28
Journal of Nonlinear Optical Physics & Materials Vol. 23, No. 2 (2014) 1450020 (28 pages) c World Scientific Publishing Company DOI: 10.1142/S0218863514500209 The numerical methods for analyzing the Z-scan data Lam Thanh Nguyen , Nghia Tran Hong, Cam Tu Bui Thi and Anh Quynh Le Department of Applied Physics, School of Physics and Engineering Physics, University of Science, Ho Chi Minh City, Vietnam [email protected], [email protected] Received 16 February 2014 In this paper, we are dedicated to exemplifying a two parameter curve fitting method and developing a Matlab-based simulation program to extract the nonlinear refractive index and nonlinear absorption coefficient from closed-aperture Z-scan or R(z) data without the need for performing open-aperture Z-scan measurement. It should be noted, however, that both approaches can only be applicable to a case for which the on-axis phase shift at the focus is small. In this way, we not only determine the nonlinear parameters quickly with reasonable accuracy, as well as save time, efforts and equipment in the process of Z-scan implementation, but also obtain an initial estimate in order to compare with the results of the open-aperture Z-scan measurement when needed. Keywords : Z-scan technique; beam radius measurement; the numerical methods; two parameter curve fitting method. 1. Introduction Z-scan technique introduced in 1989 by Sheik-Bahae et al. 1 has been widely accepted in the nonlinear optics community due to its simplicity and effective- ness. Since then, there have been many modifications of this technique. Most of these modifications are based on one of the fundamental principles of experimental measurement techniques, increasing signal-to-noise ratio. The beam radius-based Z-scan technique 2 is typical of those modifications. As already reported, as for the transmittance-based Z-scan technique of Sheik-Bahae, the signal is the intensity of the part of laser beam near the optical axis, and the noise is the intensity fluctua- tion of the input beam. Therefore, the signal-to-noise ratio is limited. Meanwhile, as for the beam radius-based Z-scan technique, the signal is the radius of the whole laser beam behind the sample, the noise is the radius fluctuation of the input beam which is usually negligible. Therefore, the signal-to-noise ratio is improved signif- icantly over the transmittance-based Z-scan technique. In this study, we focus on these two types of Z-scan techniques, the transmittance-based Z-scan technique and the beam radius-based Z-scan technique. Their experimental setups are shown in 1450020-1 J. Nonlinear Optic. Phys. Mat. 2014.23. Downloaded from www.worldscientific.com by UNIVERSITY OF NEW ENGLAND LIBRARIES on 10/26/14. For personal use only.

The numerical methods for analyzing the Z-scan data

Embed Size (px)

Citation preview

Page 1: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

Journal of Nonlinear Optical Physics & MaterialsVol. 23, No. 2 (2014) 1450020 (28 pages)c© World Scientific Publishing CompanyDOI: 10.1142/S0218863514500209

The numerical methods for analyzing the Z-scan data

Lam Thanh Nguyen∗, Nghia Tran Hong, Cam Tu Bui Thiand Anh Quynh Le

Department of Applied Physics,School of Physics and Engineering Physics,

University of Science, Ho Chi Minh City, Vietnam∗[email protected], [email protected]

Received 16 February 2014

In this paper, we are dedicated to exemplifying a two parameter curve fitting method anddeveloping a Matlab-based simulation program to extract the nonlinear refractive indexand nonlinear absorption coefficient from closed-aperture Z-scan or R(z) data withoutthe need for performing open-aperture Z-scan measurement. It should be noted, however,that both approaches can only be applicable to a case for which the on-axis phase shiftat the focus is small. In this way, we not only determine the nonlinear parameters quicklywith reasonable accuracy, as well as save time, efforts and equipment in the process ofZ-scan implementation, but also obtain an initial estimate in order to compare with theresults of the open-aperture Z-scan measurement when needed.

Keywords: Z-scan technique; beam radius measurement; the numerical methods; twoparameter curve fitting method.

1. Introduction

Z-scan technique introduced in 1989 by Sheik-Bahae et al.1 has been widelyaccepted in the nonlinear optics community due to its simplicity and effective-ness. Since then, there have been many modifications of this technique. Most ofthese modifications are based on one of the fundamental principles of experimentalmeasurement techniques, increasing signal-to-noise ratio. The beam radius-basedZ-scan technique2 is typical of those modifications. As already reported, as for thetransmittance-based Z-scan technique of Sheik-Bahae, the signal is the intensity ofthe part of laser beam near the optical axis, and the noise is the intensity fluctua-tion of the input beam. Therefore, the signal-to-noise ratio is limited. Meanwhile,as for the beam radius-based Z-scan technique, the signal is the radius of the wholelaser beam behind the sample, the noise is the radius fluctuation of the input beamwhich is usually negligible. Therefore, the signal-to-noise ratio is improved signif-icantly over the transmittance-based Z-scan technique. In this study, we focus onthese two types of Z-scan techniques, the transmittance-based Z-scan technique andthe beam radius-based Z-scan technique. Their experimental setups are shown in

1450020-1

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 2: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Refs. 1 and 2. In these two techniques, it has always been assumed that excitationlaser beam is a focused Gaussian beam, sample thickness is very small compared tothe Rayleigh range of Gaussian beam, the signal is measured in the far field. Theprocedure for determining the nonlinear refractive index and nonlinear absorptioncoefficient of these two techniques was presented in detail in the Refs. 1–3.

Generally speaking, in order to determine the nonlinear refractive index andnonlinear absorption coefficient, we must perform closed-aperture Z-scan (or beamradius measurement) and open-aperture Z-scan measurements. However, we foundthat in the ideal case, that is, |∆Φ0| < 1 the equations of theoretical normalizedpure nonlinear refraction Z-scan TPNR(z) and open-aperture Z-scan transmittancecurves TNA(z) in the case of the popular two photon absorption can be respectivelydetermined as1:

TPNR(z) = 1 −4∆Φ0

z

z0(z2

z20

+ 9) (

z2

z20

+ 1) , (1.1)

TNA(z) = 1 − Q(z2

z20

+ 1) , (1.2)

where, ∆Φ0 = kn2I0Leff , Q = βI0Leff23/2 and k, n2, β, I0, Leff is the wave number, non-

linear refractive index (SI), nonlinear absorption coefficient, the on-axis irradi-ance at focus, the effective propagation length inside the sample respectively;Leff = 1−e−αL

α with L the sample length, α the linear absorption coefficient.From these two equations, the equation of theoretical normalized closed-aperture

Z-scan transmittance curve with two unknown parameters, Q and ∆Φ0, which areclosely related to the nonlinear refractive index and nonlinear absorption coefficient,can be expressed as:

TClose(z) =

1 −

4∆Φ0z

z0(z2

z20

+ 9) (

z2

z20

+ 1)

1 − Q(

z2

z20

+ 1)

. (1.3)

The above results suggest that it is possible to determine the nonlinear param-eters with a single measurement. In this case, we only need to perform closed-aperture Z-scan measurement, then estimate Q and ∆Φ0 by fitting the theoreticalclosed-aperture Z-scan transmittance curve to experimental data. Or, based on twoconstraints: peak and valley of pure nonlinear refraction Z-scan curve must be sym-metrical, i.e., (Tmax − 1) − (1 − Tmin) ≈ 0 and TNA(z = 0) of the open-apertureZ-scan curve can only have a value between 1− 1

23/2 and 1 because βI0Leff < 1,1 wecan also construct a simulation program to extract the nonlinear refractive indexand nonlinear absorption coefficient automatically.

If our lab may have a sufficient set of instruments and data processing sys-tems to perform the closed-aperture Z-scan (or beam radius measurement) and

1450020-2

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 3: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

open-aperture Z-scan measurements simultaneously, the simulation results may playa role as the reference values to evaluate the experimental results. It is evident thatthese simulation results are valid when two conditions are satisfied, ∆Φ0 ≤ 1 andβ/2kn2 ≤ 0.25.4

2. Estimation of Nonlinear Absorption Coefficient and NonlinearRefractive Index by Two Parameter Curve Fitting Method

Here, Mathematica package (version 7.0) is developed to calculate the nonlin-ear absorption coefficient and nonlinear refractive index, as well as plot the pure

Fig. 1. The theoretical normalized pure nonlinear refraction Z-scan TPNR, open-aperture Z-scantransmittance curve TNA and closed-aperture Z-scan curve TClose corresponding to n2 theo =

−7.10−12 mm2

W, βtheo = 6.10−8mm/W, z0 = 14.76mm, I0 = 21.105 W/mm2, Leff = 0.971 mm. Its

corresponding data set DT1 can be found in Appendix A.

Fig. 2. A set of quasi-experimental data points is obtained by random function in Excel fromtheoretical data in Fig. 1. Solid curve is the theoretical curve. Its corresponding data set DT2 canbe found in Appendix A.

1450020-3

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 4: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

nonlinear refraction Z-scan and open-aperture Z-scan transmittance curves. After-wards, we execute it on the so-called quasi-experimental data sets.

Experimental Z-scan data is characterized by deviation from the theoreticalZ-scan curve in a random way. Therefore, instead of performing Z-scan experimentsto obtain such data, we simulate them by first developing theoretical closed-apertureZ-scan transmittance curve, then using the random function in Excel to create datapoints fluctuating around the theoretical curve. Data generated in this way is calledthe quasi-experimental data. The method will be exemplified by calculating thetheoretical values from those quasi-experimental data sets. We also tried runningmatlab code for R(z) data obtained in our experiments on Oil red O dye in ace-tonitrile solvent at 0.05mM concentration.

Fig. 3. Result of running mathematica package on input data set DT2. The fitting is performedby FindFit function in Mathematica.

1450020-4

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 5: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

In this section, we assume that nonlinear refractive index and nonlinear absorp-tion coefficient of the sample are −7.10−12 mm2

W and 6.10−8mm/W, respectively.These are the theoretical values, so we will denote them by n2 theo and βtheo,respectively. And we use pulsed laser with wavelength λ = 532nm, Rayleigh rangez0 = 14.76mm, the on-axis irradiance at focus I0 = 21.105 W/mm2. The effectivepropagation length inside the sample Leff is 0.971mm. Q and ∆Φ0 are 0.043255843,−0.169, respectively. The theoretical normalized pure nonlinear refraction Z-scanand open-aperture Z-scan transmittance curve, closed-aperture Z-scan curve corre-sponding to these parameters are shown in Fig. 1.

Now, assume that during the experiment, we obtained the closed-aperture Z-scan curve as shown in Fig. 2. We will find the nonlinear refractive index andnonlinear absorption coefficient by fitting the theoretical curve (1.3) to experimentaldata with two parameters Q, ∆Φ0 and plot pure nonlinear refraction Z-scan andopen-aperture Z-scan transmittance curves (see Fig. 3).

