41
The Neuropsychology of Reading Disorders: Diagnosis and Intervention Primary Presenter: Steven G. Feifer, D.Ed., NCSP School Psychologist Frederick County Public Schools Email: [email protected] Presentation Goals: 1. Discuss the pitfalls of relying an IQ/Achievement discrepancy model as the sole basis for identifying reading disorders in young children. 2. Link brain functions to the reading process and introduce a brain-based educational model to effectively identify and classify subtypes of reading disorders.

The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

The Neuropsychology of Reading Disorders:Diagnosis and Intervention

Primary Presenter: Steven G. Feifer, D.Ed., NCSP School Psychologist Frederick County Public Schools Email: [email protected]

Presentation Goals:1. Discuss the pitfalls of relying an IQ/Achievement discrepancy model as

the sole basis for identifying reading disorders in young children.

2. Link brain functions to the reading process and introduce a brain-based educational model to effectively identify and classify subtypes of reading disorders.

3. Discuss the various subtypes of reading disabilities from a neurobehavioral point of view, and tie in appropriate

educational strategies for each subtype.

4. Introduce the 90 minute dyslexia evaluation as a more comprehensive means to evaluate reading disorders in children and provide educators with more meaningful information to craft appropriate intervention techniques.

Page 2: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 2

*Copyright c 2000 by School Neuropsych Press, LLC

10 Pitfalls of Aptitude/Achievement Discrepancies

1. There is no universal agreement on what the discrepancy should be.

2. It remains unclear as to which IQ score should be used to establish a discrepancy.

3. A discrepancy model of reading disabilities precludes early identification.

4. Intelligence is more a predictor of school success, and not necessarily a predictor of successful reading.

5. There is little evidence to suggest that poor readers on the lower end of the reading distribution differ from individuals classified as dyslexic.

6. It is illogical to utilize just one method to calculate a learning disability when research from the neuropsychological literature has documented numerous subtypes of reading disabilities.

7. Discrepancy models are not developmentally sensitive toward different stagesof reading at different age groups.

8. A discrepancy model promotes a wait and fail policy forcing intervention to come after the fact.

9. Discrepancy formulas often do not detect subtle neurological variations such as organization and attention problems, poor memory and retrieval skills, and dyspraxias and dysphasias. In other words, they are too simplistic.

10. It's often used as a political means to regulate funding for special education.

Developmental Dyslexia: The term refers to an inability to acquire functional reading skills despite the presence of normal intelligence and exposure to adequate

educational opportunities. This term is often synonymous with the term"learning disabled", and assumed to represent 5 to 10 percent of all school-aged children.

Page 3: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 3

ALTERNATIVE ASSESSMENT METHODOLOGIESReauthorization of IDEA:

* President Bush signed the IDEA bill into law in December, 2004.* States may opt out of using a discrepancy model to identify learning disabilities, and replace by using a Response-to-Intervention model.* Gives school districts flexibility to craft a policy whereby students who do not respond to scientifically-based early reading programs may be considered eligible for special education services.* Requires districts with significant over-identification of minority

students to consider eliminating IQ testing and establishprocedures to reduce disproportional representation in special ed.

RESPONSE TO INTERVENTION MODEL

Page 4: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 4

ALTERNATIVE ASSESSMENT METHODOLOGIESCurriculum-Based Measurement – an assessment of reading fluency by selecting arandom probe is from the student’s basal reader, and the median number of words read correctly in one minute is recorded. Multiple measures in 3-minute intervals are administered throughout the year, instead of relying upon lengthy standardized tests.

Advantages: * Better ecological validity than norm referenced testing.* Quicker and cheaper than norm referenced testing.* Allows for earlier intervention opportunities.* Emphasis on discrepancy from peer performance, not IQ.* Evaluation hi-lights reading, not bureaucratic categories* Linked to a problem solving model. (Shinn, 2002)

Disadvantages: * Not a diagnostic approach. * Does not assess many other aspects of reading such as

comprehension. * Does not answer the most important question: Why?

NEUROPSYCHOLOGY: A BRAIN/BEHAVIORAL APPROACH

Neuropsychology: A hybrid utilizing both a medical and psychological model of human functioning which examines brain/behavior relationships.

The underlying assumption is that the brain is the seat of all behavior; therefore knowledge of cerebral organization should be the key to unlocking the

mystery behind most cognitive tasks.

Evolution of Reading: * Encompassed just the past 5000 to 6000 years * Approximately 1/3rd of world's population illiterate * Human beings seem pre-wired to acquire sound/symbol

language code. * Some estimates suggest 75% of children will learn to read

in spite of methodology (Mather, 1992). * 20 % of children need a specific method (ie reading recovery) * 5 % may never acquire this skill at a functional level

Brain: * Weighs approximately 1400 grams ( 3 pounds)* 100 billion cells comprised of neurons (gray matter) and glial cells

(white matter)* Each neuron makes contact with as many as 10,000 other neurons.* The firing rate of a neuron ranges from a few to several hundred per

second.* Makes up less than 2 percent of body weight, though uses up 25 percent

of oxygen supply and 70 percent of glucose.

Page 5: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 5

* DNA evidence suggests human brain has been evolving for approximately 5 million years.

GENERAL BRAIN STRUCTURES

a) Hemispheres - nearly 99 percent of right-handers and 67 percent of left handers of language housed in left hemisphere. Cerebral dominance usually refers to just language functions.

