152
The Mu3e Experiment Dirk Wiedner, Heidelberg On Behalf of the Mu3e Collaboration 22 nd October 2014 22/10/2014 Dirk Wiedner, Mu3e collaboration 1

The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

Dirk Wiedner, Heidelberg

On Behalf of the Mu3e Collaboration

22nd October 2014

22/10/2014 Dirk Wiedner, Mu3e collaboration 1

Page 2: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Overview

• Physics Motivation

• Mu3e Experiment

• Timing detectors

• HV-MAPS

• Summary

2 Dirk Wiedner, Mu3e collaboration 22/10/2014

Page 3: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Physics Motivation

22/10/2014 Dirk Wiedner, Mu3e collaboration 3

Standard model:

• No lepton flavor violation

Lepton flavor violation?

Page 4: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Physics Motivation

22/10/2014 Dirk Wiedner, Mu3e collaboration 4

Standard model:

• No lepton flavor violation

Lepton flavor violation?

Page 5: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Physics Motivation

22/10/2014 Dirk Wiedner, Mu3e collaboration 5

Standard model:

• No lepton flavor violation, but:

o Neutrino mixing

o Branching ratio <10-54 →unobservable

Lepton flavor violation: μ+→e+e-e+

Page 6: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Signal

22/10/2014 Dirk Wiedner, Mu3e collaboration 6

• μ+→e+e-e+ rare in SM

• Enhanced in:

o Super-symmetry

o Grand unified models

o Left-right symmetric

models

o Extended Higgs sector

o Large extra dimensions

o … Tree level

SUSY

Page 7: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Signal

22/10/2014 Dirk Wiedner, Mu3e collaboration 7

• μ+→e+e-e+ rare in SM

• Enhanced in:

o Super-symmetry

o Grand unified models

o Left-right symmetric

models

o Extended Higgs sector

o Large extra dimensions

Rare decay (BR<10-12, SINDRUM)

• For BR O(10-16) >1016 muon decays

High decay rates O(109 muon/s)

Page 8: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Signal

22/10/2014 Dirk Wiedner, Mu3e collaboration 8

→Maximum electron

energy 53 MeV

Page 9: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Background

22/10/2014 Dirk Wiedner, Mu3e collaboration 9

• Combinatorial background

o μ+→e+νν & μ+→e+νν & e+e-

o many possible combinations

Good time and

Good vertex resolution

required

Page 10: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Background

22/10/2014 Dirk Wiedner, Mu3e collaboration 10

• μ+→e+e-e+νν

o Missing energy (ν)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

Page 11: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Background

22/10/2014 Dirk Wiedner, Mu3e collaboration 11

• μ+→e+e-e+νν

o Missing energy (ν)

Good momentum resolution

(R. M. Djilkibaev, R. V. Konoplich, Phys.Rev. D79 (2009) 073004)

Page 12: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Challenges

22/10/2014 Dirk Wiedner, Mu3e collaboration 12

Page 13: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Challenges • High rates

• Good timing resolution

• Good vertex resolution

• Excellent momentum resolution

Extremely low material budget

22/10/2014 Dirk Wiedner, Mu3e collaboration 13

Page 14: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Challenges • High rates: 109 μ/s

• Good timing resolution: 100 ps

• Good vertex resolution: ~200 μm

• Excellent momentum resolution: ~ 0.5 MeV/c2

Extremely low material budget:

1x10-3 X0 (Si-Tracker Layer)

HV-MAPS spectrometer

50 μm thin sensors

B ~1 T field

+ Timing detectors

22/10/2014 Dirk Wiedner, Mu3e collaboration 14

Page 15: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 15

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 16: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 16

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase Ia

Page 17: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 17

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 18: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 18

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 19: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 19

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase Ib

Page 20: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 20

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Phase II

Page 21: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

The Mu3e Experiment

22/10/2014 Dirk Wiedner, Mu3e collaboration 21

• Target double hollow cone

• Silicon pixel tracker

• Scintillating fiber detector

• Tile detector

• Muon beam O(109/s)

• Helium atmosphere

• 1 T B-field

Page 22: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

PSI μ-Beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 22

Paul Scherrer Institute Switzerland:

• 2.2 mA of 590 MeV/c protons

• Phase I: o Surface muons from target E

o Up to a ~108 μ/s

• Phase II: o New beam line at the neutron

source:

• High intensity Muon Beam

o Several 109 μ/s possible

>1016 muon decays per year

BR 10-16 (90% CL)