Assume now that under the same experimental conditions, in the second exper-iment, we obtained a little different data set DT3 (see Fig. 4). Since, for this dataset, the deviation of the quasi-experimental data points with respect to the theo-retical data points is greater than that of the data set DT 2, the deviation of thefitting parameters with respect to the theoretical parameters is greater than thatin data set DT2. Using curve fitting method, we obtained results consistent withthis prediction (Fig. 5).

However, the above method has two drawbacks: First, this method is not intu-itive. That is to say, the internal mechanism for separating the nonlinear refractiveindex from nonlinear absorption is not shown. Second, it is considerably difficult toapply this method to beam radius-based Z-scan because the analytical expressionR(z) in explicit form does not exist. In the next section, we will present a methodto overcome these drawbacks.

Fig. 4. A set of quasi-experimental data points is obtained by random function in Excel fromtheoretical data in Fig. 1. Solid curve is theoretical curve. Its corresponding data set DT3 can befound in Appendix A.

1450020-5

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 6: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Fig. 5. Result of running mathematica package on input data set DT3. The fitting is performedby FindFit function in Mathematica.

3. Estimation of Nonlinear Absorption Coefficient and NonlinearRefractive Index Using Matlab Program (Version 6.5)

Remember that in transmittance-based Z-scan technique, for small distortion andsmall aperture, the nonlinear refractive index can be calculated as1:

n2 =∆Tp−v

0.406.k.I0.Leff. (3.1)

This means that the nonlinear refractive index depends only on the differencebetween the normalized peak and valley transmittance ∆Tp−v in the pure nonlinear

1450020-6

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 7: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

(a) (b)

Fig. 6. Z-coordinates of peak and valley of closed-aperture Z-scan curve plotted by ContourPlot function are not symmetrical about z = 0: (a) ∆Φ0 = +0.25, Q : 0 → 0.1; (b) ∆Φ0 =−0.25, Q : 0 → 0.1.

refraction Z-scan curve. Since, according to mathematical proof, z-coordinates ofpeak and valley in pure nonlinear refraction Z-scan transmittance curve are differ-ent from those of peak and valley in closed-aperture Z-scan transmittance curve(see Fig. 6). In other words, peak and valley in closed-aperture Z-scan transmit-tance curve may not occur exactly at coordinates ±0.858 z0 with respect to foccus,which depends on the specific experimental conditions.

Therefore, these two extremes in pure nonlinear refraction Z-scan transmit-tance curve and the related quantities cannot be calculated by analytical method.A similar argument may be applied to beam radius-based Z-scan. In this context,we developed the Matlab-based algorithm to calculate them through the follow-ing steps:

(i) Ask the user to enter laser beam parameters such as the wavelength, Rayleighrange, the on-axis irradiance at focus; the sample parameters such as, theeffective propagation length inside the sample.

(ii) Ask the user to confirm whether closed-aperture Z-scan data is transmittanceT (z) or beam radius R(z). Data can be entered manually or imported froma text file, such as Excel file.

(iii) If the user enters closed-aperture Z-scan data as T(z), then perform the fol-lowing tasks.

(iv) Let TNA(z = 0) of open-aperture Z-scan transmittance curve run from 1 to1− 1

23/2 , that is, Q run from 0 to 123/2 . For a given TNA(z = 0), calculate the

nonlinear absorption coefficient, construct open-aperture Z-scan transmit-tance curve, divide closed-aperture Z-scan transmittance to open-aperture

1450020-7

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 8: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Z-scan transmittance, find maximum transmittance and minimum transmit-tance in the resulting curve, check their symmetry. Maximum transmittancesand minimum transmittances whose asymmetry is less than the sensitivity ofthe instrument can be selected, for example, 1/100 or 1/1000.

(v) List all pairs of peak-valley which are symmetrical about the z-axis for agiven TNA(z = 0). Choose the pairs of peak-valley which have the nearestcoordinate to ±0.858 z0.

(vi) From peak and valley of the resulting curve, determine the nonlinear refrac-tive index through Eq. (3.1), plot the resulting curve and open-aperture Z-scan transmittance curve in the same coordinate system.

(vii) If the user enters closed-aperture Z-scan data as R(z), at the step 4, a multi-plication is performed rather than division, the nonlinear refractive index isdetermined through Eq. (13) in Ref. 2, where q = 0.135. And the asymmetryin the R(z) curve must be less than Beam Size Accuracy. It is about ±2%for Laser Beam Profiler LBP-1-USB Newport.

(viii) If program cannot find any pairs of symmetrical peak-valley, notify the userthat the sample do not exhibit two photon absorption.

This approach is implemented and validated with two sets of quasi-experimentaldata DT2 and DT3. For experimental data set DT2, we obtain the following results(Fig. 7):

Fig. 7. Result of running Matlab program on input data set DT2. Matlab code can be found inAppendix B.

For experimental data set DT3, we obtain the following results (Fig. 8):

1450020-8

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 9: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Fig. 8. Result of running Matlab program on input data set DT3. Matlab code can be found inAppendix B.

Fig. 9. Result of running Matlab program on input data R(z) of Oil red O solution at concentra-tion of 0.05mM, α of 0.29mm−1 investigated by the low power CW green-laser with ω0 = 26 µm,z0 = 3.9899 mm, I0 = 13.1W/mm2, Leff = 0.868 mm. Beam radius is measured by Laser BeamProfiler LBP-1-USB Newport.

We also run Matlab programs with an input data set of the beam radius-basedZ-scan measurement of Oil red O dye in acetonitrile solvent at 0.05mM concen-tration, whose nonlinear refractive index and nonlinear absorption coefficient weredetermined by Rekha et al.5 by the transmittance-based Z-scan measurements. Herewe have used the 14mW low power CW green-laser so that value of the nonlinearity

1450020-9

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 10: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Table 1. The results of running Matlab program on the quasi-experimental and

experimental data sets.

Run on the quasi-experimental data sets

Data set Simulation result Theoretical value

DT2 β = 6,1032.10−8 mm/W β = 6.10−8 mm/Wn2 = −7,2093.10−12 mm2/W n2 = −7.10−12 mm2/W

DT3 β = 6,1032.10−8 mm/W β = 6.10−8 mm/Wn2 = −8.2551.10−12 mm2/W n2 = −7.10−12 mm2/W

Run on the experimental data set

Simulation result from experiment The experimental result5

DT4 β = 2,31.10−2 mm/W β = 2,48.10−2 mm/Wn2 = −9,75.10−6 mm2/W n2 = −4,31.10−6 mm2/W

∆Φ0 is low. Besides, the nonlinear absorption of Oil red O dye solution is so strongthat the asymmetry of the Z-scan curve is mainly caused by this process, not by themeasurement error. Therefore, we can apply the Matlab program to the experimen-tal Z-scan data sets to obtain nonlinear refractive index and nonlinear absorptioncoefficient (see Fig. 9). The results of running Matlab program on the above quasi-experimental and experimental data sets are summarized in Table 1.

The experimental data points created in DT2 and DT3 do not fluctuate muchover the theoretical data points, therefore, nonlinear refractive index and nonlinearabsorption coefficient obtained from running the program on those data sets donot differ greatly and approach to the theoretical value. The obtained results showthe validity of Matlab program. It follow that the little difference between oursimulation results and measurement results of Rekha et al. maybe result from theexperimental measurements.

4. Conclusion

We present numerical methods for calculating the nonlinear refractive index andnonlinear absorption coefficient of the sample with a single measurement. It is worthnoting that in the beam radius-based Z-scan technique, these nonlinear parameterscannot be calculated by analytical method from R(z) curves. Therefore, a Matlab-based approach is necessary in such a case. This approach allows us to determine therequired nonlinear parameters with the minimum number of instruments, withoutusing the complex recording/processing unit. For instance, in beam radius-basedZ-scan, we simply use the profiler beam without the use of reference detector orcomplex data processor. In some other cases, it helps us to assess the accuracy ofthe open-aperture Z-scan measurements.

Acknowledgment

We wish to thank Prof George Tsigaridas, Department of Physics, University ofPatras, Patras 26500, Greece for his help.

1450020-10

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 11: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A:T

he

corr

espon

din

gdat

ase

tof

Fig

s.1,

2,4

and

9.

