22
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006

The Persistent Spin Helix

Embed Size (px)

DESCRIPTION

The Persistent Spin Helix. Shou-Cheng Zhang , Stanford University. Banff, Aug 2006. Credits. Collaborators: B. Andrei Bernevig (Stanford) Joe Orenstein (Lawrence Berkeley Lab) Chris Weber (Lawrence Berkeley Lab). Outline. Mechanisms of spin relaxation in solids - PowerPoint PPT Presentation

Citation preview

Page 1: The Persistent Spin Helix

The Persistent Spin Helix

Shou-Cheng Zhang, Stanford University

Banff, Aug 2006

Page 2: The Persistent Spin Helix

Credits

Collaborators:

• B. Andrei Bernevig (Stanford)

• Joe Orenstein (Lawrence Berkeley Lab)

• Chris Weber (Lawrence Berkeley Lab)

Page 3: The Persistent Spin Helix

Outline

• Mechanisms of spin relaxation in solids

• Exact SU(2) symmetry of spin-orbit coupling models

• The Persistent Spin Helix (PSH)

• Boltzmann equations

• Optical spin grating experiments

Page 4: The Persistent Spin Helix

Spin Relaxation in Solids• Without SO coupling, particle diffusion is the only mechanism to relax the spin.

21 Dq

Page 5: The Persistent Spin Helix

Spin Relaxation in Solids

• With SO coupling, the dominant mechanism is the DP relaxation.

The spin-orbit field

: p

: Momentum relaxation time

zS

S

2

2 2,t t

t

The 2D random walk problem:

211 cos

2zS tS

1z

S

dSS

dt 21

S

The effective reduction of Sz:

Page 6: The Persistent Spin Helix

The Rashba+Dresselhaus Model

2

2 y x x y x x y y

kH k k k k

m

The Rashba spin-orbit coupling.Can be experimentally tuned via proper gating.

The Dresselhauss spin-orbit coupling.

Increase Dresselhauss

Page 7: The Persistent Spin Helix

The Rashba+Dresselhaus Model

The Dresselhaus [110] Model

For α=β 2

2 x y x y

kH k k

m

1

2x yk k k

Coordinate change 11

2 2x y

iU

Global spinrotation

2 2

ReD 22 z

k kH U HU k

m

2 2

110 22x y

x z

k kH k

m

Symmetric Quantum wells grown along the [110] direction:

Page 8: The Persistent Spin Helix

Fermi Surface and the Shifting Property

k k Q

• The shifting property:

For the

ReDH model

4 , 0Q m Q

For the

110H model

4 , 0x yQ m Q

ReDH

110H

Page 9: The Persistent Spin Helix

The Exact SU(2) Symmetry

0, , zQ Qk k Q k Q k k k k kk k kS c c S c c S c c c c

0 0, 2 , ,z zQ Q Q QS S S S S S

ReD , 0k Q k k Q k

H c c k Q k c c

An exact SU(2) symmetry

Only Sz, zero wavevector U(1) symmetry previously known:

J. Schliemann, J. C. Egues, and D. Loss, Phys. Rev. Lett. 90, 146801 (2003).

K. C. Hall et. al., Appl. Phys. Lett 83, 2937 (2003).

• Finite wavevector spin components

• Shifting property essential

Page 10: The Persistent Spin Helix

The Exact SU(2) Symmetry

• The SU(2) symmetry is robust against spin-independent disorder and Coulomb (or other many-body) interactions.

q k q kkc c

0, , 0z

q Q qS S

0

0

, , 0,

, , 0

zq q Q q qq q

zq q q Q q q qq q

V S V S

V S V S

• A spin helix with wave vector has infinite life time,x yS S Q

Persistent Spin Helix

Page 11: The Persistent Spin Helix

Physical Picture: Persistent Spin Helix

• Spin configurations do not depend on the particle initial momenta.

• For the same distance traveled, the spin precesses by exactly the same angle.

• After a length the spins all return exactly to the original configuration.

x

2L Q

Page 12: The Persistent Spin Helix

(a) PSH for the model. The spin-orbit magnetic field is in-plane (blue), where as the spin helix is in the plane. (b) PSH for the model. The spin-orbit magnetic field , in blue, is out of plane, whereas the spin helix, in red, is in-plane.

ReDH

[110]H ,x zspinorbitB

PSH for the Model and the Model

ReDH 110H

Page 13: The Persistent Spin Helix

The Non-Abelian Gauge Transformation

ReDH in the form of a background non-abelian gauge potential

22

ReD

12 .