Gender Differences: Both hemispheres are not symmetrical, though more asymmetry noted in males and females. Thus, cortical functions tend to be more lateralized in males than females. For instance, in males, reading centers located primarily in left hemisphere, leaving little "back up" if damage occurs to this area. In females, reading centers may be housed in both hemispheres, leaving a "back up" function if there is cortical damage (Goldberg, 1981). Explains why only male stroke patients often lose speech, and perhaps why more boys than girls in special education.

Right hemisphere - dependent upon more white matter than gray matter, and tends to respond best to novel stimuli. Can comprehend language (mainly nouns) though cannot generate speech, spell, or decode non-words (Ogden, 1996).

Left hemisphere - dependent upon more gray matter, and tends to be geared toward over-learned tasks. Possesses a phonological route to reading and can read non-words.

b) Neocortex: Frontal Lobes - organizes and arranges information leaving the brain. Parietal Lobes - responsible for sensory and motor functions. Temporal Lobes – houses acoustically based information and language Occipital Lobes - visual processing centers of the brain.

c) Fiber Tracts: 1. Projection Fibers - involved in subcortical connections from lower brain regions, such as thalamus, to the neocortex.

2. Association Fibers - consist of both long and short fiberbundles that connect cortical areas to one another.

3. Commissural Fibers - primarily function to connect the two cerebral hemispheres. The largest of these fibers is the corpus callosum, a band of approximately 200 million

nerve fibers which connect each hemisphere.

d) Nuclei: Consist of bundles of nerve cells with a common function. For instance, the thalamus serves as a relay center in the brain toprocess all sensory input except for smell.

Page 6: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 6

4 KEY BRAIN CONCEPTS WITH RESPECT TO READING

Environmental Learning: (Kotulak, 1997)

* Average number of words spoken daily in a professional household……1500 -25003.5 million words by age three

* Average number of words spoken daily in a middle class household …..1000 - 15002.0 million words by age three

* Average number of words spoken daily in welfare household…………. 500 -8001.0 million words by age three

* Furthermore, children in welfare families hear negative remarks twice as often as positive ones (Kotulak, 1997).

* Human brain volume 95 % of its adult weight by age 5 (Stahl, 2000).

(1) At birth, the human brain weighs just 25% of its adult weight, thereby leaving more room for the environment to shape brain growth more than any other species (Chase, 1996).

Page 7: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 7

Adapted from Shaywitz (2004).

4 KEY BRAIN CONCEPTS WITH RESPECT TO READING

Fast Facts: * More synapses present in brain by age 6 than any other time (Stahl,2000). * 83 percent of dendritic sprouting occurs after birth (Berninger et al, 2002) * Glial cells guide the migration process by making tracks and pathways to

which neurons attach. Ectopias represent misplaced clusters of neurons that may be related to prenatal alcohol and nicotine consumption.

* Unlike cells in the PNS, cells in CNS generally do not regenerate (?).

STAGES OF BRAIN DEVELOPMENT:I. Proliferation - cells proliferate and divide in the developing fetus from

an inside to outside fashion. The cortex overproduces neurons, maximum growth complete before birth – maybe 1 trillion formed.

II. Migration - cells migrate to appropriate location in the brain.a) Aggregation - cells cluster into nuclei, like thalamus.b) Arborization - thickening of dendrites as cells

interconnect.

III. Differentiation - First 2 or 3 years post-natally, neurons continue to subdivide forming an overabundance of synapses. Thisoverproduction appears to help children recover from braindamage more easily than adults (plasticity).

Pruning - many more cells are produced than are needed. For maximum efficiency on a task, cell death is essential. Neuronal death and the re-organization of

axon- dendritic connections occurs during the first few years. Perhaps 50 to 90% eventually die (apoptosis) leaving the mature brain with 100 billion neurons.

Auditory Pruning - every child is born with the ability to discriminate all sounds. However, based upon exposure to cultural specific dialects, a childbecomes tuned to only sounds from host language. Explains why children born in another country continue to have foreign accents if

brought to the United States past age five.

(2) Prenatal factors have been linked to brain development, as proteins are crucial in forming latticework of synaptic connections between brain cells.

Page 8: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 8

4 KEY BRAIN CONCEPTS WITH RESPECT TO READING

SUMMARY: There are certain windows of opportunity for learning based upon the developing nervous system, brain growth spurts, and subsequent myelination. Sensory experiences are essential for teaching brain cells their jobs, and after a certain critical period, brain cells lose their opportunity to learn their jobs (Kotulak, 1997). For instance:

Vision: * If a child does not process visual experiences by age two, the sense of sight will never develop properly.

Hearing: * If a child does not hear words by age 10, they will have significant difficulty learning a language.

THE TIMING OF LEARNING

AGE SKILL BRAIN REGION

3 -10 months Attention & Reticular FormationAwareness

2 - 4 years Language Temporal LobesAcquisition

6 - 8 years Phonemic Inferior ParietalDevelopment and Temporal Lobes

10 - 12 years Abstract Inferior Parietal LobesLanguage and Frontal Lobes

14 - 16 years Judgement & Frontal LobesPlanning

* Increment in brain weight 5-10 percent over each 2 year period.

(3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the brain. (1) Sensory experience remains essential for teaching brain cells their jobs. (2) After a certain critical period, brain cells lose the opportunity to learn these jobs and seek out other duties to perform.