DT

1D

T2

DT

3D

T4

zTPN

RTN

ATC

lose

zT

Tz

TT

zR

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−191

1.0

00294

0.9

99743

1.0

00037

−191

0.9

98395704

1.0

00036705

−191

1.0

13565118

1.0

00036705

−60

1.0

07394735

−190

1.0

00298

0.9

99741

1.0

00038

−190

1.0

07030924

1.0

0003849

−190

1.0

22757177

1.0

0003849

−58

1.0

08383926

−189

1.0

00303

0.9

99738

1.0

0004

−189

0.9

91876385

1.0

00040322

−189

1.0

12614217

1.0

00040322

−56

1.0

06391782

−188

1.0

00307

0.9

99735

1.0

00042

−188

1.0

00740026

1.0

00042205

−188

1.0

20186696

1.0

00042205

−54

1.0

08158099

−187

1.0

00312

0.9

99732

1.0

00044

−187

0.9

94579907

1.0

00044138

−187

1.0

18418653

1.0

00044138

−52

1.0

06397369

−186

1.0

00317

0.9

99729

1.0

00046

−186

1.0

05091801

1.0

00046124

−186

1.0

22058446

1.0

00046124

−50

1.0

08844742

−185

1.0

00322

0.9

99726

1.0

00048

−185

0.9

98082674

1.0

00048164

−185

1.0

12850845

1.0

00048164

−48

1.0

11663207

−184

1.0

00327

0.9

99723

1.0

0005

−184

1.0

03160813

1.0

00050259

−184

1.0

27954123

1.0

00050259

−46

1.0

12277492

−183

1.0

00332

0.9

9972

1.0

00052

−183

0.9

93641557

1.0

00052411

−183

1.0

14380382

1.0

00052411

−44

1.0

11876558

−182

1.0

00337

0.9

99717

1.0

00055

−182

1.0

03887792

1.0

00054623

−182

1.0

28402151

1.0

00054623

−42

1.0

1074014

−181

1.0

00343

0.9

99714

1.0

00057

−181

0.9

98669461

1.0

00056895

−181

1.0

18754226

1.0

00056895

−40

1.0

1005965

−180

1.0

00348

0.9

99711

1.0

00059

−180

1.0

09207853

1.0

00059229

−180

1.0

23319713

1.0

00059229

−38

1.0

07755229

−179

1.0

00354

0.9

99708

1.0

00062

−179

0.9

93543697

1.0

00061627

−179

1.0

16607133

1.0

00061627

−36

1.0

07902431

−178

1.0

0036

0.9

99705

1.0

00064

−178

1.0

03256109

1.0

00064092

−178

1.0

27886212

1.0

00064092

−34

1.0

06662513

−177

1.0

00365

0.9

99701

1.0

00067

−177

0.9

90740978

1.0

00066624

−177

1.0

19038921

1.0

00066624

−32

1.0

08219954

−176

1.0

00371

0.9

99698

1.0

00069

−176

1.0

05025059

1.0

00069227

−176

1.0

28041192

1.0

00069227

−30

1.0

05049034

−175

1.0

00378

0.9

99694

1.0

00072

−175

0.9

97593354

1.0

00071902

−175

1.0

14318655

1.0

00071902

−28

1.0

07891076

−174

1.0

00384

0.9

99691

1.0

00075

−174

1.0

06064005

1.0

00074651

−174

1.0

30029635

1.0

00074651

−26

1.0

07154744

−173

1.0

0039

0.9

99687

1.0

00077

−173

0.9

90761071

1.0

00077478

−173

1.0

11132142

1.0

00077478

−24

1.0

05404039

−172

1.0

00397

0.9

99684

1.0

0008

−172

1.0

08823495

1.0

00080383

−172

1.0

25603989

1.0

00080383

−22

0.9

95827539

−171

1.0

00403

0.9

9968

1.0

00083

−171

0.9

97016604

1.0

0008337

−171

1.0

16526877

1.0

0008337

−20

0.9

96546317

−170

1.0

0041

0.9

99676

1.0

00086

−170

1.0

03229365

1.0

0008644

−170

1.0

22717241

1.0

0008644

−18

0.9

86777509

(Continued

)

1450020-11

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 12: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3D

T4

zTPN

RTN

ATC

lose

zT

Tz

TT

zR

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−169

1.0

00417

0.9

99673

1.0

0009

−169

0.9

96007806

1.0

00089597

−169

0.9

95779725

1.0

00089597

−16

0.9

89194082

−168

1.0

00424

0.9

99669

1.0

00093

−168

1.0

07877791

1.0

00092844

−168

1.0

0380012

1.0

00092844

−14

0.9

87239901

−167

1.0

00432

0.9

99665

1.0

00096

−167

0.9

91553195

1.0

00096182

−167

0.9

96281028

1.0

00096182

−12

0.9

79399586

−166

1.0

00439

0.9

99661

1.0

001

−166

1.0

01580344

1.0

00099616

−166

1.0

06553397

1.0

00099616

−10

0.9

80811169

−165

1.0

00447

0.9

99657

1.0

00103

−165

0.9

92144749

1.0

00103147

−165

0.9

96032865

1.0

00103147

−80.9

71877698

−164

1.0

00454

0.9

99652

1.0

00107

−164

1.0

01925851

1.0

00106779

−164

1.0

06851034

1.0

00106779

−60.9

44918803

−163

1.0

00462

0.9

99648

1.0

00111

−163

0.9

90598398

1.0

00110515

−163

0.9

91332376

1.0

00110515

−40.8

96147812

−162

1.0

00471

0.9

99644

1.0

00114

−162

1.0

0983891

1.0

00114359

−162

1.0

06783677

1.0

00114359

−20.9

59966881

−161

1.0

00479

0.9

99639

1.0

00118

−161

0.9

98457155

1.0

00118314

−161

0.9

99837401

1.0

00118314

01.1

05356903

−160

1.0

00488

0.9

99635

1.0

00122

−160

1.0

05322528

1.0

00122383

−160

1.0

09409379

1.0

00122383

21.2

57519925

−159

1.0

00496

0.9

9963

1.0

00127

−159

0.9

93566013

1.0

0012657

−159

0.9

90974542

1.0

0012657

41.1

75630826

−158

1.0

00505

0.9

99626

1.0

00131

−158

1.0

06822283

1.0

00130879

−158

1.0

03901811

1.0

00130879

61.1

23746262

−157

1.0

00514

0.9

99621

1.0

00135

−157

0.9

97102165

1.0

00135314

−157

0.9

97744982

1.0

00135314

81.0

89296169

−156

1.0

00524

0.9

99616

1.0

0014

−156

1.0

06396369

1.0

00139878

−156

1.0

07673951

1.0

00139878

10

1.0

73090518

−155

1.0

00534

0.9

99611

1.0

00145

−155

0.9

94590306

1.0

00144577

−155

0.9

95530328

1.0

00144577

12

1.0

53511008

−154

1.0

00543

0.9

99606

1.0

00149

−154

1.0

04673616

1.0

00149415

−154

1.0

01604397

1.0

00149415

14

1.0

42904418

−153

1.0

00553

0.9

99601

1.0

00154

−153

0.9

91932833

1.0

00154396

−153

0.9

92852067

1.0

00154396

16

1.0

3368255

−152

1.0

00564

0.9

99596

1.0

0016

−152

1.0

03035403

1.0

00159524

−152

1.0

08420434

1.0

00159524

18

1.0

26761033

−151

1.0

00574

0.9

99591

1.0

00165

−151

0.9

98967756

1.0

00164806

−151

0.9

90573592

1.0

00164806

20

1.0

27478541

−150

1.0

00585

0.9

99585

1.0

0017

−150

1.0

02403144

1.0

00170245

−150

1.0

00175335

1.0

00170245

22

1.0

19191691

−149

1.0

00596

0.9

9958

1.0

00176

−149

0.9

96299075

1.0

00175847

−149

0.9

91976789

1.0

00175847

24

1.0

21281164

−148

1.0

00608

0.9

99574

1.0

00182

−148

1.0

08229728

1.0

00181619

−148

1.0

08247068

1.0

00181619

26

1.0

2056127

−147

1.0

0062

0.9

99568

1.0

00188

−147

0.9

90752194

1.0

00187564

−147

0.9

9154299

1.0

00187564

28

1.0

15097948

−146

1.0

00632

0.9

99562

1.0

00194

−146

1.0

03267184

1.0

0019369

−146

1.0

03628798

1.0

0019369

30

1.0

19879699

−145

1.0

00644

0.9

99556

1.0

002

−145

0.9

99806335

1.0

00200003

−145

0.9

99330761

1.0

00200003

32

1.0

19327528

−144

1.0

00657

0.9

9955

1.0

00207

−144

1.0

03476433

1.0

00206509

−144

1.0

08045508

1.0

00206509

34

1.0

14911355

−143

1.0

00669

0.9

99544

1.0

00213

−143

0.9

92419284

1.0

00213214

−143

0.9

97491755

1.0

00213214

36

1.0

14120742

−142

1.0

00683

0.9

99538

1.0

0022

−142

1.0

06729384

1.0

00220125

−142

1.0

03552551

1.0

00220125

38

1.0

17005711

1450020-12

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 13: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zT

PN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−141

1.0

00696

0.9

99531

1.0

00227

−141

0.9

93134572

1.0

0022725

−141

0.9

9456705

1.0

0022725

−140

1.0

0071

0.9

99524

1.0

00235

−140

1.0

07844155

1.0

00234597

−140

1.0

02277391

1.0

00234597

−139

1.0

00725

0.9

99518

1.0

00242

−139

0.9

97682107

1.0

00242172

−139

0.9

98435245

1.0

00242172

−138

1.0

0074

0.9

99511

1.0

0025

−138

1.0

02848857

1.0

00249984

−138

1.0

07690741

1.0

00249984

−137

1.0

00755

0.9

99504

1.0

00258

−137

0.9

96250125

1.0

00258042

−137

0.9

94008507

1.0

00258042

−136

1.0

0077

0.9

99496

1.0

00266

−136

1.0

08553841

1.0

00266353

−136

1.0

04908064

1.0

00266353

−135

1.0

00786

0.9

99489

1.0

00275

−135

0.9

93085721

1.0

00274928

−135

0.9

90835325

1.0

00274928

−134

1.0

00803

0.9

99481

1.0

00284

−134

1.0

08788254

1.0

00283775

−134

1.0

02052962

1.0

00283775

−133

1.0

0082

0.9

99474

1.0

00293

−133

0.9

94974359

1.0

00292905

−133

0.9

93563738

1.0

00292905

−132

1.0

00837

0.9

99466

1.0

00302

−132

1.0

02500971

1.0

00302328

−132

1.0

0333287

1.0

00302328

−131

1.0

00855

0.9

99458

1.0

00312

−131

0.9

98739944

1.0

00312054

−131

0.9

91411257

1.0

00312054

−130

1.0

00873

0.9

99449

1.0

00322

−130

1.0

04396444

1.0

00322095

−130

1.0

01711566

1.0

00322095

−129

1.0

00892

0.9

99441

1.0

00332

−129

0.9

9230638

1.0

00332462

−129

0.9

95363557

1.0

00332462

−128

1.0

00911

0.9

99432

1.0

00343

−128

1.0

08030426

1.0

00343167

−128

1.0

01501466

1.0

00343167

−127

1.0

00931

0.9

99424

1.0

00354

−127

0.9

98751308

1.0

00354222

−127

0.9

93396599

1.0

00354222

−126

1.0

00952

0.9

99414

1.0

00366

−126

1.0

04114935

1.0

00365642

−126

1.0

06316053

1.0

00365642

−125

1.0

00973

0.9

99405

1.0

00377

−125

0.9

98100228

1.0

00377439

−125

0.9

95960345

1.0

00377439

−124

1.0

00995

0.9

99396

1.0

0039

−124

1.0

06231001

1.0

00389628

−124

1.0

06415838

1.0

00389628

−123

1.0

01017

0.9

99386

1.0

00402

−123

0.9

97768586

1.0

00402223

−123

0.9

95954335

1.0

00402223

−122

1.0

0104

0.9

99376

1.0

00415

−122

1.0

05939595

1.0

0041524

−122

1.0

07704459

1.0

0041524

−121

1.0

01064

0.9

99366

1.0

00429

−121

0.9

91298793

1.0

00428696

−121

0.9

96466957

1.0

00428696

−120

1.0

01088

0.9

99355

1.0

00443

−120

1.0

10194936

1.0

00442607

−120

1.0

01060949

1.0

00442607

−119

1.0

01113

0.9

99345

1.0

00457

−119

0.9

9132089

1.0

00456991

−119

0.9

98259806

1.0

00456991

−118

1.0

01139

0.9

99334

1.0

00472

−118

1.0

06410856

1.0

00471865

−118

1.0

02312897

1.0

00471865

−117

1.0

01166

0.9

99322

1.0

00487

−117

0.9

9864658

1.0

0048725

−117

0.9

98997786

1.0

0048725

−116

1.0

01193

0.9

99311

1.0

00503

−116

1.0

01947809

1.0

00503166

−116

1.0

03838767

1.0

00503166

−115

1.0

01222

0.9

99299

1.0

0052

−115

1.0

00077216

1.0

00519632

−115

1.0

00497567

1.0

00519632

−114

1.0

01251

0.9

99287

1.0

00537

−114

1.0

01097526

1.0

00536672

−114

1.0

09304491

1.0

00536672

(Continued

)

