19
This article was downloaded by: [The University of Manchester Library] On: 11 October 2014, At: 03:03 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Communications in Algebra Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/lagb20 The quotient ring of the ring of a mortia context F.A.M. Al-Tayar a a School of Mathematics , University of Leeds , Leeds, LS2 9JT, England Published online: 27 Jun 2007. To cite this article: F.A.M. Al-Tayar (1982) The quotient ring of the ring of a mortia context, Communications in Algebra, 10:6, 637-654, DOI: 10.1080/00927878208822740 To link to this article: http://dx.doi.org/10.1080/00927878208822740 PLEASE SCROLL DOWN FOR ARTICLE Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content. This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

The quotient ring of the ring of a mortia context

  • Upload
    fam

  • View
    220

  • Download
    6

Embed Size (px)

Citation preview

Page 1: The quotient ring of the ring of a mortia context

This article was downloaded by: [The University of Manchester Library]On: 11 October 2014, At: 03:03Publisher: Taylor & FrancisInforma Ltd Registered in England and Wales Registered Number: 1072954 Registered office:Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Communications in AlgebraPublication details, including instructions for authors and subscriptioninformation:http://www.tandfonline.com/loi/lagb20

The quotient ring of the ring of a mortiacontextF.A.M. Al-Tayar aa School of Mathematics , University of Leeds , Leeds, LS2 9JT, EnglandPublished online: 27 Jun 2007.

To cite this article: F.A.M. Al-Tayar (1982) The quotient ring of the ring of a mortia context, Communications inAlgebra, 10:6, 637-654, DOI: 10.1080/00927878208822740

To link to this article: http://dx.doi.org/10.1080/00927878208822740

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”)contained in the publications on our platform. However, Taylor & Francis, our agents, and ourlicensors make no representations or warranties whatsoever as to the accuracy, completeness, orsuitability for any purpose of the Content. Any opinions and views expressed in this publication arethe opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis.The accuracy of the Content should not be relied upon and should be independently verified withprimary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims,proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoevercaused arising directly or indirectly in connection with, in relation to or arising out of the use of theContent.

This article may be used for research, teaching, and private study purposes. Any substantialor systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, ordistribution in any form to anyone is expressly forbidden. Terms & Conditions of access and use canbe found at http://www.tandfonline.com/page/terms-and-conditions

Page 2: The quotient ring of the ring of a mortia context

COMMUNICATIONS IN ALGEBRA, 10 (6), 637-654 (1982)

THE QUOTIENT R I N G OF THE R I N G OF A MORTIA

CONTEXT

F.A.M. A l - T a y a r

S c h o o l o f M a t h e m a t i c s , U n i v e r s i t y o f L e e d s L e e d s LS2 9JT. E n g l a n d .

I n t h i s p a p e r , we g i v e n e c e s s a r y and s u f f i c i e n t

R V c o n d i t i o n s f o r t h e r i n g T = ( S ) , o f a ~ o r i t a

W

C o n t e x t , t o h a v e a r i g h t A r t i n i a n r i g h t ( c l a s s i c a l )

q u o t i e n t r i n g , a n d t o h a v e a t w o - s i d e d N o e t h e r i a n

o n e , p r o v i d e d i n t h e l a t t e r c a s e , T i s N f i e t h e r i a n

( l e f t a n d r i g h t ) a n d t h e b i m o d u l e s RVS a n d S W R a r e

t o r s i o n - f r e e . We b e g i n i n S e c t i o n (I), b y r e c a l l i n g

p r e l i m i n a r y r e s u l t s c o n c e r n i n g A r t i n i a n a n d N o e t h e r i a n

q u o t i e n t r i n g s . S e c t i o n ( 2 ) i s d e v o t e d t o t h e

d e f i n i t i o n a n d some p r o p e r t i e s o f t h e r i n g o f a M o r i t a

C o n t e x t . S e c t i o n ( 3 ) c o n t a i n s t h e ma in two t h e o r e m s

( 3 . 1 , a n d 3 .4 ) o f t h i s P a p e r .

Copyright O 1982 by Marcel Dekker. Inc.