Page 23: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing Detectors

22/10/2014 Dirk Wiedner, Mu3e collaboration 23

50 ns

Page 24: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing Detectors

22/10/2014 Dirk Wiedner, Mu3e collaboration 24

0.1 ns

Page 25: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing Detectors

22/10/2014 Dirk Wiedner, Mu3e collaboration 25

• Fiber detector

o Before outer pixel layers

o 250 μm scintillating fibers

o SiPMs

o ≤ 1 ns resolution

• Tile detector

o After recurl pixel layers

o 8.5 x 7.5 x 5 mm3

o SiPMs

o ≤ 100 ps resolution

Page 26: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Fiber Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 26

• Fiber ribbon modules

o 16 mm wide

o 360 mm long

o 3 or 4 layers fibers of 250 μm dia.

o 6 STiC readout chips Scintillating fiber ribbons

Page 27: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Fiber Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 27

• Total fiber detector:

o 24 ribbon-modules

o 144 read-out chips

o 4536 fibers

Scintillating fiber ribbons

Page 28: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Fiber Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 28

• Prototype ribbons built:

o 3 and 4 layers

o 16 mm wide

o 360 mm long

• CAD in progress

Scintillating fiber ribbons

Page 29: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Details … staggered layers

254 μm

433

μm Thickness:

• theoretical ~ 683 mm • measured ~ 750 mm < 1 g of glue / ribbon

700

μm

horizontal gap between fibers ~ 4 μm

250 μm

22/10/2014 Dirk Wiedner, Mu3e collaboration 29

Alternative: Square shape fibers

Page 30: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Time Resolution Dt = TSi-PM1 – TSi-PM2

σΔt ≈ 800 ps with at least 3 g detected (~95 % efficient) σMT ≈ 400 ps ≥ 3 g reproducible results

• Time resolution does not show 1 / n behavior: improve on timing algorithm! • Si-PM transit time spread ~100 ps has almost no effect

• Real issue: time in all ~9k channels to few 100 ps

22/10/2014 Dirk Wiedner, Mu3e collaboration 30

Page 31: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tile Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 31

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

Sketch of Tile detector station

Page 32: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tile Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 32

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

CAD of Tile Detector integration

Page 33: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Time Resolution

22/10/2014 Dirk Wiedner, Mu3e collaboration 33

• Coincidence between 2 tiles in a row

• Time resolution ≈ 70 ps

• Time-walk effect ≈ 5 % (4 ps)

• Only small dependence on chip settings

150 ps

64 ps 70 ps

Page 34: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Efficiency

22/10/2014 Dirk Wiedner, Mu3e collaboration 34

• Require hit in first & last column

• Look for hit in middle channel

• Efficiency > 99.5%

• Bad time values for ≈ 40% of hits o Known bug in STiC 2.0

o Will be fixed in STiC 3.0

Page 35: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Sensors

22/10/2014 Dirk Wiedner, Mu3e collaboration 35

Page 36: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

HV-MAPS

22/10/2014 Dirk Wiedner, Mu3e collaboration 36

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased

by Ivan Peric I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

P substrate

N well

NMOS PMOS

Page 37: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

HV-MAPS

22/10/2014 Dirk Wiedner, Mu3e collaboration 37

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased ~60V

o Depletion layer

o Charge collection via drift

Fast <1 ns charge collection

o Thinning to < 50 μm possible

by Ivan Peric I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

P substrate

depletion layer

N well

-60V

~9μm

Page 38: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

HV-MAPS

22/10/2014 Dirk Wiedner, Mu3e collaboration 38

• High Voltage Monolithic Active Pixel Sensors

• Pixel sensors

• HV-CMOS technology

• N-well in p-substrate

• Reversely biased ~60V

o Depletion layer

o Charge collection via drift

Fast <1 ns charge collection

o Thinning to < 50 μm possible

• Integrated readout electronics

by Ivan Peric I. Peric, A novel monolithic pixelated particle detector implemented in high-voltage CMOS technology Nucl.Instrum.Meth., 2007, A582, 876