1450020-13

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 14: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−113

1.0

01281

0.9

99274

1.0

00554

−113

1.0

00002965

1.0

00554307

−113

0.9

98686928

1.0

00554307

−112

1.0

01312

0.9

99262

1.0

00573

−112

1.0

06926461

1.0

00572563

−112

1.0

07699239

1.0

00572563

−111

1.0

01344

0.9

99248

1.0

00591

−111

0.9

99897817

1.0

00591463

−111

1.0

00535036

1.0

00591463

−110

1.0

01377

0.9

99235

1.0

00611

−110

1.0

06797862

1.0

00611033

−110

1.0

01261322

1.0

00611033

−109

1.0

01411

0.9

99221

1.0

00631

−109

1.0

0033068

1.0

00631302

−109

0.9

99829183

1.0

00631302

−108

1.0

01447

0.9

99207

1.0

00652

−108

1.0

04502569

1.0

00652298

−108

1.0

04731361

1.0

00652298

−107

1.0

01483

0.9

99192

1.0

00674

−107

0.9

98205539

1.0

0067405

−107

0.9

91649292

1.0

0067405

−106

1.0

01521

0.9

99177

1.0

00697

−106

1.0

09585845

1.0

0069659

−106

1.0

0111738

1.0

0069659

−105

1.0

01559

0.9

99162

1.0

0072

−105

0.9

94447989

1.0

0071995

−105

0.9

97244435

1.0

0071995

−104

1.0

016

0.9

99146

1.0

00744

−104

1.0

02694669

1.0

00744164

−104

1.0

05626388

1.0

00744164

−103

1.0

01641

0.9

9913

1.0

00769

−103

0.9

92275842

1.0

00769269

−103

0.9

95727967

1.0

00769269

−102

1.0

01684

0.9

99113

1.0

00795

−102

1.0

09445031

1.0

00795301

−102

1.0

05954101

1.0

00795301

−101

1.0

01728

0.9

99096

1.0

00822

−101

0.9

98082222

1.0

00822301

−101

0.9

9090748

1.0

00822301

−100

1.0

01774

0.9

99078

1.0

0085

−100

1.0

06748546

1.0

00850308

−100

1.0

03229263

1.0

00850308

−99

1.0

01822

0.9

99059

1.0

00879

−99

0.9

97384753

1.0

00879367

−99

0.9

97586115

1.0

00879367

−98

1.0

01871

0.9

99041

1.0

0091

−98

1.0

02484226

1.0

00909522

−98

1.0

03830143

1.0

00909522

−97

1.0

01922

0.9

99021

1.0

00941

−97

0.9

93232177

1.0

0094082

−97

1.0

00846498

1.0

0094082

−96

1.0

01974

0.9

99001

1.0

00973

−96

1.0

04323077

1.0

00973312

−96

1.0

0582059

1.0

00973312

−95

1.0

02029

0.9

9898

1.0

01007

−95

0.9

9775783

1.0

01007048

−95

0.9

9469515

1.0

01007048

−94

1.0

02085

0.9

98959

1.0

01042

−94

1.0

07325927

1.0

01042083

−94

1.0

04853357

1.0

01042083

−93

1.0

02144

0.9

98937

1.0

01078

−93

0.9

9334683

1.0

01078475

−93

0.9

94787405

1.0

01078475

−92

1.0

02204

0.9

98915

1.0

01116

−92

1.0

06463312

1.0

01116283

−92

1.0

0474718

1.0

01116283

−91

1.0

02267

0.9

98891

1.0

01156

−91

0.9

94072563

1.0

0115557

−91

1.0

00819863

1.0

0115557

−90

1.0

02332

0.9

98867

1.0

01196

−90

1.0

05868914

1.0

01196402

−90

1.0

1050472

1.0

01196402

−89

1.0

02399

0.9

98842

1.0

01239

−89

0.9

94654446

1.0

01238847

−89

1.0

01044952

1.0

01238847

−88

1.0

0247

0.9

98816

1.0

01283

−88

1.0

04701511

1.0

01282979

−88

1.0

07579207

1.0

01282979

−87

1.0

02542

0.9

9879

1.0

01329

−87

0.9

97142974

1.0

01328872

−87

0.9

97515716

1.0

01328872

−86

1.0

02618

0.9

98762

1.0

01377

−86

1.0

05200666

1.0

01376607

−86

1.0

05103484

1.0

01376607

−85

1.0

02696

0.9

98734

1.0

01426

−85

0.9

91713324

1.0

01426268

−85

0.9

99079508

1.0

01426268

1450020-14

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 15: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zT

PN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−84

1.0

02777

0.9

98704

1.0

01478

−84

1.0

07291694

1.0

01477941

−84

1.0

07994042

1.0

01477941

−83

1.0

02862

0.9

98674

1.0

01532

−83

0.9

99843838

1.0

01531719

−83

0.9

99087828

1.0

01531719

−82

1.0

02949

0.9

98642

1.0

01588

−82

1.0

0368916

1.0

01587699

−82

1.0

03194069

1.0

01587699

−81

1.0

0304

0.9

9861

1.0

01646

−81

0.9

99754592

1.0

01645982

−81

0.9

97508546

1.0

01645982

−80

1.0

03135

0.9

98576

1.0

01707

−80

1.0

06274493

1.0

01706673

−80

1.0

0563487

1.0

01706673

−79

1.0

03234

0.9

98541

1.0

0177

−79

0.9

95184961

1.0

01769885

−79

0.9

94539474

1.0

01769885

−78

1.0

03336

0.9

98505

1.0

01836

−78

1.0

07474259

1.0

01835735

−78

1.0

08165612

1.0

01835735

−77

1.0

03443

0.9

98467

1.0

01904

−77

0.9

96591195

1.0

01904344

−77

0.9

99032393

1.0

01904344

−76

1.0

03554

0.9

98428

1.0

01976

−76

1.0

05100672

1.0

01975842

−76

1.0

09708535

1.0

01975842

−75

1.0

03669

0.9

98387

1.0

0205

−75

0.9

93573446

1.0

02050363

−75

0.9

92083107

1.0

02050363

−74

1.0

03789

0.9

98345

1.0

02128

−74

1.0

02240861

1.0

02128049

−74

1.0

09255119

1.0

02128049

−73

1.0

03915

0.9

98301

1.0

02209

−73

1.0

00755585

1.0

02209047

−73

0.9

98318658

1.0

02209047

−72

1.0

04045

0.9

98255

1.0

02294

−72

1.0

02952659

1.0

02293513

−72

1.0

06088535

1.0

02293513

−71

1.0

04181

0.9

98208

1.0

02382

−71

1.0

00895255

1.0

02381608

−71

0.9

9608984

1.0

02381608

−70

1.0

04323

0.9

98159

1.0

02474

−70

1.0

02915485

1.0

02473503

−70

1.0

04001732

1.0

02473503

−69

1.0

04471

0.9

98107

1.0

02569

−69

1.0

00874616

1.0

02569376

−69

1.0

21889197

1.0

02569376

−68

1.0

04625

0.9

98054

1.0

02669

−68

1.0

03740183

1.0

02669411

−68

1.0

33741685

1.0

02669411

−67

1.0

04785

0.9

97998

1.0

02774

−67

1.0

00966927

1.0

02773803

−67

1.0

05589862

1.0

02773803

−66

1.0

04953

0.9

9794

1.0

02883

−66

1.0

03798658

1.0

02882755

−66

1.0

23362191

1.0

02882755

−65

1.0

05128

0.9

97879

1.0

02996

−65

1.0

01329986

1.0

02996477

−65

1.0

19268446

1.0

02996477

−64

1.0

05311

0.9

97815

1.0

03115

−64

1.0

04144903

1.0

03115189

−64

1.0

37731119

1.0

03115189

−63

1.0

05502

0.9

97749

1.0

03239

−63

1.0

02335454

1.0

0323912

−63

1.0

2265311

1.0

0323912

−62

1.0

05702

0.9

9768

1.0

03369

−62

1.0

05220836

1.0

03368508

−62

1.0

24862401

1.0

03368508

−61

1.0

0591

0.9

97608

1.0

03504

−61

1.0

03214349

1.0

03503598

−61

1.0

04413314

1.0

03503598

−60

1.0

06128

0.9

97532

1.0

03645

−60

1.0

05479627

1.0

03644647

−60

1.0

10620933

1.0

03644647

−59

1.0

06356

0.9

97452

1.0

03792

−59

1.0

02234908

1.0

03791917

−59

1.0

03368715

1.0

03791917

−58

1.0

06594

0.9

97369

1.0

03946

−58

1.0

05237097

1.0

03945682

−58

1.0

04601444

1.0

03945682

−57

1.0

06843

0.9

97282

1.0

04106

−57

1.0

03663296

1.0

04106219

−57

1.0

02228375

1.0

04106219

(Continued

)

1450020-15

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 16: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−56