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 3: The quotient ring of the ring of a mortia context

N o t a t i o n and C o n v e n t i o n . A l l r i n g s w i l l h a v e u n i t

e l e m e n t , a l l m o d u l e s a n d b i m o d u l e s a r e u n i t i a l ,

" Q u o t i e n t r i n g " , w i l l mean q u o t i e n t r i n g w i t h r e s p e c t

t o t h e s e t o f a l l r e g u l a r e l e m e n t s . J (R) , and N ( R )

w i l l d e n o t e t h e J a c o b s o n and n i l p o t e n t y a d i c a l s ,

r e s p e c t i v e l y , o f t h e r i n g R. I f V i s a r i g h t ( l e f t )

R-module, K a s u b s e t o f R , and F a s u b s e t o f V , t h e n

L(VR) rill d e n o t e t h e l a t t i c e o f a l l R-submodules o f

v ~ ' r R ( K ) ( L R ( K ) ) w i l l d e n o t e t h e r i g h t ( l e f t )

a n n i h i l a t o r o f K i n R , r ( F ) ( L R ( F ) ) w i l l d e n o t e t h e R

r i g h t ( l e f t ) a n n i h i l a t o r o f F i n R , a n d L v ( K ) ( r V ( k ) )

w i l l d e n o t e t h e l e f t ( r i g h t ) a n n i h i l a t o r o f K i n V .

F i n a l l y , i f I i s a r i g h t i d e a l o f R , t h e n C R ( I ) w i l l

d e n o t e t h e s e t o f a l l e l e m e n t s o f R r e g u l a r modulo I .

SECTION (1)

L e t R b e a r i n g , and M b e a r i g h t R-mcdule . Then M R

i s s a i d t o b e t o r s i o n - f r e e ( w i t h r e s p e c t t o C R ( 0 ) ) ,

i f mc # 0 f o r e v e r y 0 # rn E M a n d e v e r y c i n C R ( 0 ) .

S u p p o s e R h a s a r i g h t q u o t i e n t r i n g Q , a n d l e t M b e

a t o r s i o n - f r e e R-module. Then M h a s a q u o t i e n t Q -

module M Q . M Q i s c o n s t r u c t e d f rom M i n a s i m i l a r

f a s h i o n a s Q i s c o n s t r u c t e d f rom R . The e l e m e n t s

o f M Q h a v e t h e form mc'l w i t h m E M a n d c E C ( 0 ) . R

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 4: The quotient ring of the ring of a mortia context

RING O F A MORTIA CONTEXT 639

Lemma 1.1 ( [ I ] , P r o p o s i t i o n 1 . 5 ) . L e t R b e a r i n g

w i t h a r i g h t q u o t i e n t r i n g Q . L e t M b e a n R-module

which i s t o r s i o w f r e e . Then M Q = M 0 Q , u n d e r t h e R

c o r r e s p o n d e n c e mq + m q .

Lemma 1 . 2 ( [ ? I , ( 1 . 3 6 ) , p . 2 3 4 ) . L e t R be a r i n g w i t h

a r i g h t q u o t i e n t r i n g Q. I f cl,. .., c a r e r e g u l a r k

e l e m e n t s o f R , t h e n t h e r e e x i s t s r e g u l a r e l e m e n t s ,

- 1 - 1 c , d l , . . , d k o f R s u c h t h a t c i = ddjc , f o r i=l ,...,k.

Theorem 1 . 3 ( [ 4 1 , Theorem 2 . 1 0 ) . L e t R b e a r i n g .

Then R h a s a r i g h t A r t i n i a n r i g h t q u o t i e n t r i n g i f

and o n l y i f R s a t i s f i e s t h e f o l l o w i n g c o n d i t i o n s :

( i ) ' R and R / N a r e r i g h t G o l d i e r i n g s , w h e r e

N = N(R).

k (ii) R / L ( N ) i s a r i g h t f i n i t e - d i m e n s i o n a l r i n g

R

f o r k = 1, ..., p - 1 whe re p i s a n i n t e g e r

s u c h t h a t N~ = 0 b u t N ~ ' ~ z 0 .

Theorem 1 . 4 ( [=I , Theorem 3) . L e t R b e a r i n g w i t h

a r i g h t A r t i n i a n r i g h t q u o t i e n t r i n g Q . L e t e b e

a n o n - z e r o i d e m p o t e n t e l e m e n t o f R. Then eRe h a s a

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 5: The quotient ring of the ring of a mortia context

640 AL-TAYAR

r i g h t A r t i n i a n r i g h t q u o t i e n t r i n g wh ich i s i s o m o r p h i c

t o e Q e .