(4) Educators must synchronize instructional strategies with specific neuro-developmental windows to determine the most opportune time to offer a reading intervention.

Page 9: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 9

* Expansion not due to neuronal proliferation, but rather growth indendritic processes and myelination.

DEVELOPMENTAL READING MILESTONES:DEVELOPMENTAL READING MILESTONES:RED FLAGS FOR DYSLEXIA RED FLAGS FOR DYSLEXIA

Preschool Years:Preschool Years: * Trouble learning nursery rhymes.* Trouble learning nursery rhymes.* Speech and language delays.* Speech and language delays.* Inability to distinguish rhymes.* Inability to distinguish rhymes.* Frequent ear infections.* Frequent ear infections.* Failure to recognize letters in name.* Failure to recognize letters in name.

Kindergarten & 1Kindergarten & 1 stst Grade: Grade: * * Inability to generate rhyming words.Inability to generate rhyming words.** Inability to associate letters with sounds.Inability to associate letters with sounds.* Inability to segment words by syllables.* Inability to segment words by syllables.* Difficulty pulling apart words by segments such as “horseshoe” * Difficulty pulling apart words by segments such as “horseshoe”

can be divided up into “horse” and “shoe”.can be divided up into “horse” and “shoe”.* Difficulty recognizing the order of sounds in words. For* Difficulty recognizing the order of sounds in words. For

instance, “ instance, “say the word tiger without the g sound”.say the word tiger without the g sound”.* Difficulty reading common one-syllable sight words.* Difficulty reading common one-syllable sight words.* Frustration in school and complaints about reading.* Frustration in school and complaints about reading.

22 ndnd & 3 & 3 rdrd Grades: Grades: * Failure to read at least 40 words per minute.* Failure to read at least 40 words per minute.* Slow progress in acquiring basic reading skills, and working * Slow progress in acquiring basic reading skills, and working

at least one grade below level.at least one grade below level.* Inability to master basic functional sight words such as * Inability to master basic functional sight words such as “that,“that,

is, the, has, etc.”is, the, has, etc.”* Over-reliance on context to derive meaning from print.* Over-reliance on context to derive meaning from print.* Slower paced and effortful reading.* Slower paced and effortful reading.* Spelling skills which are not phonetically consistent.* Spelling skills which are not phonetically consistent.* Fear of reading aloud in class.* Fear of reading aloud in class.* Stumbling on multi-syllable words and phonetically irregular* Stumbling on multi-syllable words and phonetically irregular

words.words.* Oral reading lacks inflection and tendency to read through * Oral reading lacks inflection and tendency to read through

punctuation.punctuation.* Word retrieval difficulties in class discussions.* Word retrieval difficulties in class discussions.* Family history of reading difficulties.* Family history of reading difficulties.

Secondary Grades:Secondary Grades:* Inability to read at least 60 words per minute.* Inability to read at least 60 words per minute.* Poor fluency skills.* Poor fluency skills.* Unusually long hours spent doing homework.* Unusually long hours spent doing homework.* Disinclination to read for pleasure.* Disinclination to read for pleasure.* Fatigue quickly when reading.* Fatigue quickly when reading.* Mathematics a demonstrative strength.* Mathematics a demonstrative strength.* Tendency to substitute words when confronted with unfamiliar * Tendency to substitute words when confronted with unfamiliar

words in the text.words in the text.

Page 10: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 10

* Extreme spelling difficulties.* Extreme spelling difficulties.Adapted from Shaywitz, (2003).

HIGHER CORTICAL FUNCTIONING

Occipital Lobes - forms the posterior pole of the brain and processes visual input.. * Neurons most affected by environment as early deprivation leads to

fewer synapses. (Ventral Stream) * Deficits resulting in visual recognition and visual naming reflect

occipital/temporal junctions of left hemisphere (visual agnosia)and often co-occur with reading difficulties.

(Dorsal Stream) * Deficits in determining where an object is in space reflect occipital/parietal junctions and result in difficulty with letterand number recognition as well as reading maps and clocks.

* Also, skilled over-learned movements (handwriting) a function ofoccipital/parietal functions (angular gyrus) (Goldberg, 1989).

Temporal Lobes - Very involved in processing language and acoustical information.Most phonological discrimination tasks primarily take place in thesuperior temporal gyrus (plana temporale). This region is critical fordecoding the 44 phonemes which comprise the English language. * There is marked asymmetry in the structure of the temporal lobes,

with the left being larger than the right.* Damage to Wernicke's area impairs receptive language functioning.* Acoustic agnosia - inability to give meaning to nonlanguage sounds.* Very much involved in memory functioning, retrieval of words, auditory perception, and mood stability due to the many projection

fibers leading to limbic system. * Right temporal lobes involved with recognizing faces, interpreting

music, rhythm and pitch, and prosody of speech.

Parietal LobeFrontal Lobe

Temporal Lobe

Occipital Lobe

Page 11: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 11

* Mediates visual/verbal learning. HIGHER CORTICAL FUNCTIONING

Parietal Lobes - involved in sensory and tactile functioning as well as visual spatialorientation. The posterior portion of the inferior parietal loberepresents the interface of occipital, temporal, and parietal lobe

junctions. This is where many higher order or tertiary functions

take place and theoretically the seat of higher level intelligence. * Damage to left parietal lobe can lead to dyslexia, dysgraphia, and

dyscalculia, whereas damage to the right can lead to deficitsin visual spatial skills and constructional dyspraxia.