Page 39: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Chip Prototypes

22/10/2014 Dirk Wiedner, Mu3e collaboration 39

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part

• Small pixel capacitance

• Temperature tolerant

o Digital part

• Mostly ready

MuPix4

Page 40: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Chip Prototypes

22/10/2014 Dirk Wiedner, Mu3e collaboration 40

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 103 x 80 μm2 each

• Ivan Perić ZITI

o Analog part

• Small pixel capacitance

• Temperature tolerant

o Digital part

• Mostly ready

MuPix6

Page 41: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

HV-MAPS Test Results

22/10/2014 Dirk Wiedner, Mu3e collaboration 41

Page 42: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Thinned Sensors

22/10/2014 Dirk Wiedner, Mu3e collaboration 42

• Single dies thinned:

o MuPix2 thinned to < 80μm

o MuPix3 thinned to < 90μm

o MuPix4 thinned to 50μm

• Good performance of

thin chips

o In lab

o In particle beam

MuPix3 thinned < 90μm

Page 43: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Thinned Sensors

22/10/2014 Dirk Wiedner, Mu3e collaboration 43

• Single dies thinned:

o MuPix2 thinned to < 80μm

o MuPix3 thinned to < 90μm

o MuPix4 thinned to 50μm

• Good performance of

thin chips

o In lab

o In particle beam

MuPix4 thinned to 50μm

Page 44: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Thinned Sensors

22/10/2014 Dirk Wiedner, Mu3e collaboration 44

• Single dies thinned: o MuPix2 thinned to < 80μm

o MuPix3 thinned to < 90μm

o MuPix4 thinned to 50μm

• Good performance of thin chips o In lab

o In particle beam

• Similar Time over Threshold (ToT) o PSI test-beam

o PiM1 beam-line

o 193 MeV π+

Reference

Thin < 90μm

Time Over Threshold

Page 45: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Temperature Dependence

22/10/2014 Dirk Wiedner, Mu3e collaboration 45

• MuPix4 prototype

• Latency measurement

o LED pulse to…

o Pixel discriminator output

• Setup in Oven

o Temperature between

23°C and 70°C

Very little temperature

dependence

O(10ns) in latency

Within resolution of setup

Page 46: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Signal to Noise

22/10/2014 Dirk Wiedner, Mu3e collaboration 46

• MuPix4 prototype

• Signal o Test-pulse

o Calibrated to 90Sr source

o At 70°C in oven

o HV = -70V

• Noise o Taken from S-curve

o Error function fit

o X-checked with

• Threshold scan

• Close to baseline

S/N = 36.8

Page 47: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Test beams

22/10/2014 Dirk Wiedner, Mu3e collaboration 47

• Eight test beam

campaigns in 2013-14:

o March DESY

o June DESY

o September PSI

o October DESY

o February ’14 DESY

o June PSI

o July PSI

o October PSI

Page 48: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Setup February Test-Beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 48

• DESY, February 2014

• Beam-line T22

o up to 6 GeV electrons

• Aconite telescope

• MuPix4 prototype

• Readout setup from

Ivan Perić

Page 49: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Spatial Resolution

22/10/2014 Dirk Wiedner, Mu3e collaboration 49

• Pixel size 80 μm x 92 μm

• Measured track residuals:

o RMS x = 28 μm

o RMS y = 29 μm

Pixel Residuals

Page 50: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Efficiencies

22/10/2014 Dirk Wiedner, Mu3e collaboration 50

• >99.5% efficiency

o 5 GeV electrons

o 45° angle

o Individual pixel thresholds

Threshold tune from

pixel efficiencies in

previous test beam

MuPix4 Efficiency

Page 51: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Threshold Scans for 0° to 45°

22/10/2014 Dirk Wiedner, Mu3e collaboration 51

MuPix 4

Page 52: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Sub-Pixel Efficiencies

22/10/2014 Dirk Wiedner, Mu3e collaboration 52

• Chip folded back to

4 x 4 pixel area

• Resolution limited

• Overall high

efficiency

• No pixel substructure

(within resolution)

Page 53: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Time Stamps

22/10/2014 Dirk Wiedner, Mu3e collaboration 53

• MuPix4 prototype

• External grey counter

o At 100 MHz

• Time stamp recorded by

MuPix4 sensor

o For each pixel

• Time resolution O(17 ns)

o Non-negligible setup

contribution

Time Resolution of Pixels

Page 54: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Summary

54

• Mu3e searches for lepton flavor violation

• > 1016 μ-decays → BR < 10-16 (90% CL)

• Two SiPM based timing systems

• Silicon tracker with ~275M pixel

• HV-MAPS 50 μm thin

• Prototypes look encouraging

Dirk Wiedner, Mu3e collaboration 22/10/2014

Page 55: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Outlook: Projected Sensitivity