Lemma 1 . 5 ( [ ? I , Theorem 1) . I n a r i g h t ( l e f t ) G o l d i e

r i n g , e v e r y n i l s u b r i n g i b n i l p o t e n t .

L e t R b e any r i n g . We d e f i n e t h e A r t i n i a n r a d i c a l A ( R )

o f R t o b e t h e sum o f a l l t h e A r t i n i a n r i g h t i d e a l s o f

R ( b y a n A r t i n a n r i g h t i d e a l we mean a r i g h t i d e a l

which i s A r t i n i a n a s a r i g h t R-module). We h a v e t h e

f o l l o w i n g .

Theorem 1 . 6 ( [ G I , Theorem 2 . 6 ) . L e t R b e a

N ~ e t h e r i a n r i n g . Then R i s e q u a l t o i t s own f u l l

( o r two s i d e d ) q u o t i e n t r i n g i f a n o n l y i f

C o r o l l a r y 1 .7 ( [UI. C o r o l l a r y 2 . 7 ) . L e t R b e

a N o e t h e r i a n r i n g t h a t i s e q u a l t o i t s own f u l l

q u o t i e n t r i n g . Then R is s e m i - l o c a l .

F i n a l l y , by a s t r a i g h t f o r w a r d m o d i f i c a t i o n t o t h e

p r o o f o f t h e ma in r e s u l t i n [ 6 1 , o n e c a n g e t t h e - f o l l o w i n g .

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 6: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT 641

Lemma 1 . 8 . L e t RMS b e a b i m o d u l e s u c h t h a t RM h a s

f i n i t e l e n g t h , a n d M i s N o e t h e r i a n . Then MS h a s S

f i n i t e l e n g t h .

SECTION ( 2 )

L e t R,S b e r i n g s , W b i m o d u l e s w i t h R'S' S R

homomorphisms V Q W + R , W 8 V + S ( c a l l e d S R

m u l t i p l i c a t i o n ) , s u c h t h a t T = ( R V i s a r i n g .

W S

T i s c a l l e d t h e r i n g o f a M o r i t a C o n t e x t , S e e [L].

e . g . I f R i s a r i n g , n a n y n a t u r a l number, t h e n t h e

r i n g s M, ( R ) a n d Tn ( R ) , o f n x n m a t r i c e s a n d o f n x n

u p p e r ( l o w e r ) t r i a n g u l a r m a t r i c e s o v e r R ,

r e s p e c t i v e l y , c a n b e r e g a r d e d a s t h e a p p r o p r i a t e

r i n ' g s o f M o r i t a C o n t e x t s .

P r o p o s i t i o n 2 . 1 . TT i s N o e t h e r i a n ( A r t i n i a n ) i f

and o n l y i f R R , S S P VS a n d W a r e N o e t h e r i a n R

( A r t i n i a n ) .

P r o o f . I f I1 I2 .. . , a n d V1 t V2 .. ., a r e

r e s p e c t i v e l y a s c e n d i n g c h a i n s o f r i g h t i d e a l s o f R

and S - submodu le s o f V , t h e n e l l I I T c e l l 1 2 T s.. . , and e l l V I T s e l l V 2 T .. . , a r e a s c e n d i n g c h a i n s o f

r i g h t i d e a l s o f T, whe re eH T h e r e f o r e ,

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 7: The quotient ring of the ring of a mortia context

642 AL-TAYAR

i f TT i s N o e t h e r i a n , t h e n R R and VS a r e a l s o

N o e t h e r i a n . S i m i l a r a rguments w i l l show t h a t SS

and W R a r e N o e t h e r i a n . For t h e c o n v e r s e , i f we

s e t A = ( R V 0 0

1 , B = ( W S ) l and C = R

O ) I t h e n 0 0 ( 0 S

A and B a r e r i g h t i d e a l s o f T and A and B a r e C-

modules. I n f a c t AC and B a r e f . g . . C

Thus A C

and B a r e N o e t h e r i a n . S i n c e L(A c L ( A C ) , and C T -

L ( B T ) g. L ( B C ) . Then AT and B a r e N o e t h e r i a n . T

T h e r e f o r e TT i s N o e t h e r i a n . The A r t i n i a n c a s e can

be p roved i n a s i m i l a r way.

Next we need t h e f o l l o w i n g Lemma.