1.0

07104

0.9

9719

1.0

04274

−56

1.0

05911815

1.0

04273816

−56

1.0

06864365

1.0

04273816

−55

1.0

07376

0.9

97094

1.0

04449

−55

1.0

02917209

1.0

04448765

−55

1.0

0259707

1.0

04448765

−54

1.0

07661

0.9

96993

1.0

04631

−54

1.0

05279866

1.0

04631362

−54

1.0

06595087

1.0

04631362

−53

1.0

0796

0.9

96887

1.0

04822

−53

1.0

04006922

1.0

04821909

−53

1.0

02515894

1.0

04821909

−52

1.0

08273

0.9

96775

1.0

05021

−52

1.0

06031795

1.0

05020707

−52

1.0

08625972

1.0

05020707

−51

1.0

086

0.9

96657

1.0

05228

−51

1.0

03979842

1.0

05228057

−51

0.9

9764486

1.0

05228057

−50

1.0

08943

0.9

96533

1.0

05444

−50

1.0

07311597

1.0

05444256

−50

1.0

0693211

1.0

05444256

−49

1.0

09301

0.9

96402

1.0

0567

−49

1.0

04849577

1.0

05669594

−49

1.0

01623133

1.0

05669594

−48

1.0

09677

0.9

96263

1.0

05904

−48

1.0

07582966

1.0

05904349

−48

1.0

0928424

1.0

05904349

−47

1.0

10071

0.9

96117

1.0

06149

−47

1.0

04299894

1.0

06148784

−47

1.0

05856891

1.0

06148784

−46

1.0

10483

0.9

95962

1.0

06403

−46

1.0

07677957

1.0

06403138

−46

1.0

12987886

1.0

06403138

−45

1.0

10915

0.9

95798

1.0

06668

−45

1.0

06019901

1.0

06667622

−45

1.0

04452937

1.0

06667622

−44

1.0

11367

0.9

95625

1.0

06942

−44

1.0

07305826

1.0

06942407

−44

1.0

06942504

1.0

06942407

−43

1.0

11841

0.9

95441

1.0

07228

−43

1.0

0584347

1.0

07227617

−43

1.0

00774114

1.0

07227617

−42

1.0

12337

0.9

95245

1.0

07523

−42

1.0

08627707

1.0

07523316

−42

1.0

10594896

1.0

07523316

−41

1.0

12856

0.9

95037

1.0

07829

−41

1.0

07468107

1.0

07829491

−41

0.9

99271866

1.0

07829491

−40

1.0

13399

0.9

94816

1.0

08146

−40

1.0

09324911

1.0

08146039

−40

1.0

10012326

1.0

08146039

−39

1.0

13968

0.9

94581

1.0

08473

−39

1.0

0703178

1.0

08472744

−39

0.9

98663951

1.0

08472744

−38

1.0

14562

0.9

94329

1.0

08809

−38

1.0

08842379

1.0

08809255

−38

1.0

12985709

1.0

08809255

−37

1.0

15184

0.9

94061

1.0

09155

−37

1.0

08557148

1.0

09155058

−37

0.9

9969259

1.0

09155058

−36

1.0

15833

0.9

93775

1.0

09509

−36

1.0

09803775

1.0

09509442

−36

1.0

18539208

1.0

09509442

−35

1.0

16511

0.9

93469

1.0

09871

−35

1.0

08345323

1.0

09871458

−35

1.0

0013235

1.0

09871458

−34

1.0

17217

0.9

93141

1.0

1024

−34

1.0

11803406

1.0

1023988

−34

1.0

14199404

1.0

1023988

−33

1.0

17954

0.9

92789

1.0

10613

−33

1.0

08835113

1.0

10613144

−33

1.0

0861491

1.0

10613144

−32

1.0

1872

0.9

92412

1.0

10989

−32

1.0

1257615

1.0

10989291

−32

1.0

13941012

1.0

10989291

−31

1.0

19516

0.9

92006

1.0

11366

−31

1.0

10083691

1.0

11365889

−31

1.0

02138568

1.0

11365889

−30

1.0

20342

0.9

9157

1.0

1174

−30

1.0

12090357

1.0

11739947

−30

1.0

19659458

1.0

11739947

−29

1.0

21196

0.9

911

1.0

12108

−29

1.0

1134419

1.0

12107819

−29

1.0

02767862

1.0

12107819

1450020-16

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 17: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

−28

1.0

22079

0.9

90594

1.0

12465

−28

1.0

14020673

1.0

1246508

−28

1.0

2004636

1.0

1246508

−27

1.0

22988

0.9

90047

1.0

12806

−27

1.0

10914873

1.0

12806396

−27

1.0

0747209

1.0

12806396

−26

1.0

2392

0.9

89457

1.0

13125

−26

1.0

15061882

1.0

13125362

−26

1.0

15875724

1.0

13125362

−25

1.0

24873

0.9

88819

1.0

13414

−25

1.0

12715198

1.0

13414327

−25

1.0

05264703

1.0

13414327

−24

1.0

25842

0.9

88129

1.0

13664

−24

1.0

15488492

1.0

13664188

−24

1.0

14399613

1.0

13664188

−23

1.0

2682

0.9

87382

1.0

13864

−23

1.0

13535525

1.0

1386416

−23

1.0

09922013

1.0

1386416

−22

1.0

27802

0.9

86573

1.0

14002

−22

1.0

14681703

1.0

14001522

−22

1.0

17188253

1.0

14001522

−21

1.0

28776

0.9

85697

1.0

14061

−21

1.0

13041379

1.0

14061345

−21

1.0

11623886

1.0

14061345

−20

1.0

29732

0.9

84748

1.0

14026

−20

1.0

14427031

1.0

14026196

−20

1.0

21101303

1.0

14026196

−19

1.0

30655

0.9

8372

1.0

13876

−19

1.0

13377346

1.0

13875853

−19

1.0

11385049

1.0

13875853

−18

1.0

31527

0.9

82609

1.0

13587

−18

1.0

1424925

1.0

13587034

−18

1.0

19664384

1.0

13587034

−17

1.0

32326

0.9

81408

1.0

13133

−17

1.0

11932686

1.0

13133175

−17

1.0

05476636

1.0

13133175

−16

1.0

33028

0.9

80113

1.0

12484

−16

1.0

1386425

1.0

12484318

−16

1.0

19377252

1.0

12484318

−15

1.0

33601

0.9

78721

1.0

11607

−15

1.0

10539151

1.0

11607163

−15

1.0

06137839

1.0

11607163

−14

1.0

3401

0.9

7723

1.0

10465

−14

1.0

10867206

1.0

10465384

−14

1.0

15998736

1.0

10465384

−13

1.0

34213

0.9

75641

1.0

0902

−13

1.0

08472626

1.0

09020324

−13

1.0

07495072

1.0

09020324

−12

1.0

34164

0.9

73958

1.0

07232

−12

1.0

07881668

1.0

07232225

−12

1.0

0904919

1.0

07232225

−11

1.0

33813

0.9

7219

1.0

05062

−11

1.0

04355785

1.0

05062122

−11

0.9

98268586

1.0

05062122

−10

1.0

33103

0.9

70353

1.0

02475

−10

1.0

02916926

1.0

02474581

−10

1.0

02646383

1.0

02474581

−91.0

31982

0.9

68468

0.9

99441

−90.9

98867058

0.9

99441343

−90.9

97605312

0.9

99441343

−81.0

30396

0.9

66566

0.9

95946

−80.9

97684422

0.9

95945868

−80.9

99877949

0.9

95945868

−71.0

28301

0.9

64687

0.9

91989

−70.9

90048695

0.9

91988534

−70.9

86941004

0.9

91988534

−61.0

25667

0.9

62878

0.9

87592

−60.9

88154785

0.9

87592008

−60.9

95815365

0.9

87592008

−51.0

22481

0.9

61197

0.9

82806

−50.9

82236332

0.9

82805923

−50.9

79376284

0.9

82805923

−41.0

18762

0.9

59703

0.9

7771

−40.9

78752222

0.9

77709782

−40.9

82551609

0.9

77709782

−31.0

14558

0.9

5846

0.9

72413

−30.9

70494223

0.9

72412882

−30.9

71047894

0.9

72412882

−21.0

09949

0.9

57524

0.9

6705

−20.9

6777224

0.9

67050289

−20.9

75327545

0.9

67050289

−11.0

0505

0.9

56942

0.9

61775

−10.9

61751083

0.9

6177458

−10.9

61067781

0.9

6177458

(Continued

)

1450020-17

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 18: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

01

0.9

56744

0.9

56744

00.9

58278782

0.9

56744

00.9

59825993

0.9

56744

10.9

9495

0.9

56942

0.9

52109

10.9

5117274

0.9

52108709

10.9

45273662

0.9

52108709

20.9

90051

0.9

57524

0.9

47997

20.9

49424066

0.9

47997487

20.9

48294194

0.9

47997487

30.9

85442

0.9

5846

0.9

44507

30.9

4441513

0.9

44507262

30.9

4117841

0.9

44507262

40.9

81238

0.9

59703

0.9

41697

40.9

41705752

0.9

4169717

40.9

50781001

0.9

4169717

50.9

77519

0.9

61197

0.9

39588

50.9

38094296

0.9

39587707

50.9

34351192

0.9

39587707

60.9

74333

0.9

62878

0.9

38164

60.9

39166933

0.9

38164413

60.9

39095586

0.9

38164413

70.9

71699

0.9

64687

0.9

37385

70.9

3643626

0.9

37384672

70.9

28673095

0.9

37384672

80.9

69604

0.9

66566

0.9

37186

80.9

37439297

0.9

37185981

80.9

43229746

0.9

37185981

90.9

68018

0.9

68468

0.9

37494

90.9

37191023

0.9

37494185

90.9

32652499

0.9

37494185

10

0.9

66897

0.9

70353

0.9

38231

10

0.9

39714202

0.9

38230638

10

0.9

42080405

0.9

38230638

11

0.9

66187

0.9

7219

0.9

39318

11

0.9

37524537

0.9

39317769

11

0.9

32560309

0.9

39317769

12

0.9

65836

0.9

73958

0.9

40683

12

0.9

42076373

0.9

40682931

12

0.9

49062342

0.9

40682931

13

0.9

65787

0.9

75641

0.9

42261

13

0.9

41262367

0.9

42260724

13

0.9

40621068

0.9

42260724

14

0.9

6599

0.9

7723

0.9

43994

14

0.9

44517034

0.9

43994081

14

0.9

49503477

0.9

43994081

15

0.9

66399

0.9

78721

0.9

45834

15

0.9

44401133

0.9

45834469

15

0.9

45517586

0.9

45834469

16

0.9

66972

0.9

80113

0.9

47742

16

0.9

48888864

0.9

47741503

16

0.9

48687567

0.9

47741503

17

0.9

67674

0.9

81408

0.9

49682

17

0.9

48250993

0.9

49682226

17

0.9

44104846

0.9

49682226

18

0.9

68473

0.9

82609

0.9

5163

18

0.9

5226149

0.9

51630218

18

0.9

56248908

0.9

51630218

19

0.9

69345

0.9

8372

0.9

53565

19

0.9

53243396

0.9

53564677

19

0.9

47738653

0.9

53564677

20

0.9

70268

0.9

84748

0.9

5547

20

0.9

57383946

0.9

55469532

20

0.9

57159429

0.9

55469532

21

0.9

71224

0.9

85697

0.9

57333

21

0.9

55452014

0.9

57332631

21

0.9

5438851

0.9

57332631

22

0.9

72198

0.9

86573

0.9

59145

22

0.9

60925729

0.9

59145029

22

0.9

62585761

0.9

59145029

23

0.9

7318

0.9

87382

0.9

609

23

0.9

59854498

0.9

60900378

23

0.9

56616362

0.9

60900378

24

0.9

74158

0.9

88129

0.9

62594

24

0.9

63040705

0.9

62594405

24

0.9

67350249

0.9

62594405

25

0.9

75127

0.9

88819

0.9

64224

25

0.9

62558913

0.9

64224486

25

0.9

5716176

0.9

64224486

26

0.9

7608

0.9

89457

0.9

65789

26

0.9

66127238

0.9

65789293

26

0.9

69633058

0.9

65789293

1450020-18

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 19: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan dataA

