhunter-gathererpopulation sizeand forest fires ismoredif-ficult todeduce.Hunter-gathererpopulationswere small and scat-tered,affectingmainlythelocal-scalevegetationdynamics(Hörnbergetal., 2005;Regnell etal., 1995). In Finland, thedecline in hunter-gatherersalongwiththedeclineoftemperateforestscoincideswiththe expansion of spruce and consequently the boreal ecosystem

Page 9: The role of climate, forest fires and human population

     |  9Journal of Vegetation Science

KUOSMANEN Et Al.

(Seppä etal., 2009). Boreal forests provide lower food abundancecompared to temperatemixed forests, and ithasbeenargued thatthisecosystemchangecausedthedeclineinhunter-gathererpopula-tionsize(Tallavaara&Seppä,2012).Itisalsoprobablethatinsteadofacausalrelationshipbetweenhumanpopulationsizeandvegetation,thesevariablesco-varybecauseofthechangesinclimate.Similarly,thecausalitymaybedifficulttodistinguishbetweenfiresandvegeta-tion.Ohlsonetal.(2011)showedthatfirefrequencyinFennoscandiadecreasedafterthespruceexpansion.However,itisstillspeculativeifspruceexpandedbecauseoffirereductionorthefiresdecreasedduetothespruceexpansion.Sincedisentanglingtheseissuesofcau-salitywithvariationpartitioningischallenging,futurestudieswouldbenefitfromtheuseofothermethodsthatprovidemoreinsightintothedirectionof the interactionbetween response andexplanatoryvariables.

5  | CONCLUSION

Hunter-gathererpopulationsdidnotsignificantlyaffectvegetationdynamics inFennoscandia.ClimatewasthemaindriverofchangeduringtheHoloceneandlarge-scaleshiftsinvegetationwerelikelydriven by climate.However,with relatively stable climatic condi-tions, theroleofclimatemaydecreaseandother factors, suchasdisturbances, site characteristics, competition and human impactmayhaveagreatereffectonvegetationcomposition.Agriculturalpopulations,however,highlyaffectedvegetationcomposition,andtheroleplayedbyhumanpopulationsizebecamemoreimportantduringthelateHolocene.Thereisaclearregionaldependencere-latedtohumanpopulationsize,i.e.theeffectofhumanimpactonvegetationchangewasnotablyhigherinSSwedenandSWFinland,where land use was more intensive, than in C Sweden and SEFinland.

Thevariationpartitioningapproachprovidesimportantinsightsintothedriversofpastvegetationdynamicsandprovidesasteppingstoneforfindingmoreprecisemethodstoassesstheprocessesbe-hindpastchangesinlong-termvegetationdynamics.TherelativelyhighimportanceofclimatethroughouttheHolocenesuggeststhat–evenafter theonsetof farming–climate, togetherwithhumanimpact, remained an important driver of changes in broad-scalevegetationdynamics.Althoughtheanthropogenicimpactmayhaveperiodically and regionally overruled the effect of climate alreadyfromtheearlyNeolithic,climatecanbeconsideredthemaindriverof long-termregionalvegetationdynamics inFennoscandiaduringtheHolocene.

ACKNOWLEDGEMENTS

Financial support was provided by the PEDECO project (number16-23183Y) funded by the Czech Science Foundation (GAČR) andEBOR project, funded by the Academy of Finland. We thank theLANDCLIMprojectcoordinatedbyM.J.Gaillardfordatacontributions.

ThisstudyisalsoacontributiontothePAGESLandCover6kworkinggroup.