* Angular gyrus - interface between occipital and parietal lobes with deficits involving the visual spatial appreciation of words.

* Insular cortex - buried deep in the folds between parietal and temporal lobes. Some research has suggested involvement in automatizing the reading process (Paulesu, Frith, Snowling, Gallagher, Morton, Frackowiak, & Frith, 1996)

Frontal Lobes - the band conductor of the brain. Organizes and arranges informationleaving the brain. Involved in planning, judgement, impulse

control, cognitive flexibility, and executive functions. Last region of the brain to become fully myelinated.

* Represents 30 percent of the neocortex. * Broca's Area - responsible for the production of language. PET scans

have linked Broca's area to performance on rhyming tasks. Involved in the neurocircuitry of reading.

* Prefrontal Cortex - involved in shifting attention, a pre-requisite for reading comprehension.

NEUROIMAGING STUDIES OF DYSLEXIA(Posner & Raichle, 1994)

(1) Reading is clearly a left-hemispheric task..

(2) PET scans demonstrate the capacity of the brain to change areas being used as a result of instructional strategies.

(3) Well known visual words are not recorded in Wernicke’s area (superior temporal gyrus). PET scans reveal this area is quiet and increased activation in insular cortex.

(4) Insular Cortex - buried deep in the folds between in the posterior portion of the brain and may be responsible for the automaticity of reading (Paulesu, et al, 1996)

Page 12: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 12

NEUROIMAGING STUDIES OF DYSLEXIA

Shaywitz (2003)

* Nonimpaired readers activate primarily posterior portions of left hemisphere.* Impaired readers under-activate posterior regions and activate primarily frontal

areas.

THE NEURAL CIRCUITRY OF DYSLEXIA

Phonological Circuit: (Advanced readers skip steps #2 and #3)Step 1 - the English language is read from left to right. Visual information

projected to extrastriate cortex in right occipital lobe. Step 2 - Information travels via the corpus callosum to left temporal lobe

for phonemic coding (Grapheme/Phoneme analysis)Step 3 - Auditory cues used to decipher word from lexicon by way of angular

gyrus and supramarginal gyrus. Step 4 - Insular cortex automatizes process to allow for rapid and automatic word

recognition. Information then sent to frontal lobes for output.Step 5 - Whole word recognition travels to Broca's area by way of arcuate

fasciculus. This completes the articulatory loop and word is read aloud.

Page 13: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 13

3-HEADED MONSTER OF READING

CHARACTERISTICS OF READING DISABLED CHILDREN:* Poor decoding skills * Weak vocabulary development* Inability to read strategically* Poor spelling* Few reading opportunities outside of school* Poor motivation and confidence

3 WAYS TO IDENTIFY WORDS IN PRINT:

1. 1. Phonological CodePhonological Code - using sound patterns to identify words. - using sound patterns to identify words.2. 2. Orthographic CodeOrthographic Code - using visual contour and shapes to identify words - using visual contour and shapes to identify words

DECODING

FLUENCY

COMPREHENSION

Page 14: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 14

3. 3. Semantic CodeSemantic Code- using meaning of text to identify words.- using meaning of text to identify words.SUBTYPES OF DYSLEXIA

1. Phonological Subtype - Great difficulty using phonological route in reading, so visual route to lexicon used. There is little

relianceon letter to letter sound conversion. Instead, an over-relianceon visual cues to determine meaning from print.

Neuropsychological significance: Left superior temporal gyrus.

Assessment: Language delays Difficulty with rapid naming Trouble detecting rhyming words History of reading difficulties in family Inaccurate oral reading Difficulty decoding nonwords Dysphonetic spelling

Structural Explanations: (1) The most compelling evidence that actual structural formations of the dyslexic brain inhibits phonological processing stems from Geschwind & Galaburda (1985). Deviations of the plana temporale or superior surface of the temporal lobe may explain deviations in reading performance.

(2) Asymmetry of the plana temporale is visible already at 31 weeks of fetal age (Galaburda, Rosen, & Sherman, 1990). Hynd, Marshall, & Clikeman (1991) also concurred that deviations in the development in the cortex generally occur between the fifth and seventh month in fetal development, with neuronal abnormalities noted in the left temporal and bilateral frontal lobes. According to Hynd et al (1991), there is a big spurt in brain weight between the 24th and 26th prenatal week. This is characterized by the development of the various gyri and sulci of the brain, and once this general pattern is laid out, it remains fairly constant. Thus, deviations in the plana temporale are visible at this time, perhaps derived from neural ectopias, lending credence to the possibility of actually detecting a learning disability prenatally.

(3) Tallal, Miller & Fitch (1993) attributed phonological deficits to difficulty detecting rapidly changing acoustic elements of speech. Thus, subtle auditory perceptual deficits, such as differentiating between a “ba” sound and a “da” sound may be the underlying deficit in phonological dyslexia. Basic premise behind Fast Forward technique.