ppen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zT

PN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

27

0.9

77012

0.9

90047

0.9

67289

27

0.9

65890615

0.9

67288503

27

0.9

57630235

0.9

67288503

28

0.9

77921

0.9

90594

0.9

68723

28

0.9

69133048

0.9

68722569

28

0.9

7487203

0.9

68722569

29

0.9

78804

0.9

911

0.9

70093

29

0.9

68724573

0.9

70092529

29

0.9

66099282

0.9

70092529

30

0.9

79658

0.9

9157

0.9

714

30

0.9

72918654

0.9

71399858

30

0.9

7912511

0.9

71399858

31

0.9

80484

0.9

92006

0.9

72646

31

0.9

70844432

0.9

72646348

31

0.9

69660796

0.9

72646348

32

0.9

8128

0.9

92412

0.9

73834

32

0.9

75176613

0.9

73834012

32

0.9

74906977

0.9

73834012

33

0.9

82046

0.9

92789

0.9

74965

33

0.9

74384767

0.9

74965012

33

0.9

74084236

0.9

74965012

34

0.9

82783

0.9

93141

0.9

76042

34

0.9

76526333

0.9

76041598

34

0.9

77808123

0.9

76041598

35

0.9

83489

0.9

93469

0.9

77066

35

0.9

75340679

0.9

77066063

35

0.9

71550521

0.9

77066063

36

0.9

84167

0.9

93775

0.9

78041

36

0.9

78167029

0.9

78040711

36

0.9

85641276

0.9

78040711

37

0.9

84816

0.9

94061

0.9

78968

37

0.9

78477184

0.9

78967822

37

0.9

7525269

0.9

78967822

38

0.9

85438

0.9

94329

0.9

7985

38

0.9

80465987

0.9

79849642

38

0.9

85562947

0.9

79849642

39

0.9

86032

0.9

94581

0.9

80688

39

0.9

79544473

0.9

8068836

39

0.9

76379815

0.9

8068836

40

0.9

86601

0.9

94816

0.9

81486

40

0.9

81543625

0.9

81486099

40

0.9

83839976

0.9

81486099

41

0.9

87144

0.9

95037

0.9

82245

41

0.9

80667299

0.9

82244912

41

0.9

8057871

0.9

82244912

42

0.9

87663

0.9

95245

0.9

82967

42

0.9

84085193

0.9

8296677

42

0.9

91372179

0.9

8296677

43

0.9

88159

0.9

95441

0.9

83654

43

0.9

83386775

0.9

83653566

43

0.9

82143821

0.9

83653566

44

0.9

88633

0.9

95625

0.9

84307

44

0.9

85725586

0.9

84307109

44

0.9

85152352

0.9

84307109

45

0.9

89085

0.9

95798

0.9

84929

45

0.9

83396973

0.9

84929127

45

0.9

77085199

0.9

84929127

46

0.9

89517

0.9

95962

0.9

85521

46

0.9

86033749

0.9

85521264

46

0.9

90544139

0.9

85521264

47

0.9

89929

0.9

96117

0.9

86085

47

0.9

844287

0.9

86085084

47

0.9

85703398

0.9

86085084

48

0.9

90323

0.9

96263

0.9

86622

48

0.9

87206967

0.9

86622074

48

0.9

93478196

0.9

86622074

49

0.9

90699

0.9

96402

0.9

87134

49

0.9

86845884

0.9

87133643

49

0.9

79519138

0.9

87133643

50

0.9

91057

0.9

96533

0.9

87621

50

0.9

8907198

0.9

87621129

50

0.9

8877189

0.9

87621129

51

0.9

914

0.9

96657

0.9

88086

51

0.9

86250929

0.9

88085796

51

0.9

85936466

0.9

88085796

52

0.9

91727

0.9

96775

0.9

88529

52

0.9

88696085

0.9

88528843

52

0.9

96666333

0.9

88528843

53

0.9

9204

0.9

96887

0.9

88951

53

0.9

87464276

0.9

88951403

53

0.9

83410545

0.9

88951403

54

0.9

92339

0.9

96993

0.9

89355

54

0.9

90456944

0.9

89354549

54

0.9

92060358

0.9

89354549

55

0.9

92624

0.9

97094

0.9

89739

55

0.9

88159389

0.9

89739294

55

0.9

83501926

0.9

89739294

(Continued

)

1450020-19

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 20: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

56

0.9

92896

0.9

9719

0.9

90107

56

0.9

91789486

0.9

90106596

56

0.9

90474061

0.9

90106596

57

0.9

93157

0.9

97282

0.9

90457

57

0.9

89023408

0.9

9045736

57

0.9

85943882

0.9

9045736

58

0.9

93406

0.9

97369

0.9

90792

58

0.9

91797723

0.9

90792441

58

0.9

98815109

0.9

90792441

59

0.9

93644

0.9

97452

0.9

91113

59

0.9

8964219

0.9

91112645

59

0.9

83222738

0.9

91112645

60

0.9

93872

0.9

97532

0.9

91419

60

0.9

91889224

0.9

91418737

60

0.9

9974348

0.9

91418737

61

0.9

9409

0.9

97608

0.9

91711

61

0.9

90379688

0.9

91711437

61

0.9

78214398

0.9

91711437

62

0.9

94298

0.9

9768

0.9

91991

62

0.9

93671032

0.9

91991424

62

1.0

01017344

0.9

91991424

63

0.9

94498

0.9

97749

0.9

92259

63

0.9

9161225

0.9

92259342

63

0.9

80082533

0.9

92259342

64

0.9

94689

0.9

97815

0.9

92516

64

0.9

94212962

0.9

92515799

64

1.0

08801075

0.9

92515799

65

0.9

94872

0.9

97879

0.9

92761

65

0.9

92599083

0.9

92761367

65

0.9

84918627

0.9

92761367

66

0.9

95047

0.9

9794

0.9

92997

66

0.9

93172882

0.9

92996588

66

1.0

12053961

0.9

92996588

67

0.9

95215

0.9

97998

0.9

93222

67

0.9

92212622

0.9

93221976

67

0.9

7729554

0.9

93221976

68

0.9

95375

0.9

98054

0.9

93438

68

0.9

94899768

0.9

93438013

68

1.0

02382618

0.9

93438013

69

0.9

95529

0.9

98107

0.9

93645

69

0.9

93507036

0.9

93645158

69

0.9

88005595

0.9

93645158

70

0.9

95677

0.9

98159

0.9

93844

70

0.9

95738611

0.9

93843843

70

0.9

95242039

0.9

93843843

71

0.9

95819

0.9

98208

0.9

94034

71

0.9

93243802

0.9

94034477

71

0.9

9098293

0.9

94034477

72

0.9

95955

0.9

98255

0.9

94217

72

0.9

94567586

0.9

94217447

72

1.0

07340971

0.9

94217447

73

0.9

96085

0.9

98301

0.9

94393

73

0.9

92832129

0.9

9439312

73

0.9

7804541

0.9

9439312

74

0.9

96211

0.9

98345

0.9

94562

74

0.9

96402004

0.9

94561841

74

1.0

14420692

0.9

94561841

75

0.9

96331

0.9

98387

0.9

94724

75

0.9

88935762

0.9

94723938

75

0.9

8192181

0.9

94723938

76

0.9

96446

0.9

98428

0.9

9488

76

1.0

02428858

0.9

94879723

76

1.0

07993114

0.9

94879723

77

0.9

96557

0.9

98467

0.9

95029

77

0.9

8833908

0.9

95029488

77

0.9

77318129

0.9

95029488

78

0.9

96664

0.9

98505

0.9

95174

78

1.0

02630209

0.9

95173513

78

1.0

01032871

0.9

95173513

79

0.9

96766

0.9

98541

0.9

95312

79

0.9

93649267

0.9

9531206

79

0.9

82052263

0.9

9531206

80

0.9

96865

0.9

98576

0.9

95445

80

0.9

96078252

0.9

95445381

80

0.9

97552942

0.9

95445381

81

0.9

9696

0.9

9861

0.9

95574

81

0.9

89649166

0.9

95573712

81

0.9

92705423

0.9

95573712

82

0.9

97051

0.9

98642

0.9

95697

82

1.0

04073375

0.9

95697279

82

1.0

04985148

0.9

95697279

83

0.9

97138

0.9

98674

0.9

95816

83

0.9

91053105

0.9

95816293

83

0.9

79574248

0.9

95816293

84

0.9

97223

0.9

98704

0.9

95931

84

0.9

98225923

0.9

95930958

84

1.0

04581949

0.9

95930958

1450020-20

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 21: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