22/10/2014 Dirk Wiedner, Mu3e collaboration 55

Page 56: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Institutes • Mu3e-collaboration:

o DPNC Geneva University

o Paul Scherrer Institute

o Particle Physics ETH Zürich

o Physics Institute Zürich University

o Physics Institute Heidelberg University

o Institute for Nuclear Physics Mainz University

o IPE Karlsruhe

o KIP Heidelberg

22/10/2014 Dirk Wiedner, Mu3e collaboration 56

Page 57: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Backup Slides

22/10/2014 Dirk Wiedner, Mu3e collaboration 57

Page 58: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Motivation Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 58

Page 59: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

μ→eee vs. μ→eγ

22/10/2014 Dirk Wiedner, Mu3e collaboration 59

A. de Gouvêa, “(Charged) Lepton Flavor Violation”, Nucl. Phys B. (Proc. Suppl.), 188 303–308, 2009.

Page 60: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Momentum Resolution

22/10/2014 Dirk Wiedner, Mu3e collaboration 60

• Multiple scattering

only

• Current design:

o 50 µm silicon

o 50 µm Kapton

o Helium gas cooling

o 3 layer fiber

detector

Page 61: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

SciFi Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 61

Page 62: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Fiber Winding Tool

fiber

U channel

More R&D to optimize the construction of the ribbons

~ 40 cm

16 mm

22/10/2014 Dirk Wiedner, Mu3e collaboration 62

Page 63: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout of Fibers Si-PMs (MPPCs) at both fiber ends SciFi column readout with Si-PM arrays • 64 channel monolithic device (custom design) • ~250 micron effective “pitch” • 50 mm 50 mm pixels • Grouped in 0.25 mm 1 mm vertical columns • Common bias voltage

LHCb type detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 63

Page 64: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout of Fibers Si-PMs (MPPCs) at both fiber ends SciFi column readout with Si-PM arrays Reduced # of readout channels (2 64) Easy, direct coupling Higher occupancy “Optical” cross talk

LHCb type detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 64

Page 65: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

SciFi Column Readout

light travels preferentially in the cladding

and exits the fiber at large angles

“optical” cross talk between Si-PM columns

22/10/2014 Dirk Wiedner, Mu3e collaboration 65

Page 66: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout of Fibers Si-PMs (MPPCs) at both fiber ends SciFi array readout fiber by fiber Monolithic device • Custom design ongoing with Hamamatsu • 6 32 independent readout cells • 50 μm 50 μm pixels grouped in • 0.4 mm 0.4 mm cells with 0.1 mm spacing • Common bias for each cell (~0.5 V)

16 mm, 32 cells 3 m

m, 6

cel

ls

22/10/2014 Dirk Wiedner, Mu3e collaboration 66

Example of Hamamatsu Si-PM array S12642-0404 sensor 4 4 ch. (3 3 mm2)

Page 67: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout of Fibers Si-PMs (MPPCs) at both fiber ends SciFi array readout fiber by fiber Lowest possible occupancy No “optical” cross talk Less dark rate Can also be used for tracking? Increased # of readout channels (2 192) Few photons / fiber (cell)

Example of Hamamatsu Si-PM array S12642-0404 sensor 4 4 ch. (3 3 mm2)

16 mm, 32 cells 3 m

m, 6

cel

ls

22/10/2014 Dirk Wiedner, Mu3e collaboration 67

Page 68: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Single Fiber Readout

Fibers glued with photo-device geometry 500 μm center to center

Si-PM array directly coupled to fibers

“fan-out” between straight section and socket

Estimated rate ~ 200 kHz for 2016 run

22/10/2014 Dirk Wiedner, Mu3e collaboration 68

Alternative: LHCb type detector

Page 69: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout Electronics

22/10/2014 Dirk Wiedner, Mu3e collaboration

• STiC ASIC (KIP)

• Fulfills SciFi requirements

o Compact design

• Installation very close to Si-PM arrays

o 64 channels

• 6 chips / Si-PM array

• Assuming STIC can sustain ~10 MHz hit-rate

• Performance to be tested

o In particular for low photon yield

69

Page 70: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

ADC Spectra

pedestal

pedestal (inefficiency !)

1 photon

• Equidistant peaks • Reproducible shape • Efficiency > 98 % (2 or more photons) • Consistent with light propagation simulations • Distance between peaks amplification

charge integrating ADC

22/10/2014 Dirk Wiedner, Mu3e collaboration 70

Page 71: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Efficiency Si-PM2 Si-PM1

Near Mid Far

Small efficiency drop for source far from Si-PM Vs. photons in opposite detector Detection efficiency of Si-PM1 increases With # photons in Si-PM2 t.b.d. with 360 mm ribbons

threshold 2 ph. el.