Page 15: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 15

PHONOLOGIAL DYSLEXIA INTERVENTIONSError Analysis:

Same sound/Different spelling Irregular Wordsaye listenbuy debtby knowdie psychologyhi rightthai swordheight bombguide clue

Under Age 7: Fast Forword (Tallal) Earobics I Phono-Graphix Lindamood Phoneme Sequencing

Program (LIPS)

Ages 7 - 12: Alphabetic Phonics (Orton-Gillingham)

Slingerland VAKT LIPS Project Read Synthetic Phonics Approach

Over Age 12: Wilson Reading System SRA Corrective Reading

Page 16: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 16

SURFACE DYSLEXIA

2. Surface Dyslexia - sometimes referred to as visual form dyslexia or dyseidetic dyslexia as characterized by an inability to visualize words in a fashion where the process of reading becomes automatic. These children tend to over-rely on sound/symbol relationships as the process of reading never becomes automatic. Words are painstakingly broken down to individual phonemes and read very slowly and laboriously, especially where phonemes and graphemes are not in a 1 to 1 correspondence.

Neuropsychological significance: Occipital/parietal junctures of angular gyrus, role of insular cortex, and corpus callosum deficiencies. Assessment Techniques: Jordan Left Right Reversal Test

SB5 (Visual-Spatial Processing) Beery Visual Motor Integration Test

NEPSY (arrows) WISC IV (Block Design, Matrix Reasoning)

RIAS (NIX Index) WJ III (Spatial Relations, Visual Closure)

Structural Explanations:

(1) Goldberg (1989) reasoned that some reading and writing deficits may occur due to the disintegration of visual and spatial representations in our brains. Areas of the occipital lobe (processing vision) and the parietal lobe (processing spatial awareness) intersect in the inferior parietal region known as the angular gyrus (interface of occipital and parietal lobes). In the left hemisphere, this region of our brain allows for the visual-spatial appreciation of linguistic information.

(2) Insular Cortex - buried deep in the folds between parietal and temporal lobes. PET studies have suggested involvement in automatizing

the reading process (Paulesu, et. al, 1996)

(3) Multiple Pathway Model (Shaywitz, 2003) - there are multiple pathways in

the brain which modulate various aspects of the reading process. These consist of two relatively slow pathways which dyslexic readers over-rely upon, and one quicker pathway used by normal readers.

(a) Broca’s Area (Inferior frontal gyrus) reads by slowly sounding out words. The end point of the inner articulation system.

(b) Parietal-Temporal (Supramarginal gyrus) region slowly pulls words apart by analyzing the spatial arrangement of sounds. Crucial in spelling process.

(c) Occipital-Temporal region automatically recognizes word forms. Dyslexics tend to under-activate this region.

Page 17: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 17

SURFACE DYSLEXIA INTERVENTIONS

(4) Magnocellular pathway deficits have been linked to speed of temporal lobe processing (Demb, Boynton, & Heeger 1997). Research suggests that lack of visual motion discrimination, not poor temporal lobe processing at theroute of dyslexia. .

* Some studies have linked deficits in this circuitry affects up to 75 percent of dyslexics (Ridder, Borting, Coope, McNeel, & Huang, 1997)

* Abnormally small cells presumed to slow processing speed from retinal ganglion cells projected to lateral geniculate nucleus of thalamus.

This in turn slows processing to primary visual cortex. Therefore, slower reading due to limited processing by visual cortex (Demb, 1997).

* Hypothesis not well supported in literature. Most agree that reading is a phonological and linguistic deficit, not a visual one.

Error analysis of Surface Dyslexia:Word Read as:island ……………………… izlandgrind ………………………. grinnedlisten ……………………… listonbegin ……………………… begginlace ……………………….. lake

Remediation Techniques: Under Age 7: Analytic or Embedded Phonics Approach("top down" methodology)

Distar Reading Recovery

Ages 7 - 12: Great Leaps program Neurological Impress method

Over Age 12:…. Neurological Impress method Wilson Reading System Laubach Reading Series

Page 18: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 18

MIXED DYSLEXIA

3. Mixed Dyslexia - severely impaired readers with characteristics of both phonological deficits as well as visual/spatial deficits. These readers haveno usable key to the reading and spelling code. Very bizarre error patterns observed.

Error Analysis of Mixed Dyslexics:Word Read as:advice exvicescorrect corexsviolin vilenmuseum musunepossession persessivematerial mitear

Structural Explanations: (1) The corpus callosum consists of a band of approximately 200 million nerve fibers connecting the two hemispheres of the brain. Some studies (Hynd, Hall, Novey, Eliopulos, Black, Gonzalez, & Edmonds, Riccio, & Cohen, 1995) have suggested that the genu of the corpus callosum is much smaller in dyslexic individuals.

(2) According to Bakker (1992), reading and spelling are most strongly associated with right-hemisphere activity during the first two years of initial reading. However, there is a rapid shift toward left-hemisphere activity after that initial phase. Therefore, orthographic codes allow beginning readers to detect key features in words: however, by the end of 1st grade there is a hemispheric shift of reading mediated primarily by the left hemisphere. Mixed dyslexia may reflect deficits in the ability of the brain to shift modes of operation.

(3) Human information processing occurs on the order of milliseconds, and is greatly dependent upon multiple neural networks distributed throughout the brain and operating in parallel time (Berninger & Richards, 2002). Thus, multiple breakdowns in both the phonological route (superior temporal gyrus) , the visual-spatial route (angular gyrus), and the semantic route (frontal lobes) may lead to mixed dyslexia.

(4) According to Pennington et al., (1999) the insular cortex, which may be associated with the automatic retrieval of linguistic codes, is smaller in dyslexics. Neuroimaging studies have demonstrated that dyslexics do not activate this brain region when compared to controls (Corina, Richards, Serafini,

Richards, Steury, Abbott, Echelard, Maravilla, & Berninger, 2001).