J ( R ) M Lemma 2 . 2 . ( [ 8 ] , Theorem 8 ) . J ( T ) = (

J ( S ) ) ' where

I f RMS i s a b imodule . Then M i s s a i d t o s a t i s f y t h e

r i g h t ( l e f t ) Ore c o n d i t i o n ( w i t h r e s p e c t t o C R ( 0 )

and C S ( 0 ) ) , i f f o r e v e r y c E C R ( 0 ) ( d E CS ( 0 ) and

e v e r y m EM(^' E M ) , t h e r e e x i s t d E CS(0) ( C E C ( 0 ) ) R

and m ' E M ( m E M ) such t h a t

cm' = md.

RMS i s t o r s i o n - f r e e , w i l l mean M i s t o r s i o n - f r e e R

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 8: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT 64 3

w i t h r e s p e c t t o C R ( 0 ) , and M i s t o r s i o n - f r e e w i t h S

r e s p e c t t o C ( 0 ) . An i m m e d i a t e c o n s e q u e n c e o f t h e S

a b o v e d e f i n i t i o n s and Lemma 1.1 i s t h e f o l l o w i n g .

R V Lemma 2 . 3 . L e t T = ( W S ) , b e t h e r i n g o f a M o r i t a

C o n t e x t . I f

( i ) R and S h a v e r i g h t q u o t i e n t r i n g s Q ( R ) and

Q ( S ) r e s p e c t i v e l y ,

( ii) RVS and S W R a r e t o r s i o n - f r e e , a n d

(iii) RVS and S W R s a t i s f y t h e r i g h t Ore c o n d i t i o n

w i t h r e s p e c t t o C R ( 0 ) and CS ( 0 )

t h e n t h e s e t

forms a r i n g .

To end t h i s s e c t i o n , two lemmas a r e r e q u i r e d .

R V Lemma 2 . 4 . L e t T = (W S ) , b e t h e r i n g o f a M o r i t a

C o n t e x t . L e t T b e a s emi -p r ime r i g h t G o l d i e r i n g ,

a n d l e t RVS, S W R b e t o r s i o n - f r e e . S e t e = (i :).

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 9: The quotient ring of the ring of a mortia context

AL-TAYAR

I f t i s a r e g u l a r e l e m e n t o f T, t h e n t h e r e

e x i s t s a n e l e m e n t b i n T s u c h t h a t e t b e i s

r e g u l a r i n R.

P r o o f . S i n c e RVS and - S W R a r e t o r s i o n - f r e e , t h e n an

e l e m e n t c c C R ( 0 ) i f f c + l - e = ( d !) p C T ( 0 ) . The re -

f o r e w e can u s e t h e same method a s i n p r o o f o f Lemma

4 . 4 . o f [GI t o g e t t h e above r e s u l t .

An i d e a l I o f a r i n g R i s s a i d t o b e ( r i g h t )

l o c a l i s a b l e i f C R ( I ) s a t i s f i e s t h e ( r i g h t ) Ore

c o n d i t i o n .

Lemma 2 . 5 . L e t T R V

( W S ) , b e t h e r i n g o f a M o r i t a

C o n t e x t s u c h t h a t b o t h .RVS and W a r e t o r s i o n - f r e e . S R

S e t e = (i ; I . I f I i s a s e m i p r i m e ( r i g h t )

l o c a l i s a b l e i d e a l o f T I t h e n e I e i s a s emi -p r ime

( r i g h t ) l o c a l i s a b l e i d e a l o f R .

P r o o f . Same p r o o f a s i n p r o p o s i t i o n 4 . 5 o f [GI .

SECTION ( 3 )

Our f i r s t r e s u l t i s t h e f o l l o w i n g .

Theorem 3.1. L e t T = ( W i) , b e t h e r i n g o f a

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 10: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT

M o r i t a C o n t e x t s u c h t h a t b o t h VS and W a r e f . g . . R

Then T i s a r i g h t o r d e r i n a r i g h t A r t i n i a n r i n g

Q ( T ) , s a y , i f and o n l y i f

( i) R and S a r e r i g h t o r d e r s i n r i g h t A r t i n i a n r i n g s ,

Q ( R ) and Q(S) r e s p e c t i v e l y

( i i) RVS and S W R a r e t o r s i o n - f r e e .