ORCID

Niina Kuosmanen http://orcid.org/0000-0002-9688-3797

REFERENCES

Alenius, T., Haggrén, G., Koivisto, S., Sugita, S., & Vanhanen, S. (2017).LandscapedynamicsinsouthernFinlandduringtheIronAgeandtheMiddleAgesusingpollenbasedLandscapeReconstruction(LRA)andmacrofossildata.Journal of Archaeological Science: Reports,12,12–24.https://doi.org/10.1016/j.jasrep.2016.11.041

Alenius,T.,Mökkönen,T.,Holmqvist,E.,&Ojala,A.(2017).NeolithiclanduseinthenorthernBorealzone:High-resolutionmultiproxyanalysesfromLakeHuhdasjärvi,south-easternFinland.Vegetation History and Archaeobotany,26,495–486.https://doi.org/10.1007/s00334-017-0606-2

Alenius,T.,Mönkkönen,T.,&Lahelma,A.(2013).Earlyfarminginthenorth-ernborealzone:Reassessing thehistoryof landuse insoutheasternFinland through high-resolution pollen analysis.Geoarchaeology, 28,1–24.https://doi.org/10.1002/gea.21428

Birks,H.J.B.(1986).Late-Quaternarybioticchangesinterrestrialandla-custrineenvironments,withparticularreferencetonorth-westEurope.InB.E.Berglund(Ed.),Handbook of Holocene palaeoecology and palaeo-hydrology(pp.3–65).Chichester,UK:Wiley.

Blarquez,O.,Vanniére,B.,Marlon,J.R.,Daniau,A.L.,Power,M.J.,Brewer,S.,&Bartlein,P.J.(2014).paleofire:AnRpackagetoanalysesedimen-tary charcoal records from the Global Charcoal Database to recon-structpastbiomassburning.Computers & Geosciences,72,255–261.https://doi.org/10.1016/j.cageo.2014.07.020

Borcard,D., Legendre,P.,&Drapeu,P. (1992).Partiallingout the spatialcomponent of ecological variation. Ecology,73, 1045–1055. https://doi.org/10.2307/1940179

Bradshaw,R.H.W.,Lindbladh,M.,&Hannon,G.E.(2010).TheroleoffireinsouthernScandinavianforestsduringthelateHolocene.International Journal of Wildland Fire, 19, 1040–1049. https://doi.org/10.1071/WF09108

Christensen, J. H., Kumar, K., &Aldrian, E. (2013). Climate phenomenaandtheirrelevanceforfutureregionalclimatechange,Chapter14.InT. F. Stocker,D.Qin,G.-K. Plattner, et al. (Eds.),The physical science basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1217–1308).Cambridge,UK:CambridgeUniversityPress.

Clear, J. L.,Molinari, C., & Bradshaw, R. H.W. (2014). Holocene fire inFennoscandiaandDenmark. International Journal of Wildland Fire,23,781–789.https://doi.org/10.1071/WF13188

Crema,E.R.,Habu,J.,Kobayashi,K.,&Madella,M.(2016).Summedprob-abilitydistributionof14Cdatessuggestsregionaldivergences inthepopulationdynamicsoftheJomonPeriodinEasternJapan.PLoS ONE,11,e0154809.https://doi.org/10.1371/journal.pone.0154809

Daniau, A. L., Bartlein, P. J., Harrison, S. P., Prentice, I. C., Brewer, S.,Friedlingstein,P.,…Zhang,Y. (2012).Predictabilityofbiomassburn-ing in response to climate changes.Global Biogeochemical Cycles,26,GB4007.

Edinborough, K. (2005). Evolution of bow-arrow technology. London,UK: University of London. Available from: http://discovery.ucl.ac.uk/1444653/1/U591962.pdf

Fyfe,R.M.,Beaulieu,J.L.,Binney,H.,Bradshaw,R.H.W.,Brewer,S.,Flao,A.,…Tonkov,S.(2009).TheEuropeanPollenDatabase:Pasteffortsandcurrentactivities.Vegetation History and Archaeobotany,18,417–424.https://doi.org/10.1007/s00334-009-0215-9

Page 10: The role of climate, forest fires and human population

10  |    Journal of Vegetation Science

KUOSMANEN Et Al.