Page 19: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 19

READING COMPREHENSION

3 Factors Associated with Reading Comprehension:

(1) Content Affinity – attitude and interest toward specific material.

(2) Working Memory – the ability to temporarily suspend information while simultaneously learning new information. Working memory is the amount of memory needed to perform a cognitive task, and hindered most by anxiety.

(3) Executive Functioning – the ability to self-monitor and guide performance on a given problem solving task. The strategy a student uses to decode words as well as to organize information in a meaningful manner.

Fluency

Comprehensionmmn

PhonologicalProcessing

Page 20: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 20

READING COMPREHENSION INTERVENTIONS

(a) Stop and Start technique – the student reads a passage out loud, and every 30 seconds the teacher says “stop” and asks questions about the story. Eventually the time interval is lengthened.

(b) Directional Questions – ask questions at the beginning of the text instead of the end so students can become more directional readers.

(c) Story Maps – a pre-reading activity where graphic organizers are used to outline and organize information prior to reading the text.

(d) Narrative retelling – have the child retell the story after reading it aloud.(e) Read Aloud – reading out loud allows students to hear their own voices and

can facilitate working memory.(f) Multiple Exposure – encourage students to skim the material upon reading

for the first time, with emphasis on chapter and text headings. Read for detail on the second exposure of the text.

(g) Active Participation – encourage active reading by getting children in the habit of note-taking or putting asterisks next to important material in the text.

(h) Create Questions – have students write their own test questions about the material.

(i) Reduce Anxiety – anxiety inhibits working memory, and leads to ineffective recall. Children who are anxious about reading out loud in front of their classmates should be provided an opportunity to read in a “safety zone” in class. This may also help to eliminate distractions as well.

(j) Medication Management – often students with attention-deficit-disorder struggle with passage comprehension skills. Proper medication management of the disorder can help foster better comprehension.

(k) Practice Terminology – practice defining new terms and concepts prior to reading material with dense language. Vocabulary enrichment is often the key to improving comprehension.

(l) Classroom Discussions – introduce new topic areas with general classroom discussions to capture a student’s attention and interest prior to reading the material.

(m) Sequencing Tasks – present random words out of sequence and have children arrange them to make a sentence. Next, present sentences out of sequence and have children arrange them to make a paragraph. Lastly, present paragraphs out of sequence, and have children arrange them to make a story. This type of organization drill will facilitate sequencing linguistic material.

(n) Increase Fluency – for younger students, greater fluency allows for reading to become a more automatic process, thereby freeing up cognitive resources to concentrate on the passage itself, as opposed to mechanically decoding each word in the passage.

Page 21: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 21

DEEP DYSLEXIA4. Deep Dyslexia - a rare form of reading comprehension disorder characterized by

impairments reading words with abstract meanings, but reading more concrete, easily imagined words are in tact (McCarthy & Warrington,1990). This disorder may reflect the right hemisphere’s feeble attempt to read, thus explaining why words that conjour up a visual image are read best. Semantic errors are the

hallmark of this disorder.

This is a double deficit type of reading disability as the child has poor sound/symbol relationships and often makes semantic substitution errors when

reading aloud. Very poor rapid recognition of words.

Neuropsychological significance: * difficulty activating left hemisphere (right hemisphere reading)

* damage to supramarginal gyrus or angular gyrus * subcortical damage such as to the thalamus

Error Patterns of Deep Dyslexics:

Semantic Miscues Visual Miscuesdinner……… food stock…….. shockoccasion…… event crowd …… crowncemetery ….. burial grew …….. greenwatch …….. .clock saucer …… sausagegiggle ……. . laugh bead …….. .bread

Remediation Techniques for Mixed and Deep Dyslexia: An eclectic approach capitalizing on the particular strengths of the child. Use

multi- sensory of Orton-Gillingham program, Great Leaps program, and Neurological Impress method depending upon the age, skill

level, and neurodevelopemental profile of the child.

Page 22: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 22

SUBTYPES OF DYSLEXIA

Low Incidence Types of Dyslexias:a) Hyperlexia - the uncanny ability to decode words despite significant

cognitive deficiencies. Comprehension often very poor, though decoding and spelling skills well developed.

Anatomical Explanation - phonological loop in tact or preserved in spite of damage to other brain regions.

b) DeJerine Syndrome - Dyslexia without dysgraphia. The child has little difficulty writing, though cannot read. Also known as word form dyslexia, as child can identify words if letters are spelled aloud (auditory input) as opposed to identifying words from print.

Anatomical Explanation - Disconnection of visual to auditorysystem via corpus callosum.

c) Neglect Dyslexia - inability to read words on left side of a page. Usually nota developmental dyslexia, but can occur from head injury.

Anatomical Explanation - Often lesion to right parietal lobedisrupts brain's ability to perceive and identify informationfrom contralateral side (left side).

d) Wernicke's Dyslexia - the inability to comprehend written material despite adequate intelligence and word identification skills.

. Anatomical Explanation – Damage to Wernicke’s area in temporal lobes produces receptive aphaasia.