(iii) RVS and S W R s a t i s f y t h e r i g h t Ore c o n d i t i o n

w i t h r e s p e c t t o C ( 0 ) and CS ( 0 ) . . R

Moreover i f t h i s happens , t h e n

P r o o f . Assume we h a v e c o n d i t i o n s ( i ) , (ii) and (iii) . S e t H 4s .\a lemma 2 .3 above. Thus H forms a r i n g .

A l s o by o u r a s s u m p t i o n s t h a t V and W a r e f . g . , S R

c o n d i t i o n ( i) , and P r o p o s i t i o n 2 . 1 , we have H i s

r i g h t A r t i n i a n . Again by c o n d i t i o n s (ii) , ( i i i ) ,

Lemma 1.1, Lemma 1.2 and Lemma 2 . 3 , H i s a

c 0 l o c a l i z a t i o n o f T o v e r t h e se t L = { ( o d ) '

C E C R ( 0 ) , d & C S ( 0 ) ) . Now i f x E C (O) , t h e n x T

i s r i g h t r e g u l a r i n H. So x i s i n v e r t i b l e i n H ,

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 11: The quotient ring of the ring of a mortia context

ff

b e c a u s e H i s r i g h t A r t i n i a n . T h e r e f o r e H i s a

r i g h t q u o t i e n t r i n g o f T .

C o n v e r s e l y , assume t h a t Q (T) e x i s t s , and i s r i g h t A r t i n i a n

1 0 0 0 S e t O) , e ~ 2 = ( ~ l ) . Then e l l and e22 a r e non-

z e r o i d e m p o t e n t e l e m e n t s of T . Moreoever R = e l l T e l l ,

and S = e Z 2 T e z 2 . T h e r e f o r e Q ( R ) and Q ( S ) e x i s t

and t h e y a r e r i g h t A r t i n i a n , by Theorem 1 . 4 . S i n c e

R,S and T a r e r i g h t G o l d i e r i n g s by Theorem 1 . 3 , t h e n

N ( R ) ; N ( S ) , and N(T) a r e n i l p o t e n t i d e a l s o f R,S, and

T r e s p e c t i v e l y , by Lemma 1 .5 . So i t s now e a s y t o

show t h a t

Now i f , c E C ( 0 ) and d c C S ( 0 ) , t h e n c s C R ( N ( R ) ) R

c 0 and d E C S ( N ( S ) ) , by Theorem 1 . 3 . So ( O c C T ( N ( ~ ) )

= C T ( 0 ) . T h e r e f o r e i t i s c l e a r now t h a t RVS and W S R

a r e t o r s i o n - f r e e . To p r o v e c o n d i t i o n (iii) , l e t

Q 3 Q ( T ) , and I = T J ( Q ) . S i n c e Q i s s e m i l o c a l ,

then^ (0) = f u n i t s ) = C Q ( J ( Q ) . T h e r e f o r e ~ ~ ( 0 ) = Q

C T ( I ) . So I i s ( r i g h t ) l o c a l i s a b l e i n T , and by

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 12: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT 647

G o l d i e f s Theorem, T / I i s a semipr ime r i g h t G o l d i e

r i n g . S e t e = 0

( O 1 . Then d E C S ( 0 ) i f f d + l - e =

l O ) E CT(0) i f f d + l - e E C T ( I ) i f f d E CS ( e I e ) , by

(0 d

Lemma 2 . 4 and Lemma 2 . 5 . Now l e t c E C R ( 0 ) , v E V . We

want t o f i n d v f E V , d E CS ( 0 ) such t h a t c v ' = vd. A s

C E C T ( 0 ) . SO t h e r e e x i s t s f = b e f o r e ( O m ) ,

( n Y

h = t , i n T w i t h h € C T ( O ) s u c h t h a t ( W d

S i n c e h E C T ( 0 ) and C T ( 0 ) = C T ( I ) , t h e r e e x i s t s

b = b l l b12

by Lemma 2 . 4 . M u l t i p l y b o t h s i d e s of ( * ) by t h e

e l e m e n t b e , t o g e t t h e f o l l o w i n g

S e t v ' = x b l p + mb2p, d f = wblp+ dbpz E CS ( 0 ) . T h i s

g i v e s t h a t RVS s a t i s f i e s t h e r i g h t Ore c o n d i t i o n

w i t h r e s p e c t t o C R ( 0 ) and CS ( 0 ) . S i m i l a r a rguments

w i l l show t h a t S W R s a t i s f i e s t h e r i g h t Ore c o n d i t i o n

w i t h r e s p e c t t o CS(0) and C ( 0 ) . R

F i n a l l y i f we s e t H as i n t h e f i r s t p a r t of t h e p r o o f ,

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 13: The quotient ring of the ring of a mortia context

648 AL-TAYAR

t h e n H i s a r i g h t A r t i n i a n r i g h t q u o t i e n t r i n g o f T.