2 2 z

kH k m const

m m

• Field strength vanishes; eliminate the vector potential by non-abelian gauge transf

, exp 2 , , , exp 2 ,x x i m x x x x x i m x x x

exp 4S x x x i m x S x

exp 4S x x x i m x S x

•Mathematically, the PSH is a direct manifestation of a non-abelian flux in the ground state of the models.

P. Q. Jin, Y. Q. Li, and F. C. Zhang, J. Phys. A 39, 7115 (2006)

2

Re 2D

kH H

m

0

Page 14: The Persistent Spin Helix

The Boltzmann Transport Equations

21 2t i x x x xn D n B S B S

21 2 2t x i x x x z xS D S B n C S T S

22 1 1t x i x x x z xS D S B n C S T S

22 1 1 2t z i z x x x x zS D S C S C S T T S

2 2 21

2 2 22

2 ,

2

F

F

B k

B k

21

22

2 / ,

2 /

F

F

C k m

C k m

2 21

2 22

2 ,

2

F

F

T k

T k

For arbitrary α,β spin-charge transport equation is obtained for diffusive regime

For propagation on [110], the equations decouple two by two

For Dresselhauss = 0, the equations reduce to Burkov, Nunez and MacDonald, PRB 70, 155308 (2004);

Mishchenko, Shytov, Halperin, PRL 93, 226602 (2004)

Page 15: The Persistent Spin Helix

.xS const

The Boltzmann Transport Equations

For α=β :

Gauge transformation

, cos 4 ,sin 4x yS S m x m x

2

2

kH

m (Free Fermi

gas)

Simple diffusion equation

2t i i iS D S

cos sin

sin cosx x

yy

S Sqx qx

Sqx qxS

2

2 x y x y

kH k k

m

x yS x S iS x x

x yS x S iS x x

2 2 2

2 2 2

2

2

t x x y x x y x

t y x y y x x y

S D S qD S Dq S

S D S qD S Dq S

Page 16: The Persistent Spin Helix

Propagation on [1ῑ0] Propagation on [110]

Along special directions the four equations decoupled to two by two blocks

, 0x xq q q

,x z xn S S S

2 2 2 21,2 2 1 1 2

12 4

2i Dq T T T q C

At α=β 2 21 1 2,i Dq T i Dq

, 0x xq q q

,x zn S S S

2 2 2 21,2 1 2 2 1

12 4

2i Dq T T T q C

At α=β 21,2 1 1i Dq T C q

The behavior of Sz is diffusive and exponentially decaying; this is the passive direction

An infinite spin life-time of the Persistent Spin Helix; this is the active direction

2 4 0i q m Q At the shifting wave-vector Q

The Boltzmann Transport Equations

21

22

2 / ,

2 /

F

F

C k m

C k m

2 21

2 22

2 ,

2

F

F

T k

T k

Page 17: The Persistent Spin Helix

The Optical Spin Grating Experiment

Interference of two orthogonally polarized beams

An optical helicity wave generates an electron spin polarization wave

The pump-probe technique:•The spatially modulation of spin or charge is first introduced by the ‘pump’ laser pulse.•The time evolution of the modulation is measured by the diffraction of a probe beam.•Spin transport and relaxation properties are probed.

C. P. Weber et. al., Nature 437, 1330 (2005)

Page 18: The Persistent Spin Helix

The Optical Spin Grating Experiment

Measurements of the decay, at q close to the ‘magic’ shifting vector, at Rashba close, but not equal to Dresselhauss. Black is the active direction, red the passive.

Page 19: The Persistent Spin Helix

The Optical Spin Grating Experiment

Fitting of experimental data to Boltzman transport equations, for Rashba/Dresselhauss ~ 0.2 - 0.3. Even though the Rashba and Dresselhauss are not yet equal, large enhancement of spin-lifetime for the spin helix is observed

Page 20: The Persistent Spin Helix

Generation of the PSH Current

[110] GaAs

FM1 FM2

PSH associated with SU(2) charge – PSH current

FM2 pulse delayed from FM1 pulse

Two consecutive FM1 pulses delayed by

Ev

Page 21: The Persistent Spin Helix

Generation of the PSH Current

Optical detection of oscillating spin at given spatial point. Dresselhauss [110]

ReD GaAs

FM1 FM2

Optical detection

For Rashba equal Dresselhauss:

Decay component:

Page 22: The Persistent Spin Helix

• Minimize spin-decoherence while keeping strong spin-orbit coupling

• Shifted Fermi Surfaces: Fundamental property of some cond-mat systems, similar to nesting

• Exact SU(2) symmetry of systems with Rashba equal to Dresselhauss or Dresselhauss [110]; finite wave-vector generators

• Persistent Spin Helix

• Experimental discovery

Conclusions