Page 23: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 23

90 MINUTE DYSLEXIA EVALUATION1. Cognitive Functioning :

* WISC IV * WJ-III * Cognitive Assessment System * Stanford-Binet Intelligence Scale V * RIAS

2. Phonological Awareness: * DIBELS * NEPSY (Phonological Processing) * WJ III (Sound Blending, Word Attack) * Phonological Awareness Test (Robertson & Satter) * Comprehensive Test of Phonological Processing (C-TOPP) * Process Assessment of the Learner (PAL) * Lindamood Auditory Conceptualization Test (LAC)

3. Rapid Naming Tests: * DIBELS (Letter Naming)

* NEPSY (Verbal Fluency & Speeded Naming) * Controlled Oral Word Association (COWA) "FAS" test * Process Assessment of the Learner (PAL) * Rapid Automatized Naming Tests (Denckla)

* Comprehensive Test of Phonological Processing (C-TOPP)

4. Verbal Memory Tests: * Test of Memory and Learning (TOMAL) * Children's Memory Scales (CMS) * California Verbal Learning Test-Children's Version * Rey Auditory Verbal Learning Test * NEPSY (Comprehension of Instructions) * WRAML-II

5. Reading Fluency Measures: * Gray-Oral Reading Test –Fourth Edition (GORT-4)

* Woodcock-Johnson III * WIAT II * Curriculum Based Measurement * Informal Reading Inventories

6. Visual Spatial Skills: * NEPSY (Arrows)

* Jordan Left Right Reversal Test * Bender Gestalt II * Beery Visual Motor Integration Test * RIAS (NIX Index) * Rey-Osterrieth Complex Figure Test

* WJ III (Spatial Relations, Visual Matching)

Page 24: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 24

* SB V (Visual-Spatial Processing)

90 MINUTE DYSLEXIA EVALUATION

7. Executive Functioning: * BRIEF * Wisconsin Card Sort Test

* Delis-Kaplan Executive Functioning Scale * NEPSY (Tower)

* Category Test * Stroop Test

8. Family History:

KEYS TO ASSESSMENT

Under Age 7: Intelligence tests should not be interpreted solely from a level of performance perspective, but rather should be used as a tool to determine how young children process information. According to Lyon (1996), an early screening battery should include specific measures of: (1) Phonological Awareness (2) Rapid Naming Skills (3) History of reading difficulty in family

Ages 7 - 12: Aptitude/Achievement discrepancies certainly have some merit at this age, but should not be used as a necessary or sufficient condition for a child to be labeled as learning disabled. When evaluating these students, emphasis should be placed on exposure to reading instruction as well as the aforementioned processing deficits. In addition, fluency is an important factor as well, and can easily be ascertained by curriculum based measurement.

Over Age 12: The primary emphasis when evaluating secondary students should be on reading fluency and comprehension. Attentional and emotional issues can severely impact comprehension, in addition to memory and metacognitive deficits. As stated previously, students who have not mastered the phonological code at this age may never do so. Particular emphasis should be placed on executive function types of issues.

Page 25: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 25

SUMMARY OF READING DEVELOPMENTAND INSTRUCTIONAL APPROACHES

(Beitchman & Young, 1997)

Reading Stage Skills to Be LearnedDeficits Associated

with RDInstructional Approaches

Prereading (preschool age)

Recognition of letter names and some words (e.g., own name)

Beginning of phono-logical awareness (e.g., awareness of similarities/ differences between phonemes, nursery rhyme knowledge

Limited knowledge of rhyme, letter names

Slowness in naming highly familiar visual stimuli (e.g., objects, colors, numbers)

Training in phonemic awareness (programs that draw attention to sound patterns in words), training in the alphabet—letter names and corresponding sounds.

Decoding Stage (beginning grades 1 and 2)

Use of letter cues to decode words

Basic correspondences between letters or letter combinations and sounds

Limited phonological processing skills

Few words recognized by “sight”

Sounding out of words is often inaccurate, as is spelling

Phonics programs that emphasize letter-sound correspondences, whether in isolation or in the context of words

Transitional Reader (beginning in grades 2 and 3)

Gain fluency Integrate decoding

and context cues Decode automatically

and with less conscious effort so that resources can be allocated to comprehension of text

Reading lacks fluency and expressives, although generally accurate

Reading comprehension is limited

Repeated reading of slightly challenging text to improve fluency and comprehension

Fluent, Independent, Functional Reading

Oral reading is fluent and expressive

Silent reading for comprehension or information makes up the majority of reading activity

Comprehension problems due to poor comprehension-monitoring, working memory limitations, and limited domain knowledge

Teaching of reading comprehension, metacognitive and memory-enhancing strategies (e.g., self-interrogation, use of rehearsal and elaboration), use of advance organizers to access background knowledge and organize information

Page 26: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 26

ReferencesBadian, N.A., McAnulty, G.B., & Duffy, F.H. (1990). Prediction of dyslexia in

kindergarten boys. Annals of Dyslexia, 40, 152-169.

Bakker, D.J. (1992). Neuropsychological classification and treatment of dyslexia. Journal of Learning Disabilities, 25, 102-109.

Beitchman, J. H. & Young, A. R. (1997). Learning disorders: With a special emphasis on

reading disorders: A review of the past 10 years. Journal of the American Academy of Child and Adolescent Psychiatry, 36(8), 1020-1030.

Berninger, V.W., & Richards, T.L. (2002). Brain literacy for educators and psychologists. San Diego, CA: Academic Press.

Chase, C. H. (1996). Neurobiology of learning disabilities. Seminars in Speech and Language, 17 (3), 173-181.