T h e r e f o r e H 2 Q (T) .

C o r o l l a r y 3 . 2 ([9], Theorem 2 . 2 8 ) . L e t R b e a r i n g

which i s a r i g h t o r d e r i n a r i g h t A r t i n i a n r i n g Q ,

s a y . Then Mn(R), t h e r i n g o f n x n m a t r i c e s o v e r R.

i s a r i g h t o r d e r i n a r i g h t A r t i n i a n r i n g Q ( M n ( R ) .

Moreover Q ( M n ( R ) 1 = M n (Q) .

C o r o l l a r y 3 .3 . ( A c o n v e r s e t o Theorem 1 . 4 ) . L e t R b e

a r i n g w i t h a n o n - z e r o i d e m p o t e n t e . Then R i s a

r i g h t o r d e r i n a r i g h t A r t i n i a n r i n g i f and o n l y i f .

* ( i) t h e two r i n g s eRe and eRe a r e r i g h t o r d e r s i n

r i g h t A r t i n i a n r i n g s , 2 = 1-e .

* (ii) The b i m o d u l e s ( e ~ e ( eRe)* * and * *

e Re e R e eRe e Re

a r e t o r s i o n - f r e e and s a t i s f y t h e r i g h t Ore

c o n d i t i o n w i t h r e s p e c t t o C ( 0 ) and C;R;(0). e Re

P r o o f . We have

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 14: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT

Thus t h e r e s u l t becomes c l e a r .

The n e x t t h e o r e m d e s c r i b e when t h e r i n g o f a M o r i t a

C o n t e x t h a s a N o e t h e r i a n f u l l q u o t i e n t r i n g .

Theorem 3 . 4 . L e t T = ( W S ) , b e a ( l e f t a n d r i g h t )

N o e t h e r i a n r i n g s u c h t h a t b o t h RVS and W a r e t o r s i o n - s R

f r e e . Then T h a s a f u l l q u o t i e n t r i n g Q ( T ) , s a y , i f

and o n l y i f

( i ) R and S h a v e f u l l q u o t i e n t r i n g s Q ( R ) a n d Q(S)

r e s p e c t i v e l y , s a y

(ii) RVS and S W R s a t i s f y t h e l e f t and r i g h t Ore

c o n d i t i o n s w i t h r e s p e c t t o ' C R ( 0 ) a n d CS ( 0 ) .

Moreoever i f t h i s h a p p e n s , t h e n

P r o o f . Assume we h a v e c o n d i t i o n s ( i ) a n d ( i i) .

F i r s t we assume t h a t R = Q ( R ) a n d S = Q ( S ) . We

w a n t t o show t h a t T = Q ( T ) .

A AV O O ) , L e t A = A ( R ) , B = A ( s ) . S e t I ( O 0 ) ' =(BW B

O) = R @ 5 . S i n c e RV i s K = I $ J , a n d F = ( O

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 15: The quotient ring of the ring of a mortia context

650 AL-TAYAR r

N o e t h e r i a n , by P r o p o s i t i o n 2 . 1 , t h e n R ( A ~ ) i s

A r t i n i a n . So RI i s A r t i n i a n . Bu t IF i s N o e t h e r i a n .

~ h u s IF i s A r t i n i a n , by Lemma 1 . 8 . S i n c e L ( I T ) E

L ( I F ) , t h e n I i s A r t i n i a n . S i m i l a r a r g u m e n t s w i l l T

show t h a t J i s A r t i n i a n . T h e r e f o r e , KT i s A r t i n i a n . T

B u t K i s a r i g h t i d e a l o f T. Then K A ( T ) .

T h e r e f o r e

a T ( ~ ( T ) n r R ( A ( T ) aT(K) n r T ( K )

I t i s s t r a i g h t f o r w a r d b c h e c k t h a t

BY Theorem 1 . 6 , we h a v e

A l s o , i f v E a V ( B ) n r ( A ) n r v ( B w ) , a n d v w E E W ( A ) n r , ( ~ ) n r W ( ~ v ) , t h e n i t i s e a s y t o show t h a t

v E M and w E N , where M and N a r e a s i n Lemma 2 . 2 .