(Si-PM2)

22/10/2014 Dirk Wiedner, Mu3e collaboration 71

Page 72: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Calibration Calibrate in situ: Alignment, energy (thresholds), timing Energy: Use ADC spectra Distance between peaks Amplification Set discriminator thresholds (> ng) Timing: • use the decay m+ e+ e- e+ n n • 3 prongs produced at the same time • For 107 m decays / s in one day • 107 decays assuming 33% eff.

en

mn

pulse shape integral using the DRS4

2g

integral (a. u.)

22/10/2014 Dirk Wiedner, Mu3e collaboration 72

Page 73: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Crossing Angles

occupancy :

ideal case : 100 kHz (PHASE I) (1500 ch / 1.5 108 m decays / s)

total # tracks 2.5 larger

on average 2.5 Si-PM “columns” hit

estimated rate > 500 kHz

azimuthal angle polar angle

Si-PM columns hit by crossing particles (e+)

22/10/2014 Dirk Wiedner, Mu3e collaboration 73

Page 74: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

“Triggering”

0 g both ends (“normalization” for 105 m decays)

1 g both ends

3 g both ends 2 g both ends

# of fibers hit by a particle crossing the SciFi array (simulation) as a function of detected photons at each fiber end (assume 25% P. D. E. in simulations)

simulations (P.D.E. = 25%) to be confirmed by test beam measurements

22/10/2014 Dirk Wiedner, Mu3e collaboration 74

Page 75: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Test Set-Up Tests with collimated b source (Sr) b electrons cross the ribbon at 900 Complete the studies by testing prototypes in a beam → February DESY Test Beam

8 mm wide 200 mm long 3 layer SciFI ribbon Readout with 3 3 mm2 Si-PMs Si-PMs glued on SciFi ribbon Trigger scintillator: • 6 6 mm2 square bar • Readout with same Si-PMs Fast (~1 ns) transistor based amplifiers developed at UniGE

22/10/2014 Dirk Wiedner, Mu3e collaboration 75

Page 76: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing • Time difference Dt between Si-PM1 and Si-PM2

• Rise-time compensated discriminators

Dt different colors : different # of detected photons (see next slides)

Time resolution s of each Si-PM : Dt / 2 Time resolution of Mean Time : σMT = s / 2 = Dt / 2 For same s, i.e. similar # of detected photons on each side Mean time does not depend on impact position

22/10/2014 Dirk Wiedner, Mu3e collaboration 76

Page 77: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

DRS5-Chip Readout

• Developed at PSI – successor to DRS4

• Currently in development

• Key features:

o Sampling speed up to 10 GSPS

o Bandwidth > 3 GHz

o 8 (16?) channels

o Dead-time less readout mode

o Up to 5 MHz hit rate

• DRS4 successfully operated in test-beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 77

Alternative To STiC

Page 78: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Alternative Design with Square Fibers

2 staggered layers of 500 mm square double cladding scint. fibers from Saint Gobain

BCF12: lpeak ~435nm, tdecay~3.2ns, Latt ~ 2.7 m / BCF20: lpeak ~492nm, tdecay~2.7ns, Latt > 3.5 m

32 fibers/layer

OR 250 mm square double cladding scint. fibers

Single fiber Al coating (minimum / negligible “optical” cross-talk)

To reduce thickness and occupancy thinner fibers would be required

16 mm

1 mm

22/10/2014 Dirk Wiedner, Mu3e collaboration 78

Page 79: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Testing Square Fibers Fiber test setup developed at PSI

500 mm square fiber b source single fiber

σt = (t2 -t4)/√2 ~ 485 ps

timing performance

cross talk < 1%

Cross talk: By sputtering 30 nm Al coating on the fiber cross talk < 1% was achieved

22/10/2014 Dirk Wiedner, Mu3e collaboration 79

Page 80: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Conclusions SciFi • Timing requirements (resolution < 1 ns) fulfilled

• in lab with b source (resolution < 500 ps)

• Good agreement between simulations and measurements • light propagation

• Further characterizations ongoing or planned

• b source and beam: • test of single fiber readout with commercially available Si-PMs • cross talk between fibers • rate capabilities • readout electronics

• Further studies under way to optimize construction of detector

• About 6 months to complete detector studies 6 more months to finalize design construction of detector about 6 months

22/10/2014 Dirk Wiedner, Mu3e collaboration 80

Page 81: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tile Detector Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 81

Page 82: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tile Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 82

