35
The Quest for Quinine N N OMe H OH Literature Seminar March 7, 2005 3 4 8 9 References: Kaufman, T.; Ruvedo, E. Angew. Chem. Int. Ed. 2005, 44, 854-885. Nicolaou, K. Synder, S. Classics in Total Synthesis II; Wiley-VCH: Germany, 2003. Raheem, I.; Goodman, S.; Jacobsen, E. J. Am. Chem. Soc. 2004, 126, 706-707. Igarashi, J.; Katsukawa, M.; Wang, Y.; Acharya, H.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 3783-3786.

The Quest for Quinine · N N OMe H OH Quinine: The Facts á Properties and Uses: á Anti-malarial á Analgesic á Anaesthetic á Antibacterial á Anti-microbial á Anti-parasitic

Embed Size (px)

Citation preview

The Quest for Quinine

N

N

OMe

H

OH

Literature SeminarMarch 7, 2005

3

4

8

9

References:

Kaufman, T.; Ruvedo, E. Angew. Chem. Int. Ed. 2005, 44, 854-885.Nicolaou, K. Synder, S. Classics in Total Synthesis II; Wiley-VCH: Germany, 2003.Raheem, I.; Goodman, S.; Jacobsen, E. J. Am. Chem. Soc. 2004, 126, 706-707.Igarashi, J.; Katsukawa, M.; Wang, Y.; Acharya, H.; Kobayashi, Y. Tetrahedron Lett. 2004, 45, 3783-3786.

N

N

OMe

H

OH

Quinine: The Facts

· Properties and Uses:

· Anti-malarial · Analgesic · Anaesthetic · Antibacterial · Anti-microbial · Anti-parasitic · Antiseptic · Astringent · Febrifuge · Muscle-relaxant · Bactericide · Contraceptive · Insecticide · Insect-repellant · Stomachic · Tonic

1g/$3.61

Synthetic Uses:

· Chiral Ligand · Chiral Auxiliaries · Phase Transfer Catalysis · Asymmetric Catalyst · Chiral Resolving Agent · Enantioselective Transformations · Sharpless Asymmetric Dihydroxylation · Diels-Alder · Hydrocyanations · [2+2] Cycloadditions · Michael Additions · SmI2 Mediated Reductions · Dehydrohalogenations

· Isolated from the bark of cinchona trees

· A cinchona alkaloid

Cinchona Tree Bark used Treat Fevers by Natives

A really really long time ago. . .

1640: Cinchona Bark introduced to European Medicine: Countess of Chinchon

cured from Malaria.

1820: Authentic Sample of Quinine Isolated:Pelletier and Caventou

1681: Universally acceptedas an Antimalarial Substance

1854: Molecular Formula of Quinine Determined:Strecker

Quinine: The History

Quinine: Key Points in Synthetic History

1st attempted Synthesis: Perkin

Correct Molecular Connectivities Reported: Rabe

1908

Rabe's Reconstruction of Quinine from Quinotoxine

1918

Woodward/Doering Formal Total Synthesis

1944

Hoffmann-La Roche Total Synthesis, Gates Total Synthesis

1970

Stork Total Synthesis

2001

Jacobsen and Kobayashi Total Syntheses

20041856

Taylor Total Synthesis

1972

Quinine: Key Points in Synthetic History

1912: X-Ray Crystallography

1903: Chromatography

1945: NMR

1897: Mass Spectrometry

N

N

R

Me

H2N NH

Me

Mauvine

First Attempted Synthesis of Quinine

N

N

OMe

H

OH

C20H24N2O2

HN

Me HN

Me

+

C10H13N C10H13N

+ 3O—[H2O]

1856: Perkin's "mathematical approach"

Quinine: Determination of Structure

N

N

OMe

H

OH

HN

N

OMe

O

Acid

Quinotoxine

N

MeO

Me

H2O, !