T h e r e f o r e RT(A(T) ) n r T ( A ( T ) C J ( T ) , which

i m p l i e s t h a t T = Q (T) , by Theorem 1 . 6 .

F o r t h e g e n e r a l c a s e , l e t H b e as i n Lemma 2 . 3 . Then ,

a s i n t h e p r o o f o f Theorem 3 .1 . H i s a l o c a l i z a t i o n

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 16: The quotient ring of the ring of a mortia context

RING OF A MORTIA CONTEXT 651

o f T o v e r t h e s e t L = { ( E i ) ; c s C R ( 0 ) , d r C s ( O ) 1 .

T h e r e f o r e H i s a N o e t h e r i a n r i n g . A s i n t h e f i r s t

p a r t o f t h e p r o o f , we h a v e H Q ( H I . T h e r e f o r e H

i s a q u o t i e n t r i n g o f T.

F o r t h e C o n v e r s e , we c a n u s e s i m i l a r a r g u m e n t s a s

t h o s e u s e d t o p r o v e c o n d i t i o n (iii) i n Theorem 3 . 1 ,

t o show t h a t R and S w i l l s a t i s f y t h e l e f t and r i g h t

Ore c o n d i t i o n s , a n d , RVS and S W R w i l l s a t i s f y t h e

l e f t a n d r i g h t Ore c o n d i t i o n s w i t h r e s p e c t t o C ( 0 ) R

and C S ( 0 ) . A l s o i f H i s a s i n t h e f i r s t p a r t o f

t h e p r o o f , t h e n Q ( T ) E H.

C o r o l l a r y 3.5. ( [GI, P r o p o s i t i o n 4 . 2 ) . L e t R b e a

r i n b t h a t h a s a N o e t h e r i a n f u l l q u o t i e n t r i n g , s a y Q .

Then , f o r any n a t u r a l number n , M n ( R ) h a s a f u l l

q u o t i e n t r i n g i s o m o r p h i c t o M ( Q ) . n

C o r o l l a r y , 3 .6. L e t R b e a r i n g t h a t h a s a

N o e t h e r i a n f u l l q u o t i e n t r i n g , s a y Q . Then , f o r

any n a t u r a l number n , Tn ( R ) , t h e r i n g o f n x n

u p p e r ( l o w e r ) t r i a n g u l a r m a t r i c e s o v e r R h a s a f u l l

q u o t i e n t r i n g i s o m o r p h i c t o T ( Q ) . n

Remarks 3 . 7 . ( i) Example ( 2 . 1 ) o f [z] , shows t h a t

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 17: The quotient ring of the ring of a mortia context

652 AL-TAYAR

t h e r e e x i s t s a r i g h t N o e t h e r i a n r i n g R wh ich h a s

a r i g h t q u o t i e n t r i n g b u t M 2 ( R ) d o e s n o t . So t h e

a s s u m p t i o n i n Theorem 3 .4 . t h a t T i s N o e t h e r i a n ( l e f t

and r i g h t ) i s n e c e s s a r y .

( 2 ) A l s o example ( 2 . 2 ) o f [ 2 ] , shows t h a t t h e r e

e x i s t s a r i n g T = ') w i t h t h e f o l l o w i n g p r o p e r t i e s ( w S

(i) T i s N o e t h e r i a n ( l e f t and r i g h t ) ,

(iii) RVS i s n o t t o r s i o n - f r e e l

( i v ) Q ( R ) d o e s n o t e x i s t .

So t h e a s s u m p t i o n s i n Thereom 3 . 4 , t h a t RVS and S W R

a r e t o r s i o n - f r e e a r e a l s o n e c e s s a r y .

( 3 ) F i n a l l y , t h e f o l l o w i n g example h a s b e e n u s e d i n

R V [GI, we u s e i t h e r e t o c o n s t r u c t a r i n g T = (W s )

w i t h t h e f o l l o w i n g p r o p e r t i e s .