• Scintillating tiles

o 8.5 x 7.5 x 5 mm3

• 12 Tile Modules per

station

o 192 tiles/module

o Attached to end rings

• SiPMs attached to tiles

o Front end PCBs below

o Readout through STiC

Tile detector 4 x 4 prototype

Page 83: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

STiC Readout • Developed at KIP for EndoTOFPET-US

o Optimized for ToF applications

• Key features: o Digital timing & energy information

o 64 channels (version 3.0)

o 50 ps TDC bins

o SiPM bias tuning

o SiPM tail cancelation possibility (version 3.0)

o Currently ≈ 1 MHz hit rate / chip

o Up to ≈ 20 MHz in future version

• Version 2.0 successfully operated in test-beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 83

STiC 3.0

STiC 2.0

Page 84: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

STiC Readout • Developed at KIP for EndoTOFPET-US

o Optimized for ToF applications

• Key features: o Digital timing & energy information

o 64 channels (version 3.0)

o 50 ps TDC bins

o SiPM bias tuning

o SiPM tail cancelation possibility (version 3.0)

o Currently ≈ 1 MHz hit rate / chip

o Up to ≈ 20 MHz in future version

• Version 2.0 successfully operated in test-beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 84

STiC 3.0

STiC 2.0

Page 85: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

STiC Test Beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 85

Page 86: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

STiC Test Beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 86

Page 87: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

STiC Test Beam

22/10/2014 Dirk Wiedner, Mu3e collaboration 87

Page 88: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

HV-MAPS Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 88

Page 89: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Chip Prototypes

22/10/2014 Dirk Wiedner, Mu3e collaboration 89

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part almost final

o Digital part under

development

o Bug in pixel on/off

MuPix3

Page 90: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Chip Prototypes

22/10/2014 Dirk Wiedner, Mu3e collaboration 90

• 180 nm HV-CMOS

• Pixel matrix:

o 40 x 32 pixels

o 92 x 80 μm2 each

• Ivan Perić ZITI

o Analog part almost final

o Digital part under

development

o Bug in pixel on/off

MuPix3

Page 91: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Prototype Overview Prototype Active Area Functionality Bugs Improvements

MuPix1 1.77 mm2 Sensor + analog Comparator “ringing”

First MuPix prototype

MuPix2 1.77 mm2 Sensor + analog Temperature dependence

No ringing

MuPix3 9.42 mm2 Sensor, analog, dig. bad pixel on/off,

First part of dig. readout

MuPix4 9,42 mm2 Sensor, analog, dig. Zero time-stamp and row address for 50% of pixels

First working digital readout, first timestamp, temperature stable

MuPix6 10.55 mm2 Sensor, analog, dig. ? Removed zero time-stamp and address bug

22/10/2014 Dirk Wiedner, Mu3e collaboration 91

Page 92: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Sensor + Analog + Digital

22/10/2014 Dirk Wiedner, Mu3e collaboration 92

Page 93: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Sensor + Analog + Digital

22/10/2014 Dirk Wiedner, Mu3e collaboration 93

Page 94: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Digital Readout Feature

22/10/2014 Dirk Wiedner, Mu3e collaboration 94

• Artifact from readout

protocol:

o Pixel RAM-cells reset

before readout

Bug effects only row

address and time stamp

50% of pixels effected

Pixel efficiency also good for affected rows

Efficiency Only hits with full address

Page 95: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Digital Readout Feature

22/10/2014 Dirk Wiedner, Mu3e collaboration 95

• Artifact from readout

protocol:

o Pixel RAM-cells reset

before readout

Bug effects only row

address and time stamp

50% of pixels effected

Pixel efficiency also good for affected rows

Bug fixed for MuPix6 Hitmap for MuPix6

16000

12000

8000

4000

Page 96: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Mechanics Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 96

Page 97: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Mu3e Silicon Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 97

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 98: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Mu3e Silicon Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 98

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 99: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Mu3e Silicon Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 99

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

Page 100: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Mu3e Silicon Detector

22/10/2014 Dirk Wiedner, Mu3e collaboration 100

• Conical target

• Inner double layer

o 12 and 18 sides of 1 x 12 cm

• Outer double layer

o 24 and 28 sides of 2 x 36 cm

• Re-curl layers

o 24 and 28 sides of 2x 72 cm

o Both sides (x2)

180 inner sensors 4680 outer sensors 274 752 000 pixel

Page 101: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Sandwich Design

22/10/2014 Dirk Wiedner, Mu3e collaboration 101

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

<0.1% of X0

Page 102: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Thinned Pixel Sensors

