27
The Pohozaev identity for the fractional Laplacian Xavier Ros-Oton Departament Matem` atica Aplicada I, Universitat Polit` ecnica de Catalunya (joint work with Joaquim Serra) Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 1 / 18

The Pohozaev identity for the fractional Laplacian...Xavier Ros-Oton Departament Matem atica Aplicada I, Universitat Polit ecnica de Catalunya (joint work with Joaquim Serra) Xavier

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • The Pohozaev identity for the fractional Laplacian

    Xavier Ros-Oton

    Departament Matemàtica Aplicada I, Universitat Politècnica de Catalunya

    (joint work with Joaquim Serra)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 1 / 18

  • Outline of the talk

    The classical Pohozaev identity; applications

    The Dirichlet semilinear problem for the fractional Laplacian

    The Pohozaev identity for the fractional Laplacian

    Applications

    Sketch of the proof

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 2 / 18

  • The classical Pohozaev identity

    Ω bounded Lipschitz domain, −∆u = f (u) in Ωu = 0 on ∂Ω, (1)Theorem (Pohozaev)

    (2− n)∫

    u f (u)dx + 2n

    ∫Ω

    F (u)dx =

    ∫∂Ω

    |∇u|2(x · ν)dσ

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 3 / 18

  • Applications of the classical Pohozaev identity

    (2− n)∫

    u f (u)dx + 2n

    ∫Ω

    F (u)dx =

    ∫∂Ω

    |∇u|2(x · ν)dσ

    Nonexistence of solutions: critical exponent −∆u = u n+2n−2

    Ground states in Rn: monotonicity formulas, estimates

    Radial symmetry: proof of P.-L. Lions combining the Pohozaev identity with

    the isoperimetric inequality

    Stable solutions: uniqueness, H1 interior regularity

    etc.

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 4 / 18

  • Proof of the classical Pohozaev identity

    First note that

    ∆(x · ∇u) = 2∆u + x · ∇(∆u).

    Then, integrating by parts twice and using that u ≡ 0 on ∂Ω, we obtain∫Ω

    (x · ∇u)∆u = 2∫

    u∆u +

    ∫Ω

    u x · ∇(∆u) +∫∂Ω

    (x · ∇u)(∇u · ν)dσ

    = (2− n)∫

    u∆u −∫

    (x · ∇u)∆u +∫∂Ω

    |∇u|2(x · ν)dσ

    We have used that ∇u · ν = |∇u| on ∂Ω. Finally, since −∆u = f (u), then

    2

    ∫Ω

    (x · ∇u)∆u = −2∫

    x · ∇F (u) = 2n∫

    F (u),

    and the identity follows.

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 5 / 18

  • The Dirichlet semilinear problem with (−∆)s

    Ω bounded C 1,1 domain, δ(x) := dist (x , ∂Ω), f ∈ C 1 (−∆)su = f (u) in Ωu = 0 in Rn\Ω,Theorem (X.R., J. Serra)

    (i) u ∈ C s(Rn)

    (ii) u/δs ∈ Cα(Ω)

    (iii) [u]Cβ(Bρ/2) ≤ Cρs−β

    (iv)[u/δs

    ]Cβ(Bρ/2)

    ≤ Cρα−β

    Bρ/2

    u ≡ 0

    (−∆)su = g

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 6 / 18

  • The Pohozaev identity for the fractional Laplacian

    Ω bounded C 1,1 domain, (−∆)su = f (u) in Ωu = 0 in Rn \ Ω,Theorem (X. R., J. Serra)

    Denote δ(x) := dist (x , ∂Ω). Then u/δs ∈ Cα(Ω) and

    (2s − n)∫

    uf (u)dx + 2n

    ∫Ω

    F (u)dx = Γ(1 + s)2∫∂Ω

    ( uδs

    )2(x · ν)dσ,

    where Γ is the gamma function.