Fyfe,R.M.,Woodbridge,J.,&Roberts,N.(2015).Fromforesttofarmland:Pollen-inferredlandcoverchangeacrossEuropeusingthepseudobio-mizationapproach.Global Change Biology,21,1197–1212.https://doi.org/10.1111/gcb.12776

Giesecke, T., Basil Davis, B., Simon Brewer, S., Finsinger, W., Wolters,S., Blaauw, M., … Bradshaw, R. H. W. (2014). Towards mappingthe late Quaternary vegetation change of Europe. Vegetation History and Archaeobotany, 23, 75–86. https://doi.org/10.1007/s00334-012-0390-y

Goosse,H.,Brovkin,V.,Fichefet,T.,Haarsma,R.,Huybrechts,P.,Jongma,J.,…Weber, S. L. (2010).Description of the Earth systemmodel ofintermediate complexity LOVECLIM version 1.2.Geoscientific Model Development,3,603–633.https://doi.org/10.5194/gmd-3-603-2010

Granström,A.,&Niklasson,M.Granström&Niklasson (2008).Potentialsandlimitationsforhumancontroloverhistoricfireregimesinthebo-realforest.Philosophical Transactions of the Royal Society of London, se-ries B,363,2353–2358.

Heikkilä, M., & Seppä, H. (2003). A 11,000 yr palaeotempera-ture reconstruction from the southern boreal zone in Finland.Quaternary Science Reviews, 22, 541–554. https://doi.org/10.1016/S0277-3791(02)00189-0

Hörnberg,G.,Bohlin,E.,Hellberg,E.,Bergman,I.,Zackrisson,O.,Olofsson,A.,…Påsse,T.(2005).EffectsofMesolithichunter-gatherersonlocalvegetationinanon-uniformglacio-isostaticlandupliftarea,northernSweden. Vegetation History and Archaeobotany,15,13–26.

Huttunen,P.(1980).Earlylanduse,especiallytheslash-and-burncultiva-tioninthecommuneofLammi,southernFinland,interpretedmainlyusingpollenandcharcoalanalyses.Acta Botanica Fennica,11,1–45.

Jackson,S.T.,Betancourt,J.L.,Booth,R.K.,&Grayd,S.T.(2009).Ecologyand the ratchet of events:Climatevariability, nichedimensions, andspeciesdistributions.Proceedings of the National Academy of Sciences of the United States of America, 106, 19685–19692. https://doi.org/10.1073/pnas.0901644106

Kaplan,J.O.,Krumhardt,K.M.,Ellis,E.C.,Ruddiman,W.F.,Lemmen,C.,&Goldewijk,K.K. (2010).Holocenecarbonemissionsasa resultofanthropogeniclandcoverchange.The Holocene,21,1–17.

Kuosmanen, N., Seppä, H., Alenius, T., Bradshaw, R. H.W., Clear, J. L.,Filimonova, L., … Reitalu, T. (2016). Importance of climate, forestfires andhumanpopulation size in theHoloceneboreal forest com-positionchangeinnorthernEurope.Boreas,45,688–702.https://doi.org/10.1111/bor.12183

Lagerås,P. (1996).FarmingandforestdynamicsinagriculturallymarginalareaofsouthernSweden,5000BCtopresent:ApalynologicalstudyofLakeAvegölintheSmålandUplands.The Holocene,6,301–314.https://doi.org/10.1177/095968369600600305

Lahtinen, M., Oinonen, M., Tallavaara, M., Walker, J. W., & Rowley-Conwy,P.(2017).TheadvanceofcultivationatitsnorthernEuropeanlimit: Process or event? The Holocene, 27, 427–438. https://doi.org/10.1177/0959683616660164

Lavento, M. (2001). Textile ceramics in Finland and on the Karelian isth-mus: Nine variations and fugue on a theme of C. F. Meinander, Suomen Muinaismuistoyhdistyksen aikakauskirja. Helsinki, FI: The FinnishAntiquarianSociety.