22/10/2014 Dirk Wiedner, Mu3e collaboration 102

• HV-MAPS*

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

MuPix3 thinned to < 90μm

Page 103: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Kapton™ Flex Print

22/10/2014 Dirk Wiedner, Mu3e collaboration 103

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

Laser-cut flex print prototype

Page 104: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Modules

22/10/2014 Dirk Wiedner, Mu3e collaboration 104

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

CAD of Kapton™ frames

Page 105: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Overall Design

22/10/2014 Dirk Wiedner, Mu3e collaboration 105

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

CAD of Kapton™ frames

• Two halves for layers 1+2 • 6 modules in layer 3 • 7 modules in layer 4

Page 106: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Inner Layers

22/10/2014 Dirk Wiedner, Mu3e collaboration 106

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

Vertex Prototype with 100 μm Glass

Page 107: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Outer Module

22/10/2014 Dirk Wiedner, Mu3e collaboration 107

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 μm Glass

Page 108: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Detector Frame

22/10/2014 Dirk Wiedner, Mu3e collaboration 108

• HV-MAPS

o Thinned to 50 μm

o Sensors 1 x 2 cm2 or 2 x 2 cm2

• Kapton™ flex print

o 25 μm Kapton™

o 12.5 μm Alu traces

• Kapton™ Frame Modules

o 25 μm foil

o Self supporting

• Alu end wheels

o Support for all detectors

Layer 3 Prototype in Assembling Frame with 50 μm Glass

Page 109: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Si-Layer Rad Length

22/10/2014 Dirk Wiedner, Mu3e collaboration 109

• Radiation length per layer o 2x 25 μm Kapton

• X0= 0.175‰

o 15 μm thick aluminum traces (50% coverage)

• X0= 0.0842‰

o 50 μm Si MAPS

• X0= 0.534‰

o 10 μm adhesive

• X0= 0.0286‰

• Sum: 0.822‰ (x4 layers) o For Θmin = 22.9◦

o X0= 2.11‰

layer 1

layer 2 layer 3

layer 4

Back Curl layers

Page 110: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Thinning

22/10/2014 Dirk Wiedner, Mu3e collaboration 110

• 50 μm Si-wafers

o Commercially available

o HV-CMOS 50 μm (AMS)

o 50 μm for MuPix4

• Single die thinning

o For chip sensitivity studies

o < 50 μm desirable

Page 111: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tools

22/10/2014 Dirk Wiedner, Mu3e collaboration 111

• Kapton-Frame tools:

o Sensor on Flex print

• Gluing groove

• Vacuum lift

o Tools are tested with

• 25 μm Kapton foil

• 50 μm glass

Page 112: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Cooling Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 112

Page 113: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Liquid Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 113

• Beam pipe cooling

o With cooling liquid

o 5°C temperature

o Significant flow possible

o … using grooves in pipe

• For electronics

o FPGAs and

o Power regulators

o Mounted to cooling

plates

• Total power several kW

Page 114: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 114

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

He

He

150mW/cm2 x 19080cm2

= 2.86 KW

Page 115: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 115

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Temperatures between

20°C to 70°C ok.

Page 116: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 116

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Page 117: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 117

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Page 118: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 118

• Gaseous He cooling

o Low multiple Coulomb

scattering

o He more effective than air

• Global flow inside

Magnet volume

• Local flow for Tracker

o Distribution to Frame

• V-shapes

• Outer surface

Kapton™ Frame

V-shape Cooling outlets

Page 119: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Comparison Simulation He and Air

He Air

22/10/2014 Dirk Wiedner, Mu3e collaboration 119

v = 4.0 m s

Page 120: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tests

22/10/2014 Dirk Wiedner, Mu3e collaboration 120

• Full scale prototype o Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foil o LabView readout

• First results promising o ΔT < 60°K

Page 121: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tests

22/10/2014 Dirk Wiedner, Mu3e collaboration 121

• Full scale prototype o Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foil o LabView readout

• First results promising o ΔT < 60°K

Page 122: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tests

22/10/2014 Dirk Wiedner, Mu3e collaboration 122

Page 123: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Test Results

22/10/2014 Dirk Wiedner, Mu3e collaboration 123

• Full scale prototype o Layer 3+4 of silicon tracker

o Ohmic heating (150mW/cm2)

o 561.6 W for layer 3 +4

o … of Aluminum-Kapton™

• Cooling with external fan o Air at several m/s

• Temperature sensors attached to foil o LabView readout

• First results promising o ΔT < 60°K

No sign of vibration in air

Page 124: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Comparison Simulation and Tests