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 7 / 18

  • Corollary: nonexistence results

    Ω bounded C 1,1 domain, (−∆)su = f (u) in Ωu = 0 in Rn \ Ω,Corollary

    Assume that Ω is star-shaped and F (t) < n−2s2n t f (t) for all t. Then the problem

    admits no nontrivial solution.

    For example, for f (u) = up we obtain nonexistence for p ≥ n+2sn−2s .For positive solutions, this was done by [Fall-Weth,’12] with moving planes.

    Existence for subcritical p by [Servadei-Valdinoci,’12].

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 8 / 18

  • Pohozaev identity with (−∆)s

    Proposition (X. R., J. Serra)

    Assume

    1 Ω bounded C 1,1 domain

    2 u ∈ C s(Rn), u ≡ 0 outside Ω, u/δs ∈ Cα(Ω)3 Interior Cβ estimates for u and u/δs , β < 1 + 2s

    4 (−∆)su is bounded in Ω

    Then∫Ω

    (x · ∇u)(−∆)su = 2s − n2

    ∫Ω

    u(−∆)su − Γ(1 + s)2

    2

    ∫∂Ω

    ( uδs

    )2(x · ν)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 9 / 18

  • Main consequences

    Changing the origin in our identity, we deduce the following

    Theorem (X. R., J. Serra)

    Under the same hypotheses of the Proposition,∫Ω

    (−∆)su vxi = −∫

    uxi (−∆)sv + Γ(1 + s)2∫∂Ω

    u

    δsv

    δsνi

    It has a local boundary term!

    Note the contrast with the nonlocal flux in the formula for∫

    Ωf (x , u)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 10 / 18

  • Sketch of the Proof (Star-shaped domains)

    1 uλ(x) = u(λx) ⇒∫Ω

    (x · ∇u)(−∆)su = ddλ

    ∣∣∣∣λ=1+

    ∫Ω

    uλ(−∆)su

    2 Ω star-shaped ⇒ uλ vanishes outside Ω for λ > 1 ⇒∫Ω

    uλ(−∆)su =∫Rn

    (−∆) s2 uλ(−∆)s2 u

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 11 / 18

  • ∫Rn

    (−∆) s2 uλ(−∆)s2 u = λs

    ∫Rn

    ((−∆) s2 u

    )(λx)(−∆) s2 u(x) dx

    = λs∫Rn

    w(λx)w(x) dx

    = λ2s−n

    2

    ∫Rn

    w(λ12 y)w(λ−

    12 y) dy

    where w = (−∆) s2 u . Therefore,

    ∫Ω

    (x · ∇u)(−∆)su = 2s − n2

    ∫Rn

    w2 +1

    2

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ

    where wλ(x) = w(λx).

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 12 / 18

  • ∫Rn

    (−∆) s2 uλ(−∆)s2 u = λs

    ∫Rn

    ((−∆) s2 u

    )(λx)(−∆) s2 u(x) dx

    = λs∫Rn

    w(λx)w(x) dx

    = λ2s−n

    2

    ∫Rn

    w(λ12 y)w(λ−

    12 y) dy

    where w = (−∆) s2 u . Therefore,

    ∫Ω

    (x · ∇u)(−∆)su = 2s − n2

    ∫Ω

    u(−∆)su + 12

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ

    where wλ(x) = w(λx).

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 12 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    I(ϕ) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rnϕ(λx)ϕ(x/λ) dx

    Important properties:

    1 I(ϕ) ≥ 0 since∫Rnϕ(λx)ϕ(x/λ)dx ≤

    (∫Rnϕ2(λx)dx

    ) 12(∫

    Rnϕ2(x/λ)dx

    ) 12

    =

    ∫Rnϕ2

    2 ψ smooth ⇒ I(ψ) = 03 If I(ψ) = 0 ⇒ I(ϕ+ ψ) = I(ϕ)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 13 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    I(ϕ) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rnϕ(λx)ϕ(x/λ) dx

    Important properties:

    1 I(ϕ) ≥ 0 since∫Rnϕ(λx)ϕ(x/λ)dx ≤

    (∫Rnϕ2(λx)dx

    ) 12(∫

    Rnϕ2(x/λ)dx

    ) 12

    =

    ∫Rnϕ2

    2 ψ smooth ⇒ I(ψ) = 03 If I(ψ) = 0 ⇒ I(ϕ+ ψ) = I(ϕ)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 13 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    I(ϕ) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rnϕ(λx)ϕ(x/λ) dx

    Important properties:

    1 I(ϕ) ≥ 0 since∫Rnϕ(λx)ϕ(x/λ)dx ≤

    (∫Rnϕ2(λx)dx

    ) 12(∫

    Rnϕ2(x/λ)dx

    ) 12

    =

    ∫Rnϕ2

    2 ψ smooth ⇒ I(ψ) = 03 If I(ψ) = 0 ⇒ I(ϕ+ ψ) = I(ϕ)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 13 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    I(ϕ) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rnϕ(λx)ϕ(x/λ) dx

    Important properties:

    1 I(ϕ) ≥ 0 since∫Rnϕ(λx)ϕ(x/λ)dx ≤

    (∫Rnϕ2(λx)dx

    ) 12(∫

    Rnϕ2(x/λ)dx

    ) 12

    =

    ∫Rnϕ2

    2 ψ smooth ⇒ I(ψ) = 03 If I(ψ) = 0 ⇒ I(ϕ+ ψ) = I(ϕ)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 13 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    We want to compute:

    I(w) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ

    Reduce to a 1− D calculationUse “star-shaped” (t, z)-coordinates

    x = tz , z ∈ ∂Ω, t > 0

    0Ω

    zz̃

    (2/3, z)

    (1/3, z)

    (1/2, z̃)

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ =d

    ∣∣∣∣λ=1+

    ∫∂Ω

    (z · ν)dσ(z)∫ ∞

    0

    tn−1w(λtz)w( tzλ

    )dt

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 14 / 18

  • What about ddλ∣∣λ=1+

    ∫Rn wλw1/λ?

    We want to compute:

    I(w) = − ddλ

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ

    Reduce to a 1− D calculationUse “star-shaped” (t, z)-coordinates

    x = tz , z ∈ ∂Ω, t > 0

    0Ω

    zz̃

    (2/3, z)

    (1/3, z)

    (1/2, z̃)

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ =

    ∫∂Ω

    (z · ν)dσ(z) ddλ

    ∣∣∣∣λ=1+

    ∫ ∞0

    tn−1w(λtz)w( tzλ

    )dt

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 14 / 18

  • What do we know about w = (−∆)s/2u?

    Proposition (X. R., J. Serra)

    Fix z ∈ ∂Ω. Then,

    w(tz) = (−∆)s/2u(tz) = c1{

    log− |t − 1|+ c2χ(0,1)(t)} uδs

    (z) + h(t)

    whered

    ∣∣∣∣λ=1+

    ∫ ∞0

    tn−1h(λt)h( tλ

    )dt = 0

    c1 =Γ(1 + s) sin

    (πs2

    , and c2 =π

    tan(πs2

    )

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 15 / 18

  • Summarising...

    w(tz) = c1{

    log− |t − 1|+ c2χ(0,1)(t)} uδs

    (z) + h(t)

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ =

    ∫∂Ω

    (z · ν)dσ(z) ddλ

    ∣∣∣∣λ=1+

    ∫ ∞0

    tn−1w(λtz)w( tzλ

    )dt

    =

    ∫∂Ω

    (z · ν)dσ(z) ddλ

    ∣∣∣∣λ=1+

    ( uδs

    (z))2 ∫ ∞

    0

    tn−1φs(λt)φs( tλ

    )dt

    =

    ∫∂Ω

    (z · ν)dσ(z)( uδs

    (z))2

    C (s)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 16 / 18

  • Summarising...