6-MethoxyepidineN

MeO

KOH

fusion

6-Methoxyquinoline

N

N

OMe

O

[O]

Quinone

N

N

OMe

OAc

Acylation

N

N

OMe

H

OH Br2

Br

Br

N

HO2C

N

OMe

H

OH

[O]

Quintenine

N

OHC

N

OMe

H

OH

O3

HO2CHN

Dilute Acid

[O]

Meroquinene

1908: Rabe suggests correctconnectivity of quinine

N

MeO

CO2H

[O] (HNO3, H2CrO4)

Quinic Acid

Rabe's Partial Synthesis of Quinine

N

N

OMe

H

OH

Reconstruction of Quinine from Quinotoxine

H2SO4

Quinotoxine

1853: Louis Pasteur observed quinineforms quinotoxine in aqueous sulfuric acid HN

N

OMe

O

1918: Paul Rabe effects partial synthesis from quinotoxine

HN

N

OMe

O

NaOBrN

N

OMe

O

Br

NaOEt, EtOH N

N

OMe

O

Br

N

N

OMe

O

HSolvent

N

N

OMe

OH

Aluminumpowder

N

N

OMe

H

OH

Determination of Stereochemistry: C8 Center1920s:Rabe solves C8 center

N

N

R

H

OH

N

N

R

H

OHH

Quinine: R=OMeCinchonidine: R=H

Chinchonine, R=HQuinidine, R=OMe

N

N

R

H

O

H

no cyclizationconclusion C8=S

8

8

Determination of Stereochemistry: C9 Center1932: C9 center solved

N

N

OMe

H

OH

N

N

OMe

OH

H

Weaker Base Stronger Base

Quinine: epi-Quinine

N

R

O

HR

Ar

H

R

H

Steric hinderence

N

R

O

HR

H

H

R

Ar

H H

Prelog proposed:

Determination of Stereochemistry: C3 and C4 Centers

NH

MeN

N

H

H

OH

OH 1. HBr2. Zn/AcOH

NH

Me

Me

Von-Braundegradation

PBr5

BrBr

Me

Me

CO2EtEtO2C

NaOHMe

Me

CO2H

1. Ag2. Br23. Raney Ni

Me

Me

Me Me

Me

MeO

OH

Me

Me

not optically active

(—)-2-methylbutanoic acid

CatalyticHydrogenation

compared with compound derivedfrom acid with know configuration

1944: Vladimir Prelog established cis configuration of C3 and C4 centers

Woodward/Doering Formal Total Synthesis

N

N

OMe

H

OH

A Synthesis of Quinotoxine

Quinotoxine

1944:Woodward and Doering synthesize quinotoxine

HN

N

OMe

O

RabeRoute

CondensationN

MeO

CO2Et

BzN

O

OEtH

H

+

AcN

H

HMe

O

AcN

H

HN

O

OEt

Me

OH

BzN

O

OEtH

H

Synthesis of Ethyl Quinate

NH2

OMe

EtO

O O

H2SO4N

OMe

Me

OH

1. PCl5/POCl3

2. Al/AcOH

68% 3 stepsN

OMe

Me

PhCHOZnCl2

N

OMe

Ph

1. CaMnO4

2. EtOH/H+

80% over 3 stepsN

OMe

CO2Et

Rabe. Chem. Ber. 1931, 64, 2487.

O

H

OH

EtO

OEt

NH2

N

H

OH

OEtOEt

H2SO4

NOH

CH2O, MeOHpiperidine

NOH

N

100% 64%

62%

NO

NaOMeMeOH 220 °C[H]

NOH

Me

64%

AcNOH

Me

1. PtO2, H2, HOAc2. Ac2O, py

95%

AcN

H

HMe

OAcN

H

HMe

O

1. Raney Ni, H2

(3000 psi), 150 °C

2. CrO3, HOAc

+

20%

Woodward/Doering Formal Total SynthesisA Synthesis of Quinotoxine

1944:Woodward and Doering synthesize quinotoxine

All carbon atoms installed in just 3 steps

Racemic Mixture ofcis-fused

Woodward/Doering Formal Total SynthesisA Synthesis of Quinotoxine

1944:Woodward and Doering synthesize quinotoxine

AcN

H

HMe

O

NaOEtEtOH

EtON

OAcN

H

HMe

O

EtON

O

AcN

H

HMe

ON OEt

O

AcN

H

HMe

ON

O

EtO

AcN

H

HMe

O

OEt

N

O

AcN

H

HN

O

OEt

Me

OH

Woodward/Doering Formal Total SynthesisA Synthesis of Quinotoxine

1944:Woodward and Doering synthesize quinotoxine

AcN

H

HN

O

OEt

Me

OH

NAc

EtO O

N

Me

HO

PtO2, H2

HOAcN

Ac

EtO O

NH2

Me

NBz

EtO O

N

MeO

CO2Et

1. NaOEt

2. 6 N HCl, !