Lechterbeck,J.,Edinborough,K.,Kerig,T.,Fyfe,R.,Roberts,N.,&Shennan,S.(2014).IsNeolithiclandusecorrelatedwithdemography?Aneval-uation of pollen-derived land cover and radiocarbon-inferred demo-graphic change fromCentral Europe.The Holocene,24, 1297–1307.https://doi.org/10.1177/0959683614540952

Legendre,P.,&Gallagher,E.D.(2001).Ecologicallymeaningfultransforma-tionsforordinationofspeciesdata.Oecologia,129,271–280.https://doi.org/10.1007/s004420100716

Manning,K.,Colledge,S.,Crema,E.,Shennan,S.,&Timpson,A. (2016).The cultural evolution of Neolithic Europe. EUROEVOLDataset 1:Sites,phasesandradiocarbondata.Journal of Open Archaeology Data,5,2.

Marlon,J.R.,Kelly,R.,Daniau,A.-L.,Vannière,B.,Power,M.J.,Bartlein,P.,…Zhihai,T.(2016).Reconstructionsofbiomassburningfromsediment-charcoalrecordstoimprovedata–modelcomparisons.Biogeosciences,13,3225–3244.https://doi.org/10.5194/bg-13-3225-2016

Marquer,L.,Gaillard,M.-J.,Sugita,S.,Poska,A.D.,Trondman,A.-K.,Mazier,F.,…Seppä,H.(2017).QuantifyingtheeffectsoflanduseandclimateonHolocenevegetation in Europe.Quaternary Science Reviews,171,20–37.https://doi.org/10.1016/j.quascirev.2017.07.001

Marquer,L.,Gaillard,M.-J.,Sugita,S.,Trondman,A.-K.,Mazier,F.,Nielsen,A.B.,…Seppä,H.(2014).HolocenechangesinvegetationcompositioninnorthernEurope:Whyquantitativepollen-basedvegetationrecon-structionsmatter.Quaternary Science Reviews,90, 199–216. https://doi.org/10.1016/j.quascirev.2014.02.013

Mazier, F., Gaillard, M.-J., Kunes, P., Sugita, S., Trondman, A.-K., &Broström, A. (2012). Testing the effect of site selection and pa-rameter setting on REVEALS-model estimates of plant abundanceusing the Czech Quaternary Palynological Database. Review of Palaeobotany and Palynology, 187, 38–49. https://doi.org/10.1016/j.revpalbo.2012.07.017

Miller,P.A.,Giesecke,T.,Hickler,T.,Bradshaw,R.H.W.,Smith,B.,Seppä,H., … Sykes, M. T. (2008). Exploring climatic and biotic controls onHolocenevegetation change in Fennoscandia. Journal of Ecology,96,247–259.https://doi.org/10.1111/j.1365-2745.2007.01342.x

Molinari, C., Lehsten, V., Bradshaw, R. H. W., Power, M. J., Harmand,P., Arneth, A., … Sykes, M. T. (2013). Exploring potential drivers ofEuropean biomass burning over the Holocene: A data-model anal-ysis. Global Ecology and Biogeography, 22, 1248–1260. https://doi.org/10.1111/geb.12090

Ohlson, M., Brown, K. J., Birks, H. J. B., Grytnes, J.-A., Hörnberg, G.,Niklasson,M.,…Bradshaw,R.H.W.(2011).InvasionofNorwaysprucediversifiesthefireregimeinborealEuropeanforests.Journal of Ecology,99,395–403.

Oinonen,M.,Pesonen,P.,&Tallavaara,M.(2010).Archaeologicalradiocar-bondatesforstudyingthepopulationhistoryofEasternFennoscandia.Radiocarbon,522(3),292–407.