( i) T i s N o e t h e r i a n ( l e f t a n d r i g h t )

( ii) RVS and = W R a r e

(iii) Q ( R ) and Q(S) b

( i v ) N e i t h e r RVS n o r

w i t h r e s p e c t t o

Theorem 3 . 4 . , Q

t o r s i o n - f r e e

t h e x i s t

S W R s a t i s f y t h e Ore c o n d i t i o n s

CR(0 ) and C S ( 0 ) . Hence by

T) d o e s n o t e x i s t .

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 18: The quotient ring of the ring of a mortia context

RING O F A MORTIA C O N T M T 653 r

The Example : L e t R b e t h e c o m m u t a t i v e N o e t h e r i a n

r i n g

R o v e r a f i e l d K . L e t S = R A(R). Then R = Q ( R ) ,

S # Q ( S ) . I n f a c t Q(S) = R $ Q ( K [ y ] ) . Moreove r

S i s N o e t h e r i a n a s an S-module a n d a s a n R-module.

S e t T = R S (S S ) . Then T i s N o e t h e r i a n ,

R'S and S'R

a r e t o r s i o n - f r e e . We c l a i m t h a t RSS d o e s n o t s a t i s f y

t h e Ore c o n d i t i o n s w i t h r e s p e c t t o C (0) and C S ( 0 ) , R

f o r s u p p o s e i t d o e s . Choose a n e l e m e n t d o f S

w h i c h i s r e g u l a r i n S b u t n o t i n v e r t i b l e i n S . Then

t h e r e e i x s t C E C ~ ( O ) , s e S s u c h t h a t c . 1 = s d . Bu t

c -1 E R c S . SO d i s i n v e r t i b l e i n S w h i c h i s a

c o n t r a d u c t i o n . T h e r e f o r e Q ( T ) d o e s n o t e x i s t .

ACKNOWLEDGEMENTS

The a u t h o r would l i k e t o t h a n k P r o f e s s o r A.W. G o l d i e

and D r . J .C. Robson f o r many h e l p f u l c o n v e r s a t i o n s

and f o r e n c o u r a g e m e n t d u r i n g t h e w r i t i n g o f t h i s

p a p e r .

REFERENCES

[L] S.A. AMITSUR, R i n g s o f q u o t i e n t s a n d M o r i t a

ContexU, J . A l g e b r a 17 ( 1 9 7 1 ) , 273-298.

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4

Page 19: The quotient ring of the ring of a mortia context

A.W. CHATTERS, T h r e e e x a m p l e s c o n c e r n i n g t h e Ore

c o n d i t i o n i n N o e t h e r i a n r i n g s , P r o c . E d i n b u r g h

Math. Soc .

A.W. GOLDIE, The S t r u c t u . r e o f N o e t h e r i a n r i n g s ,

L e c t u r e s on R ings and Modu les , L e c t u r e N o t e s

i n Math . , Vol . 246, S p r i n g e r - V e r l a g .

C . R . HAJARNAVIS, On S m a l l ' s Theorem, J. London

Math. Soc . , ( 2 ) , 5 ( 1 9 7 2 ) , 596-600.

C. LANSKI, N i l s u b r i n g s o f G o l d i e r i n g s a r e

n i l p o t e n t , C a n d i a n J . Math. , ( 1 9 6 9 ) , 9 0 4 - 9 0 7 .

T.H. LENAGAN, A r t i n i a n i d e a l s i n N o t h e r i a n

r i n g s , P r o c . Amer. Math. S o c . , % ( 1 9 7 5 ) ,

499-500.

L.S. LEVY, T o r s i o n - f r e e and d i v i s i b l e modu les

o v e r n o n - i n t e g r a l d o m a i n s , C a n a d i a n J . Math . ,

1 5 (19631 , 132-151. - A . D . SANDS, R a d i c a l s and M o r i t a C o n t e x t s .

J . A l g e b r a , z ( 1 9 7 3 1 , 335-345.

L.W. SMALL, O r d e r s i n A r t i n i a n r i n g s , J .

A l g e b r a i ( l 9 6 6 ) , 13-41.

L.W. SMALL, O r d e r s i n A r t i n i a n r i n g s 11,

J. A l g e b r a ( 1 9 6 8 ) , 266-273.

J . T . ST'AFFORD, N o e t h e r i a n f u l l q u o t i e n t r i n g s .

Received: Apri l 1981

Dow

nloa

ded

by [

The

Uni

vers

ity o

f M

anch

este

r L

ibra

ry]

at 0

3:03

11

Oct

ober

201

4