Quinotoxine

HN

N

OMe

O

The First Total Synthesis Complete?

N

N

OMe

H

OH

Quinotoxine

HN

N

OMe

O

Rabe

Route

N

MeO

CO2Et

BzN

O

OEtH

H

+

Woodward and Doering did not actually carry out these steps.

N

N

OMe

O

H Solvent N

N

OMe

OH

Aluminumpowder

N

N

OMe

H

OH

?

There is a current debate about the last step in Rabe's synthesis.

· Although successful, synthesis lacked stereocontrol.

Hoffmann-La Roche Total Synthesis

N

N

OMe

H

OH

N

N

OMe

N

MeO

Me

BzN

1970: Milan Uskokovic and his group at the Hoffmann-La Roche Pharmaceutical Company developed an improved route.

SET anddisproportionation

HN

N

OMe

RO

Coupling

CO2MeH

H

+

Use of steric bulk of the brigehead Nitrogen to govern oxygen addition

Hoffmann-La Roche Total Synthesis

BzN

1970: Milan Uskokovic and his group at the Hoffmann-La Roche Pharmaceutical Company developed an improved route.

CO2MeH

H

NBz

O

H

NaN3, PPA, 120 °C, 30 min

63%

NBz

NH

O

H

H2, Rh/Al2O3

98%

NBz

NH

O

H

H

N2O4

100%

NBz

N

O

H

H

N

O

neat125 °C, 1h

NBz

O

O

H

H

N

N

—N2

Schmidt

Hydrogenation set by existingstereocenter

98%

CH2N2

Hoffmann-La Roche Total SynthesisSchmidt Rearrangement

R R

O HN3, H+

R NH

O

R+ N2

R1 R

OH

H+

R1 R

O HN3

R1 R

H2ON

NN

R1

RN

NNR N R1

OH2

HO

N

R

R1

O

HN

R

R1

Hoffmann-La Roche Total Synthesis

N

N

OMe

H

OH

N

N

OMe

N

MeO

Me

BzN

CO2MeH

H

+O

Bz

LDA, THF

78%

1. DIBAL-H—78 °C

2. AcOHBF3OEt2

50 °C, 18 h

82%

HN

N

OMe

AcO

Cat. AcOHNaOAcC6H6, !, 14 h

HN

N

OMe

H

N

N

OMe

Deoxyquinine

t-BuOK, O2

DMSO/t-BuOH4:1

N

N

OMe

O O

N

N

OMe

SET

O O

N

N

OMe

HO O

72%32% of (-)-1

C8 Center not Set

Hoffman-La Roche Total Synthesis

N

N

OMe

H

OH

N

N

OMe

COPh

1970: Uskokovic amino epoxide ring closing approach

ONBS N

N

OMe

COPh

O

Br

NaBH4

HN

N

OMe

O

40%

Mixture of 4 epoxides

Toluene, EtOH

Reflux

Quinine: 13%Quinidine: 24%epi-Quinie: 18%epi-Quinidine: 18%

Gates Partial Synthesis

N

N

OMe

H

OH

N

N

OMe

N

MeO

CHO

AcN

H