Power,M.J.,Marlon,J.R.,Bartlein,P.J.,&Harrison,S.P.(2010).FirehistoryandtheGlobalCharcoalDatabase:Anewtoolforhypothesistestinganddataexploration.Palaeogeography, Palaeoclimatology,291,52–59.https://doi.org/10.1016/j.palaeo.2009.09.014

Regnell, M., Gaillard, M.-J., Bartholin, T. S., & Karsten, P. (1995).Reconstruction of environment and history of plant use duringthe late Mesolithic (Ertebølle culture) at the inland settlement ofBökebergIII,southernSweden.Vegetation History and Archaeobotany,4,67–91.

Reitalu,T.,Seppä,H.,Sugita,S.,Kangur,M.,Koff,T.,Avel,E.,…Veski,S.(2013).Long-termdriversofforestcompositioninaboreonemoralregion: The relative importance of climate and human impact.Journal of Biogeography,40, 1524–1534. https://doi.org/10.1111/jbi.12092

Seppä, H.,Alenius, T., Bradshaw, R. H.W., Giesecke, T., Heikkilä,M., &Muukkonen,P.(2009).InvasionofNorwayspruce(Picea abies)andtheriseof theborealecosystem inFennoscandia. Journal of Ecology,97,629–640.https://doi.org/10.1111/j.1365-2745.2009.01505.x

Seppä,H.,Schurgers,G.,Miller,P.A.,Bjune,A.E.,Giesecke,T.,Kühl,N.,…Salonen,J.S. (2015).Treestrackingawarmerclimate:TheHolocenerangeshiftofhazel(Corylus avellana)innorthernEurope.The Holocene,25,53–63.https://doi.org/10.1177/0959683614556377

Shennan, S., Downey, S. S., Timpson, A., Edinborough, K., Colledge, S.,Kerig,T., …Thomas,M.G. (2013). Regional population collapse fol-lowed initial agriculture booms in mid-Holocene Europe. Nature Communications,4,1–8.

Shennan, S., & Edinborough, K. (2007). Prehistoric population history:From the LateGlacial to the LateNeolithic inCentral andNorthernEurope.Journal of Archaeological Science,34,1339–1345.https://doi.org/10.1016/j.jas.2006.10.031

Page 11: The role of climate, forest fires and human population

     |  11Journal of Vegetation Science

KUOSMANEN Et Al.

Sköld,E.,Lagerås,P.,&Berglund,B.E.(2010).Temporalculturallandscapedynamicsinamarginaluplandarea:Agriculturalexpansionsandcon-tractionsinferredfrompalynologicalevidenceatYttraBerg,southernSweden. Vegetation History Archaeobotany, 19, 121–136. https://doi.org/10.1007/s00334-009-0234-6

Sørensen, L., & Karg, S. (2012). The expansion of agrarian societies to-wardsthenorth:NewevidenceforagricultureduringtheMesolithic/Neolithictransition inSouthernScandinavia.Journal of Archaeological Science,51,98–114.

Sugita, S. (2007). Theory of quantitative reconstruction of veg-etation I: Pollen from large sites REVEALS regional vegeta-tion composition. The Holocene, 17, 229–241. https://doi.org/10.1177/0959683607075837

Taavitsainen, J.-P., Simola, H., & Grönlund, E. (1998). Cultivation his-tory beyond the periphery: Early agriculture in the north Europeanboreal forest. Journal of World Prehistory, 12, 199–253. https://doi.org/10.1023/A:1022398001684

Tallavaara,M.,Pesonen,P.,&Oinonen,M. (2010).Prehistoricpopulationhistory ineasternFennoscandia.Journal of Archaeological Science,37,251–260.https://doi.org/10.1016/j.jas.2009.09.035

Tallavaara,M.,&Seppä,H. (2012).Did themid-Holoceneenvironmentalchangescausetheboomandbustofhunter-gathererpopulationsizein eastern Fennoscandia? The Holocene, 222, 215–225. https://doi.org/10.1177/0959683611414937

Tikkanen, M., & Oksanen, J. (2002). Late Weichselian and HoloceneshoredisplacementhistoryoftheBalticSeainFinland.Fennia,180,9–20.