    w(tz) = φs(t)u

    δs(z) + h(t)

    where φs(t) = c1{

    log− |t − 1|+ c2χ(0,1)(t)}

    d

    ∣∣∣∣λ=1+

    ∫Rn

    wλw1/λ =

    ∫∂Ω

    (z · ν)dσ(z) ddλ

    ∣∣∣∣λ=1+

    ∫ ∞0

    tn−1w(λtz)w( tzλ

    )dt

    =

    ∫∂Ω

    (z · ν)dσ(z) ddλ

    ∣∣∣∣λ=1+

    ( uδs

    (z))2 ∫ ∞

    0

    tn−1φs(λt)φs( tλ

    )dt

    =

    ∫∂Ω

    (z · ν)dσ(z)( uδs

    (z))2

    C (s)

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 16 / 18

  • And if the domain is not star-shaped...

    Key observations:

    1 Pohozaev identity is quadratic in u and it “comes from a bilinear identity”∫Ω

    (x · ∇u)(−∆)su = 2s−n2∫

    Ωu(−∆)su − Γ(1+s)

    2

    2

    ∫∂Ω

    (uδs

    )2(x · ν)

    ∫Ω

    (x · ∇u)(−∆)sv +∫

    Ω(x · ∇v)(−∆)su =

    2s−n2

    ∫Ωu(−∆)sv + 2s−n2

    ∫Ωv(−∆)su − Γ(1 + s)2

    ∫∂Ω

    uδs

    vδs (x · ν)

    2 every C 1,1 domain is locally star-shaped

    3 the bilinear identity holds easily when u and v have disjoint support

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 17 / 18

  • And if the domain is not star-shaped...

    Key observations:

    1 Pohozaev identity is quadratic in u and it “comes from a bilinear identity”∫Ω

    (x · ∇u)(−∆)su = 2s−n2∫

    Ωu(−∆)su − Γ(1+s)

    2

    2

    ∫∂Ω

    (uδs

    )2(x · ν)

    ∫Ω

    (x · ∇u)(−∆)sv +∫

    Ω(x · ∇v)(−∆)su =

    2s−n2

    ∫Ωu(−∆)sv + 2s−n2

    ∫Ωv(−∆)su − Γ(1 + s)2

    ∫∂Ω

    uδs

    vδs (x · ν)

    2 every C 1,1 domain is locally star-shaped

    3 the bilinear identity holds easily when u and v have disjoint support

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 17 / 18

  • And if the domain is not star-shaped...

    Key observations:

    1 Pohozaev identity is quadratic in u and it “comes from a bilinear identity”∫Ω

    (x · ∇u)(−∆)su = 2s−n2∫

    Ωu(−∆)su − Γ(1+s)

    2

    2

    ∫∂Ω

    (uδs

    )2(x · ν)

    ∫Ω

    (x · ∇u)(−∆)sv +∫

    Ω(x · ∇v)(−∆)su =

    2s−n2

    ∫Ωu(−∆)sv + 2s−n2

    ∫Ωv(−∆)su − Γ(1 + s)2

    ∫∂Ω

    uδs

    vδs (x · ν)

    2 every C 1,1 domain is locally star-shaped

    3 the bilinear identity holds easily when u and v have disjoint support

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 17 / 18

  • And if the domain is not star-shaped...

    Key observations:

    1 Pohozaev identity is quadratic in u and it “comes from a bilinear identity”∫Ω

    (x · ∇u)(−∆)su = 2s−n2∫

    Ωu(−∆)su − Γ(1+s)

    2

    2

    ∫∂Ω

    (uδs

    )2(x · ν)

    ∫Ω

    (x · ∇u)(−∆)sv +∫

    Ω(x · ∇v)(−∆)su =

    2s−n2

    ∫Ωu(−∆)sv + 2s−n2

    ∫Ωv(−∆)su − Γ(1 + s)2

    ∫∂Ω

    uδs

    vδs (x · ν)

    2 every C 1,1 domain is locally star-shaped

    3 the bilinear identity holds easily when u and v have disjoint support

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 17 / 18

  • The end

    Thank you!

    Xavier Ros-Oton (UPC) The Pohozaev identity for the fractional Laplacian BCAM, Bilbao, February 2013 18 / 18