85

0.9

97304

0.9

98734

0.9

96041

85

0.9

9078515

0.9

96041466

85

0.9

76591709

0.9

96041466

86

0.9

97382

0.9

98762

0.9

96148

86

1.0

04306532

0.9

96147999

86

0.9

98868266

0.9

96147999

87

0.9

97458

0.9

9879

0.9

96251

87

0.9

89450716

0.9

96250729

87

0.9

80114459

0.9

96250729

88

0.9

9753

0.9

98816

0.9

9635

88

0.9

99851166

0.9

96349823

88

1.0

11397632

0.9

96349823

89

0.9

97601

0.9

98842

0.9

96445

89

0.9

86619051

0.9

96445435

89

0.9

92043975

0.9

96445435

90

0.9

97668

0.9

98867

0.9

96538

90

0.9

99711779

0.9

96537714

90

1.0

14470422

0.9

96537714

91

0.9

97733

0.9

98891

0.9

96627

91

0.9

91244387

0.9

96626803

91

0.9

88524746

0.9

96626803

92

0.9

97796

0.9

98915

0.9

96713

92

0.9

97963542

0.9

96712834

92

1.0

14516332

0.9

96712834

93

0.9

97856

0.9

98937

0.9

96796

93

0.9

90187094

0.9

96795936

93

0.9

88116492

0.9

96795936

94

0.9

97915

0.9

98959

0.9

96876

94

0.9

96950768

0.9

9687623

94

1.0

1276973

0.9

9687623

95

0.9

97971

0.9

9898

0.9

96954

95

0.9

94071322

0.9

96953832

95

0.9

96583303

0.9

96953832

96

0.9

98026

0.9

99001

0.9

97029

96

1.0

04865905

0.9

97028853

96

1.0

11477845

0.9

97028853

97

0.9

98078

0.9

99021

0.9

97101

97

0.9

9591225

0.9

97101397

97

0.9

92233005

0.9

97101397

98

0.9

98129

0.9

99041

0.9

97172

98

0.9

97816092

0.9

97171564

98

1.0

04386458

0.9

97171564

99

0.9

98178

0.9

99059

0.9

97239

99

0.9

93770654

0.9

97239451

99

0.9

83797473

0.9

97239451

100

0.9

98226

0.9

99078

0.9

97305

100

1.0

00108973

0.9

97305147

100

1.0

02001563

0.9

97305147

101

0.9

98272

0.9

99096

0.9

97369

101

0.9

92862278

0.9

97368739

101

0.9

94424926

0.9

97368739

102

0.9

98316

0.9

99113

0.9

9743

102

1.0

04316547

0.9

97430311

102

1.0

08447589

0.9

97430311

103

0.9

98359

0.9

9913

0.9

9749

103

0.9

91553239

0.9

9748994

103

0.9

86845735

0.9

9748994

104

0.9

984

0.9

99146

0.9

97548

104

1.0

03933289

0.9

97547703

104

1.0

17492047

0.9

97547703

105

0.9

98441

0.9

99162

0.9

97604

105

0.9

88225923

0.9

97603671

105

0.9

85753538

0.9

97603671

106

0.9

98479

0.9

99177

0.9

97658

106

1.0

02857375

0.9

97657913

106

1.0

09239134

0.9

97657913

107

0.9

98517

0.9

99192

0.9

9771

107

0.9

96320147

0.9

97710494

107

0.9

96459356

0.9

97710494

108

0.9

98553

0.9

99207

0.9

97761

108

0.9

98679382

0.9

97761477

108

1.0

06272824

0.9

97761477

109

0.9

98589

0.9

99221

0.9

97811

109

0.9

90153449

0.9

97810923

109

0.9

82097181

0.9

97810923

110

0.9

98623

0.9

99235

0.9

97859

110

0.9

99303374

0.9

97858887

110

0.9

989074

0.9

97858887

111

0.9

98656

0.9

99248

0.9

97905

111

0.9

93197313

0.9

97905426

111

0.9

91817955

0.9

97905426

112

0.9

98688

0.9

99262

0.9

97951

112

1.0

04148732

0.9

97950592

112

1.0

16133422

0.9

97950592

(Continued

)

1450020-21

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 22: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

113

0.9

98719

0.9

99274

0.9

97994

113

0.9

91854487

0.9

97994434

113

0.9

97329443

0.9

97994434

114

0.9

98749

0.9

99287

0.9

98037

114

1.0

0775581

0.9

98037

114

1.0

08966228

0.9

98037

115

0.9

98778

0.9

99299

0.9

98078

115

0.9

91502309

0.9

98078337

115

0.9

90636508

0.9

98078337

116

0.9

98807

0.9

99311

0.9

98118

116

0.9

99286742

0.9

98118489

116

0.9

99576626

0.9

98118489

117

0.9

98834

0.9

99322

0.9

98157

117

0.9

93573199

0.9

98157498

117

0.9

91289834

0.9

98157498

118

0.9

98861

0.9

99334

0.9

98195

118

1.0

06968884

0.9

98195403

118

1.0

17925149

0.9

98195403

119

0.9

98887

0.9

99345

0.9

98232

119

0.9

91961729

0.9

98232245

119

0.9

92854285

0.9

98232245

120

0.9

98912

0.9

99355

0.9

98268

120

1.0

00556095

0.9

98268059

120

0.9

9978992

0.9

98268059

121

0.9

98936

0.9

99366

0.9

98303

121

0.9

9354516

0.9

98302882

121

0.9

78824808

0.9

98302882

122

0.9

9896

0.9

99376

0.9

98337

122

1.0

04943737

0.9

98336748

122

1.0

11223086

0.9

98336748

123

0.9

98983

0.9

99386

0.9

9837

123

0.9

95658351

0.9

98369689

123

0.9

96342209

0.9

98369689

124

0.9

99005

0.9

99396

0.9

98402

124

1.0

04371913

0.9

98401737

124

1.0

0679627

0.9

98401737

125

0.9

99027

0.9

99405

0.9

98433

125

0.9

93505444

0.9

98432921

125

0.9

90416157

0.9

98432921

126

0.9

99048

0.9

99414

0.9

98463

126

1.0

00446008

0.9

98463272

126

0.9

99323473

0.9

98463272

127

0.9

99069

0.9

99424

0.9

98493

127

0.9

95796339

0.9

98492816

127

0.9

90803866

0.9

98492816

128

0.9

99089

0.9

99432

0.9

98522

128

1.0

05962085

0.9

98521581

128

1.0

0575356

0.9

98521581

129

0.9

99108

0.9

99441

0.9

9855

129

0.9

97304145

0.9

98549592

129

0.9

80123859

0.9

98549592

130

0.9

99127

0.9

99449

0.9

98577

130

0.9

99948354

0.9

98576874

130

0.9

99465598

0.9

98576874

131

0.9

99145

0.9

99458

0.9

98603

131

0.9

90878779

0.9

9860345

131

0.9

94205959

0.9

9860345

132

0.9

99163

0.9

99466

0.9

98629

132

1.0

05799835

0.9

98629344

132

1.0

04883225

0.9

98629344

133

0.9

9918

0.9

99474

0.9

98655

133

0.9

91631089

0.9

98654576

133

0.9

84939421

0.9

98654576

134

0.9

99197

0.9

99481

0.9

98679

134

1.0

04819658

0.9

98679169

134

1.0

08745608

0.9

98679169

135

0.9

99214

0.9

99489

0.9

98703

135

0.9

94763533

0.9

98703143

135

0.9

89372197

0.9

98703143

136

0.9

9923

0.9

99496

0.9

98727

136

1.0

05308592

0.9

98726516

136

0.9

99253624

0.9

98726516

137

0.9

99245

0.9

99504

0.9

98749

137

0.9

93911404

0.9

98749309

137

0.9

90440902

0.9

98749309

138

0.9

9926

0.9

99511

0.9

98772

138

1.0

01389624

0.9

98771538

138

1.0

0573786

0.9

98771538

139

0.9

99275

0.9

99518

0.9

98793

139

0.9

94199688

0.9

98793222

139

0.9

94954265

0.9

98793222

140

0.9

9929

0.9

99524

0.9

98814

140

1.0

02299332

0.9

98814377

140

1.0

13365815

0.9

98814377

1450020-22

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 23: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

141

0.9

99304

0.9

99531

0.9

98835

141

0.9

92649442

0.9

9883502

141

0.9

90264697

0.9

9883502

142

0.9

99317

0.9

99538

0.9

98855

142

1.0

05779645

0.9

98855165

142

1.0

01318855

0.9

98855165

143

0.9

99331

0.9

99544

0.9

98875

143

0.9

92317017

0.9

98874829

143

0.9

81352138

0.9

98874829

144

0.9

99343

0.9

9955

0.9

98894

144

1.0

05475695

0.9

98894025

144

1.0

05362008

0.9

98894025

145

0.9

99356

0.9

99556

0.9

98913

145

0.9

95400076

0.9

98912767

145

0.9

83473441

0.9

98912767

146

0.9

99368

0.9

99562

0.9

98931

146

1.0

07748034

0.9

98931069

146

1.0

17643672

0.9

98931069

147

0.9

9938

0.9

99568

0.9

98949

147

0.9

90204978

0.9

98948945

147

0.9

82850743

0.9

98948945

148

0.9

99392

0.9

99574

0.9

98966

148

1.0

05378727

0.9

98966405

148

1.0

09723029

0.9

98966405

149

0.9

99404

0.9

9958

0.9

98983

149

0.9

89021441

0.9

98983463

149

0.9

83128978

0.9

98983463

150

0.9

99415

0.9

99585

0.9

99

150

1.0

03596469

0.9

9900013

150

1.0

02633192

0.9

9900013

151

0.9

99426

0.9

99591

0.9

99016

151

0.9

96504436

0.9

99016418

151

0.9

88721321

0.9

99016418

152

0.9

99436

0.9

99596

0.9

99032

152

1.0

0076433

0.9

99032337

152

1.0

07069091

0.9

99032337

153

0.9

99447

0.9

99601

0.9

99048

153

0.9

96596172

0.9

99047898

153

0.9

82277799

0.9

99047898

154

0.9

99457

0.9

99606

0.9

99063

154

1.0

03072803

0.9

99063111

154

1.0

04575145

0.9

99063111

155

0.9

99466

0.9

99611

0.9

99078

155

0.9

9317546

0.9

99077986

155

1.0

15210658

0.9

99077986

156

0.9

99476

0.9

99616

0.9

99093

156

1.0

03888976

0.9

99092532

156

1.0

38020611

0.9

99092532

157

0.9

99486

0.9

99621

0.9

99107

157

0.9

92453599

0.9

99106758

157

1.0

03737606

0.9

99106758

158

0.9

99495

0.9

99626

0.9

99121

158

1.0

00678684

0.9

99120674

158

1.0

30810235

0.9

99120674

159

0.9

99504

0.9

9963

0.9

99134

159

0.9

90588649

0.9

99134287

159

1.0

0675659

0.9

99134287

160

0.9

99512

0.9

99635

0.9

99148

160

1.0

01017927

0.9

99147607

160

1.0

30474218

0.9

99147607

161

0.9

99521

0.9

99639

0.9

99161

161

0.9

98485506

0.9

99160641

161

1.0

19098786

0.9

99160641

162

0.9

99529

0.9

99644

0.9

99173

162

1.0

02475115

0.9

99173397

162

1.0

27936559

0.9

99173397

163

0.9

99538

0.9

99648

0.9

99186

163

0.9

89859113

0.9

99185882

163

1.0

16011176

0.9

99185882

164

0.9

99546

0.9

99652

0.9

99198

164

1.0

08061329

0.9

99198104

164

1.0

35493071

0.9

99198104

165

0.9

99553

0.9

99657

0.9

9921

165

0.9

93327739

0.9

9921007

165

1.0

03408455

0.9

9921007

166

0.9

99561

0.9

99661

0.9

99222

166

1.0

02849601

0.9

99221786

166

1.0

35085706

0.9

99221786

167

0.9

99568

0.9

99665

0.9

99233

167

0.9

90889858

0.9

99233259

167

1.0

08585826

0.9

99233259

168

0.9

99576

0.9

99669

0.9

99244

168

1.0

09089728

0.9

99244496

168

1.0

33012307

0.9

99244496

(Continued

)