H

+

Ac

N

N

OMe

Deoxyquinine

t-BuOK, O2

DMSO/t-BuOH4:1

SET

1970: Gates uses Wittig and Uskokovic Hydroxylation

PPh3

Acid or Base

Deprotectionfollowed by

conjugate addition26%

Wittig

BzN

CO2MeH

H

Taylor Partial Synthesis

N

N

OMe

H

OH

N

N

OMe

N

MeO

CHO

AcN

H

H

+

Ac

N

N

OMe

Deoxyquinine

t-BuOK, O2

DMSO/t-BuOH4:1

SET

1972: Taylor uses Wittig and Uskokovic Hydroxylation

PPh3

Acid or Base

Deprotectionfollowed by

conjugate addition26%

N

MeO

Cl

+BzN

H

H

OH

H2C=PPh3

N

MeO

HC PPh3

+

Wittig

Wittig

BzN

CO2MeH

H

Remember: C8 Center is not set withthese conditions

Stork's Retrosynthetic Analysis of Quinine

N

N

OMe

H

OH

Hoffmann-La RocheOxygenation N

N

OMe

NH

N

OMe

OR

N

OMe

HN

H

OR

N

OMe

NOR

N

N

OMe

OR

N3

N

OMe

OR

N3

N

OMe

OR

HOMe

N

OMe

O

N3

RO

+

Nucleophilic Addition

Reduction and imine formation

Selective HydrideDelivery

Avoids previous C8-N disconnection

Synthesis of Starting Azido Aldehyde

O

N3

RO

OO

1. Et2NH, AlMe3

DCM, 0 °C

2. TBSCl, imid, DMF79%

Et2N

O

OTBS

LDA, —78 °CTHF; then

IOTBDPS

Et2N

O

OTBS

OTBDPS

cat. PPTSEtOH, 25 °C, 12 h

then xylenes!, 12h

OO

TBDPSO

MeO

OH

TBDPSO

1. DIBAL-H, THF —78 °C, 5 h

2. THF, 0 °CPh3P OMe

75%

1. Ph3P, DEAD (PhO)2P(O)N3

2. 5 N HCl, THF/ DCM (1:4)

74%

93%

Stork's Total Synthesis of Quinine

Stork's Total Synthesis of Quinine

O

N3

RO

Me

N

OMe

LDA, THF

—78 °C

N

OMe

+THF

—78 °C70%

N3

N

OMe

OTBDPS

HO

DMSO(COCl)2Et3N

85%

N3

N

OMe

OTBDPS

OPh3P, THF, !

81%

N

N

OMe

OTBDPS

NH

N

OMe

OTBDPS

H NaBH4

MeOH/THF

91%

1. HF, MeCN2. MsCl, py, DCM

NH

N

OMe

OMs

HMeCN, !, 3 h

65%

N

N

OMe

deoxyquinine

N

N

OMe

H

OH

(—)-quinine

NaH, DMSO70 °C, 1 h

O2, 45 min

78% 14:1 ds

Jacobsen's Retrosynthetic Analysis of Quinine

N

N

OMe

OH

X

N

OMe

Suzuki Cross CouplingEnantioselective

Conjugate Addition

Intramolecular SN2

PN

N

OMe

H

H

NPMe

+NH

O

COPh

CN

CO2Me

PO

Raheem, I.; Goodman, S.; Jacobsen, E. J. Am. Chem. Soc. 2004, 126, 706-707.