Corina, D., Richards, T., Serafini, S., Richards, A., Steury, K., Abbott, R., Echelard, D.,Maravilla, K., & Berninger, V. (2001). fMRI auditory language differencesbetween dyslexic and able reading children. NeuroReport, 12, 1195-1201.

Demb, J.B., Boynton, G.M., & Heeger, D.J. (1997). Brain activity in visual cortex predicts individual differences in reading performance. Proceedings from the National Academy of Science, 94, 13363.

Felton, R.H., Naylor, C.E., & Wood, F.B. (1990). Neuropsychological profile of adult dyslexic. Brain and Language, 39, 485-497.

Flowers, L. (1993). Brain basis for dyslexia: A summary of work in progress. Journal of Learning Disabilities, 26, 575-582.

Galaburda, A.M., Rosen, G.D., & Sherman, G.F. (1990). Individual variability in cortical organization: Relationship to brain laterality and implications to function. Neuropsychologia, 28, 529-546.

Geschwind N., & Galaburda, A.M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Archives of Neurology, 42, 634-654.

Goldberg, E. (1989). Gradiental approach to neocortical functional organization. Journal of Clinical and Experimental Neuropsychology, 11, 4, 489-517.

Page 27: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 27

Goldberg, E., & Costa, L. (1981). Hemispheric differences in the acquisition and use of descriptive systems. Brain and Language, 14, 144-173.

Hynd, G.W., Hall, J., Novey, E.S., Eliopulos, R.T., Black, K., Gonzalez, J.J., Edmonds, J.E., Riccio, C., & Cohen, M. (1995). Dyslexia and corpus callosum morphology. Archives of Neurology, 52, 32-38.

References (Continued)

Hynd, G.W., Marshall, R.M., & Clikeman M.S. (1991). Developmental dyslexia, neurolinguistic theory, and deviations in brain morphology. Reading and Writing: An Interdisciplinary Journal, 3, 345-362.

Hynd, G.W., & Semrud-Clikeman, M. (1989). Dyslexia and brain morphology. Psychological Bulletin, 106, 447-482.

Kotulak, R., (1997). Inside the Brain. Kansas City: Andrews McMeel Publishing.

Kolb, B. & Whishaw, I.Q. (1996). Fundamentals of human neuropsychology: fourth edition. New York: W.H. Freeman and Company.

Lyon, G. R. (1996). Learning Disabilities. The Future of Children: Special Education for StudentsWith Learning Disabilities, Vol. 6 (1), 54 - 73.

Mather, N. (1992). Whole language reading instruction for students with learning disabilities: Caught in the cross fire. Learning Disabilities Research and Practice,

7, 87-95.

McCarthy, R.A, & Warrington, E.K. (1990). Cognitive Neuropsychology: A clinical introduction. New York: Academic Press, Inc.

Ogden, J. (1996). Phonological dyslexia and phonological dysgraphia following left and right hemispherectomy. Neuropsychologia, 34 (9), 905-918.

Paulesu, E., Frith, U., Snowling, M., Gallagher, A., Morton, J., Frackowiak, R.S.J., Frith, C.(1996). Is developmental dyslexia a disconnection syndrome? Brain, 119, 143-157.

Pennington, B., Filapek, P., Lefly, D., Churchwell, J., Kennedy, D., Simon, J., Filley, C., Gallaburda, A., Alarcon, M., & DeFries, J. (1999). Brain morphometry in readingdisabled twins. Neurology, 53, 723-729.

Posner, M.I., & Raichle, M.E. (1994). Images of the Mind. New York: W. H. FreemanCompany.

Ridder, W.H., Borting, E., Cooper, M., McNeel, B., & Huang, E. (1997). Not all dyslexicsare created equal. Optometry and Vision Science, 74, 99-104.

Page 28: The Neuropsychology of Reading Disorders:  · Web viewNeuropsychology of Reading Disorders. Page 28 (3) Wiesel and Hubel won the Nobel Prize for two landmark discoveries about the

Neuropsychology of Reading DisordersPage 28

Rourke, B.P. & Del Dotto J. (1994) Learning Disabilities: A neuropsychological perspective. New York: Sage Publications.

Schultze, R.T., Cho, N.K., Staub, L. H., Kier, L.E., Fletcher, J.M., Shaywitz, S.E., Shankweler, D.P., Katz, L., Gore, J.C., Duncan, J.S., & Shaywitz, B.A.,(1994). Brain morphology in normal and dyslexic children: The influence of sex and age. Annals of Neurology, 35, 732-742.

References (Continued)

Shaywitz, S. (1996). Dyslexia. Scientific America, 2-8.

Shaywitz, S.,(2003). Overcoming Dyslexia.. New York: Alfred A. Knoff Publishers.

Shinn, M.R. (2002). Best practices in using curriculum-based measurement in a problem-solving model. In A. Thomas & J. Grimes (Eds.) Best practices in school

psychologyIV. Bethesda, Maryland. National Association of School Psychologists.

Siegal, L.S. (1992). An evaluation of the discrepancy definition of dyslexia. Journal of Learning Disabilities, 25 (10), 618-629.

Stahl, S.M. (2000). Essential Psychopharmacology. New York: Cambridge University Press.

Tallal, P., Miller, S., & Fitch, R. H. (1993). Neurobiological basis of speech. A case for the preeminence of temporal speech. Annals of the New York Academy of Science, 682, 27-47.