Timpson,A.,Colledge,S.,Crema,E.,Edinborough,K.,Kerig,T.,Manning,K.,…Shennan,S. (2014).Reconstructingregionalpopulationfluctua-tionsintheEuropeanNeolithicusingradiocarbondates:Anewcase-studyusinganimprovedmethod.Journal of Archaeological Science,52,549–557.

Trondman,A.K.,Gaillard,M.J.,Mazier,F.,Sugita,S.,Fyfe,R.,Nielson,A.B., … Wick, L. (2015). Pollen-based quantitative reconstructions ofHoloceneregionalvegetationcover (plant-functional typesand land-cover types) in Europe suitable for climatemodelling.Global Change Biology,21,676–697.https://doi.org/10.1111/gcb.12737

Trondman, A. K., Gaillard, M. J., Sugita, S., Björkman, L., Greisman, A.,Hultberg,T.,…Mazier,F. (2016).Arepollen records fromsmall sitesappropriate for REVEALS model-based quantitative reconstructionsof past regional vegetation? An empirical test in southern Sweden.Vegetation History and Archaeobotany, 25, 131–151. https://doi.org/10.1007/s00334-015-0536-9

Welinder,S.(2011).Earlyfarminghouseholds3900–800BC.InJ.Myrdal,&M.Morell(Eds.),The Agrarian history of Sweden: From 4000 BC to AD 2000.SE:NordicAcademicPress,Lund.

Woodbridge,J.,Fyfe,R.M.,Roberts,N.,Downey,S.,Edinborough,K.,&Shennan,S.(2014).TheimpactoftheNeolithicagriculturaltransition

inBritain:Acomparisonofpollen-basedland-coverandarchaeological14Cdate-inferredpopulationchange.Journal of Archaeological Science,51,216–224.https://doi.org/10.1016/j.jas.2012.10.025

Woodward, F. I., Lomas,M.R.,&Kelly,C.K. (2004).Global climate andthe distribution of plant biomes. Philosophical Transactions Royal Society of London, series B,359,1465–1476.https://doi.org/10.1098/rstb.2004.1525

Zhang,Y.,Renssen,H.,&Seppä,H. (2016).Effectsofmelting icesheetsandorbitalforcingontheearlyHolocenewarmingintheextratropicalNorthernHemisphere.Climate of the Past,12,1119–1135.https://doi.org/10.5194/cp-12-1119-2016

Zhang,Y.,Renssen,H.,Seppä,H.,&Valdes,P.J.(2017a).Holocenetempera-tureevolutionintheNorthernHemispherehighlatitudes–data-modelcomparisons.Quaternary Science Reviews,173, 101–113. https://doi.org/10.1016/j.quascirev.2017.07.018

Zhang,Y.,Renssen,H.,Seppä,H.,&Valdes,P.J. (2017b).Holocenetem-perature trends in the extratropical NorthernHemisphere based oninter-modelcomparisons.Journal of Quaternary Science.(inreview).

SUPPORTING INFORMATION

Additional Supporting Information may be found online in the supportinginformationtabforthisarticle.Appendix S1MetadataforpollenrecordsAppendix S2MetadataforcharcoalrecordsAppendix S3TheREVEALScorrectionsforthe23planttaxaAppendix S4VegetationcompositionandexplanatoryvariablesAppendix S5Plantfunctionaltypes(PFTs)Appendix S6Summedprobabilitydistributions(SPD)ofarchaeologicalradiocarbondatesAppendix S7 Variation partitioning results for winter and summertemperatureAppendix S8Variationpartitioningresultswithplantfunctionaltypes(PFTs)Appendix S9Resultsfrommovingwindowanalysis

How to cite this article:KuosmanenN,MarquerL,TallavaaraM,etal.Theroleofclimate,forestfiresandhumanpopulationsizeinHolocenevegetationdynamicsinFennoscandia.J Veg Sci. 2018;00:1–11. https://doi.org/10.1111/jvs.12601