1450020-23

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 24: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

Appen

dix

A(C

ontinued

)

DT

1D

T2

DT

3

zTPN

RTN

ATC

lose

zT

Tz

TT

(quasi

-(t

heo

reti

cal)

(quasi

-(t

heo

reti

cal)

exper

imen

tal)

exper

imen

tal)

169

0.9

99583

0.9

99673

0.9

99256

169

0.9

89679306

0.9

99255502

169

1.0

08891227

0.9

99255502

170

0.9

9959

0.9

99676

0.9

99266

170

1.0

00564103

0.9

99266284

170

1.0

23794085

0.9

99266284

171

0.9

99597

0.9

9968

0.9

99277

171

0.9

98872994

0.9

99276847

171

1.0

05590614

0.9

99276847

172

0.9

99603

0.9

99684

0.9

99287

172

0.9

9945066

0.9

99287197

172

1.0

26351454

0.9

99287197

173

0.9

9961

0.9

99687

0.9

99297

173

0.9

96933555

0.9

9929734

173

1.0

05783837

0.9

9929734

174

0.9

99616

0.9

99691

0.9

99307

174

1.0

05694432

0.9

9930728

174

1.0

34019238

0.9

9930728

175

0.9

99622

0.9

99694

0.9

99317

175

0.9

96011004

0.9

99317023

175

1.0

00962622

0.9

99317023

176

0.9

99629

0.9

99698

0.9

99327

176

0.9

99518256

0.9

99326574

176

1.0

37133353

0.9

99326574

177

0.9

99635

0.9

99701

0.9

99336

177

0.9

93247956

0.9

99335938

177

1.0

1855369

0.9

99335938

178

0.9

9964

0.9

99705

0.9

99345

178

1.0

07754545

0.9

99345118

178

1.0

2058763

0.9

99345118

179

0.9

99646

0.9

99708

0.9

99354

179

0.9

98860195

0.9

99354121

179

1.0

07269376

0.9

99354121

180

0.9

99652

0.9

99711

0.9

99363

180

1.0

07370121

0.9

9936295

180

1.0

29930709

0.9

9936295

181

0.9

99657

0.9

99714

0.9

99372

181

0.9

94570718

0.9

99371609

181

1.0

18188959

0.9

99371609

182

0.9

99663

0.9

99717

0.9

9938

182

1.0

06573295

0.9

99380103

182

1.0

26137892

0.9

99380103

183

0.9

99668

0.9

9972

0.9

99388

183

0.9

92302193

0.9

99388435

183

1.0

15500484

0.9

99388435

184

0.9

99673

0.9

99723

0.9

99397

184

1.0

04364833

0.9

9939661

184

1.0

24154242

0.9

9939661

185

0.9

99678

0.9

99726

0.9

99405

185

0.9

93537638

0.9

99404631

185

1.0

09406564

0.9

99404631

186

0.9

99683

0.9

99729

0.9

99413

186

1.0

07517519

0.9

99412503

186

1.0

26740629

0.9

99412503

187

0.9

99688

0.9

99732

0.9

9942

187

0.9

97315011

0.9

99420227

187

1.0

0493787

0.9

99420227

188

0.9

99693

0.9

99735

0.9

99428

188

1.0

07740193

0.9

99427809

188

1.0

32210165

0.9

99427809

189

0.9

99697

0.9

99738

0.9

99435

189

0.9

96273185

0.9

99435251

189

1.0

13348609

0.9

99435251

190

0.9

99702

0.9

99741

0.9

99443

190

1.0

07485833

0.9

99442556

190

1.0

21684633

0.9

99442556

191

0.9

99706

0.9

99743

0.9

9945

191

0.9

92423479

0.9

99449729

191

1.0

1503982

0.9

99449729

1450020-24

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 25: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

Appendix B: Matlab code

%--------------------ENTER DATA-----------------------------------------------------

% I is closed-aperture Z-scan transmittance or R(z) data matrix imported, T isopen-aperture Z-scan transmittance matrix

% K is multiplication/division matrix

clc

disp (‘Please note that in order to run this program, you must give a name I toclosed-aperture Z-scan transmittance T(z) or beam radius R (z) data file andthen import I into Matlab. I is a two- column data table, the first column is thez coordinate, the second column is the normalized transmittance or normalizedbeam radius. File should be saved as .txt, ANSI encoding. This program isapplied to both the transmittance-based Z-scan technique and beamradius-based Z-scan technique.’);

NhapI = input (‘If you have imported I, please enter 1, if not, please enter 0: ’);

while (NhapI∼= 1)

NhapI = input (‘If you have imported I, please enter 1, if not, please enter 0: ’);

end

zo= input (‘Enter Rayleigh length in mm: ’);

Io= input (‘Enter the on-axis irradiance at focus in W/mmˆ2: ’);

Leff= input (‘Enter the effective propagation length inside the sample in mm: ’);

lamda= input (‘Enter wavelength of laser in mm: ’);

S = size (I); % returns the sizes of matrix I

rs=S (1,1); % returns number of rows in matrix I

cs= S (1,2);

se = input (‘Enter sensitivity of detector, : ’);

selection= input (‘If I is closed-aperture Z-scan transmittance data matrix, enter2, else enter 1: ’);

while (selection ∼= 2) && (selection∼= 1)

selection= input (‘Please re-enter, 1 or 2’);

end

%--------------------THE BODY OF PROGRAM---------------------------------------

j=0;

1450020-25

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 26: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

% LET T(Z=0) OF OPEN-APERTURE Z-SCAN TRANSMITTANCE CURVERUN FROM 1 TO [1-1/(2ˆ1.5)]=0.6464, WHICH correspond to Q run from 0to 1/2ˆ3/2=0.3535

for Q =0.01 : 0.001 : 0.3535

% Starting step of dividing/multiplying two matrices

for i = 1:1:rs

z = I (i,1);

T (i,2) = 1-Q/(1+z*z/(zo*zo));

if (selection == 2)

K (i,2)=I (i,2)/T(i,2);

else

K (i,2)=I (i,2)*T (i,2);

end

K (i,1)=I (i,1);

end

% Ending step of dividing/multiplying two matrices

%............................................

% Find max, min and row index of division/multiplication matrix

[maxValue, rowIdx max] =max (K (:,2),[ ],1);

[minValue, rowIdx min] = min (K (:,2),[ ],1);

%............................................

% Get max and min which is symmetry about z axis into matrix A

if abs ((maxValue-1)-(1-minValue))<se

j=j+1;

A (j,1)=abs (abs (K (rowIdx max,1))-0.858*zo)+abs (abs (K(rowIdx min,1))-0.858*zo);%

A (j,2)=maxValue;

A (j,3)=minValue;

1450020-26

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 27: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

The numerical methods for analyzing the Z-scan data

A (j,4)=Q;

A(j,5)=K (rowIdx max,1);%new

end

%............................................

end

% END OF RUNNING T(Z=0) OF OPEN-APERTURE Z-SCANTRANSMITTANCE CURVE

% Matrix A contains the peaks and valleys which are symmetry about z axis

if j==0

disp (‘The sample do not exhibit two photon absorption’);

return

end

[minValue, r] = min (A (:,1),[ ],1);% Find row index of peak and valley in matrixA whose z-coordinate is nearest to -0.858zo or +0.858zo

B (1,1)=A (r,2);

B (1,2)=A (r,3);

B (1,3)=A (r,4);

B(1,4)=A(r,5);

for j = 1:1:rs

TA (j,1) = I (j,1);

TA (j,2)= 1-B (1,3)/(1+TA (j,1)*TA (j,1)/(zo*zo));

if (selection == 2)

PU (j,2)=I (j,2)/TA(j,2);

else

PU (j,2)=I (j,2)*TA (j,2);

end

PU (j,1)=I (j,1);

end

1450020-27

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.

Page 28: The numerical methods for analyzing the Z-scan data

2nd Reading

June 24, 2014 13:57 WSPC/S0218-8635 145-JNOPM 1450020

L. T. Nguyen et al.

disp (‘The nonlinear absorption coefficient: ’);

Beta=(sqrt(8))*B(1,3)/(Io*Leff)

if (A(r,5)>0) & (selection == 2)

disp (‘The nonlinear refractive index: ’);

n2=(A(r,2)-A(r,3))/(0.406*2*pi*Io*Leff/lamda)

end

if (A(r,5)<0) & (selection == 2)

disp (‘The nonlinear refractive index: ’);

n2=-(A(r,2)-A(r,3))/(0.406*2*pi*Io*Leff/lamda)

end

if (A(r,5)>0) & (selection == 1)

disp (‘The nonlinear refractive index: ’);

n2=-(A(r,2)-A(r,3))/(0.154*(2*pi/lamda)*Io*Leff*(0.135ˆ(-0.214)))

end

if (A(r,5)<0) & (selection == 1)

disp (‘The nonlinear refractive index: ’);

n2=(A(r,2)-A(r,3))/(0.154*(2*pi/lamda)*Io*Leff*(0.135ˆ(-0.214)))

end

plot (PU (:,1),PU (:,2),TA (:,1),TA (:,2))

References

1. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan and E. W. Van Stryland, Sensitivemeasurement of optical nonlinearities using a single beam, IEEE J. Quantum Electron.26(4) (1990) 760–769.

2. G. Tsigaridas, M. Fakis, I. Polyzos, P. Persephonis and V. Giannetas, Z-scan techniquethrough beam radius measurements, Appl. Phys. B 76(1) (2003) 83–86.

3. E. W. Van Stryland and M. Sheik-Bahae, Z-scan measurements of optical nonlinear-ities, Characterization Techniques and Tabulations for Organic Nonlinear Materials(1998), pp. 655–692.

4. G. Tsigaridas, P. Persephonis and V. Giannetas, Effects of nonlinear absorption onthe Z-scan technique through beam dimension measurements, Materials Science andEngineering: B 165(3) (2009) 182–185.

5. R. K. Rekha and A. Ramalingam, Nonlinear characteristic and optical limiting effectof oil red O azo dye in liquid and solid media, J. Mod. Opt. 56(9) (2009) 1096–1102.

1450020-28

J. N

onlin

ear

Opt

ic. P

hys.

Mat

. 201

4.23

. Dow

nloa

ded

from

ww

w.w

orld

scie

ntif

ic.c

omby

UN

IVE

RSI

TY

OF

NE

W E

NG

LA

ND

LIB

RA

RIE

S on

10/

26/1

4. F

or p

erso

nal u

se o

nly.