OMe

NH2

O

O Me

1. MeOH, RT, 12 h

63%

NH

O

MeO

2. Dowtherm A, 250 °C 30 min

Ph3PBr2

MeCNMicrowave

170 °C, 15 min

86%

N

Br

MeO

Jacobsen's Total Synthesis of Quinine

PEtO

O

OEtNH

O

Ph

O

TBSO H

O

+n-BuLi, THF

—78 to 0 °C>50:1 E/Z

84%TBSO

O

NH

Ph

O

N

N

tBu

tBu

tBu

tBu

O

O

Al O

2

(salen)Al complex

methyl cyanoacetate5 mol% (salen)Al complext-BuOH, C6H12, RT

91%92% ee

TBSO

O

NH

Ph

O

CO2Me

CN

Raney Ni, H2

tol/MeOH (3:1)650psi, 80 °C, 12 h

89%

NH

O

CO2MeTBSO

cis=1:1.7

cis=3:1

1. LDA THF —78 °C

2. H2O/THF—78 °C

N

TBSO

CBz

1. LAH, THF2. CBzO, TEA, DCM3. TPAP, NMO, DCM4. KOtBu, THF, 0 °C

37% Overall

100% cis

Me P

Ph

Ph

Ph

Br

NCBz

BO O

1. TBAF, THF2. TPAP, NMO, DCM

3. CrCl2, LiI, THF

>20:1 E/Z

68% Overall

Jacobsen's Total Synthesis of Quinine

NCBz

BO O

N

OMe

+

NCBz

N

Br

MeOPCy2

OMeMeO

Pd(OAc)2, 2.5 mol% Ligand

K3PO4·H2O

THF, 16h, RT>20:1 E/Z, 89%

N

OMe

NCBz

O

ADmix-! CH3SO2NH2

tBuOH, H2O, 0 °C, >96:4 dr

Me C

OMe

OMe

OMe

2. Acetyl Bromide, DCM3. K2CO3, MeOH

1. PPTS(cat), DCM

N

OMe

NCBz

HOOH

Et2AlClThioanisole0 °C to RT

then Microwave, 200 °C, 20min

N

N

OMe

OH

68%

Standard Suzuki conditions unsuccessful:used Buchwald protocol

Kobayashi's Retrosynthetic Analysis of Quinine

N

N

OMe

OH

N

OMe

Intramolecular SN2

PN

N

OMe

NBz

O+

O

H

AcO

OH

POEt

O

OEt

Igarashi, J; Katsukawa, M.; Wang, Y.; Acharya, H.; Kobayashi, Y. Tet. Let. 2004, 45, 3783-3786.

MeO

NH

N

MeO

N

MeO

MeO

MeO

HO

N

MeO

X

1. H2SO4

2. POCl3

3. Zn, AcOH

72%

1. m-CPBA2. Ac2O

3. K2CO3

43%

SOCl2

X=Cl

X=P(=O)(OEt)2

H-P(=O)(OEt)2

Kobayashi's Total Synthesis of Quinine

AcO

OH

1. CH2(CO2Me)2

t-BuOK, Pd(PPh3)4

2. KI, DMF, 125 °C

70% OH

CO2Me

1. LAH

2. TBDPSCl

OH

OTBDPS

63%

1. Hg(OAc)2, 190 °C

OEt

2. NaBH4

3. t-BuCOCl, Et3N

OTBDPS

OPiv

66%

X

OPivTBDPSO

X

O3

n-PrOH—78 °Cthen, NaBH4

X = OHX = I

I2, PPh3

Imidazole

81%

88%

BnNH2

Dioxane98%

OPivTBDPSO

NR

R = BnR = CO2Et

ClCO2Et, tol

99%

1. NaOEt, EtOH

2. o-(NO2)C6H4SeCN PBu3, THF then 35% H2O2

77%

TBDPSO

NRR = CO2EtR = Bz

1. MeLi, 0 °C2. BzCl

61%

CHO

NBz

1. TBAF2. PCC

80%

+

N

OMe

POEt

O

OEt

PN

N

OMe

NaH, THF

82%

Grieco Procedure

Se CN

NO2

Bu P

Bu

Bu

Se

NO2

PBu3

OH

Se

NO2

O PBu3

Se

NO2

H2O2

Se

NO2

R

R

R

RO

H

RSe

NO2

HO

+

Grieco, Gilman, Nishizawa JOC, 1979, 41, 1485.

Kobayashi's Total Synthesis of Quinine

N

N

OMe

N

N

OMe

HO

OH

AD-mix-!

0 °C to RT

MeC(OMe)3

PPTS

DCM, TMSClK2CO3, MeOH

N

N

OMe

O

96%

BzBz

Bz

R = BzR = H

DIBAL-H, tol

N

N

OMe

OH

DMF, 160 °C

66%

N

N

OMe

HOH

Comparison of Syntheses

1944: Woodward/Doering:Condensation

1970: Hoffman-La Roche: Coupling

1970/1972: Gates and Taylor: Wittig

2001: Stork: Nucleophilic Addition

2004: Jacobsen: Suzuki Cross Coupling

2004: Kobayashi: Horner-Wadsworth-Emmons

N

N

OMe

HOH

1918: Rabe (Woodward/Doering): Substitution1970: Hoffmann-La Roche: Conjugate Addition and Epoxide Opening

2001: Stork: Substitution

2004: Jacobsen and Kobayashi: Intramolecular SN2

Stereocontrolled Total Synthesis

Stork:

Jacobsen:

Kobayashi:

13

16

17

Longest Linear Steps Overall Yield

15%

5%

3.9%