22/10/2014 Dirk Wiedner, Mu3e collaboration 124

Page 125: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Simulation with V-shape cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 125

• Configuration: o Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s

• In V-shape against main flux

• Next to V-shape against main flux

31.42 mL/s per nozzle

6.786 L/s for 3. Layer

• Results: o Tmax ≈ 42°C

o Tmax close to end of tube

o T raises at last third of tube

→ Extra Improvement using V-shapes as cooling channels

Page 126: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Simulation with V-shape cooling

22/10/2014 Dirk Wiedner, Mu3e collaboration 126

• Configuration: o Main helium flux: v = 0.5m/s o Flux in Nozzle: v = 5 m/s

• In V-shape against main flux

• Next to V-shape against main flux

31.42 mL/s per nozzle

6.786 L/s for 3. Layer

• Results: o Tmax ≈ 42°C

o Tmax close to end of tube

o T raises at last third of tube

→ Extra Improvement using V-shapes as cooling channels

Page 127: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling 250 mW/cm2

22/10/2014 Dirk Wiedner, Mu3e collaboration 127

Page 128: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

He Cooling 750 mW/cm2

22/10/2014 Dirk Wiedner, Mu3e collaboration 128

Page 129: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

DAQ Backup

22/10/2014 Dirk Wiedner, Mu3e collaboration 129

Page 130: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Readout Scheme

22/10/2014 Dirk Wiedner, Mu3e collaboration 130

• Pixel logic o Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logic o Pixel data

o Column address

o Coarse time

• Frame logic o Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logic Readout buffer

Serializer

Fine time

Coarse time

Column address

Page 131: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Readout Scheme

22/10/2014 Dirk Wiedner, Mu3e collaboration 131

• Pixel logic o Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logic o Pixel data

o Column address

o Coarse time

• Frame logic o Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logic Readout buffer

Serializer

8 bit

Fine time

4 bit

12 bit Coarse

time

Column address

Page 132: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Readout Scheme

22/10/2014 Dirk Wiedner, Mu3e collaboration 132

• Pixel logic o Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logic o Pixel data

o Column address

o Coarse time

• Frame logic o Super Frame

o Contains 16 x 50 ns readout frames

o + Sensor header

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logic Readout buffer

Serializer

8 bit

Fine time

4 bit

12 bit Coarse

time

Column address

4 bit 8 bit

24 bit

Page 133: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Pixel Readout Scheme

22/10/2014 Dirk Wiedner, Mu3e collaboration 133

• Pixel logic o Pixel address (8 bit)

o Frame number (4 bit)

o 50 ns frames

• Column logic o Pixel data

o Column address

o Coarse time

• Frame logic o Contains 16 x 50 ns

readout frames

o + Sensor header

Super Frame

• Readout buffer

• Serializer and fast link(s)

Pixel address

Pixel Logic

Column Logic

Frame logic Readout buffer

Serializer

8 bit

Fine time

4 bit

12 bit Coarse

time

Column address

24 bit

3 x serial @ 800 Mb/s

4 bit 8 bit

Page 134: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Front End FPGAs

22/10/2014 Dirk Wiedner, Mu3e collaboration 134

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 36-45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/s LVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 135: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Front End FPGAs

22/10/2014 Dirk Wiedner, Mu3e collaboration 135

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/s LVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 136: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Front End FPGAs

22/10/2014 Dirk Wiedner, Mu3e collaboration 136

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/s LVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 137: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Front End FPGAs

22/10/2014 Dirk Wiedner, Mu3e collaboration 137

• FPGAs on detector

o 90 (+96) pieces

• Receive sensor data

o 45 LVDS inputs

• 5 Gbit/s outputs

o 8 optical links

o … to counting house

• Switching data

between readout

boards farms A-D

Front end FPGA

800 Mbit/s LVDS in

x 45

5 Gbit/s optical

Readout board

A

Pixel Sensor

Readout board

B

Readout board

C

Readout board

D

Page 138: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Front end

FPGA

Readout Board

22/10/2014 Dirk Wiedner, Mu3e collaboration 138

• FPGA readout boards

o 4 per sub-detector

• 5 Gbit/s optical inputs

o 16-28 inputs

• 10 Gbit/s optical output

o 12 outputs to PCs

• Switching network

o A-D sub-farms

o One output per PC

Readout board

5 Gbit/s Optical

x28

PC

10 Gbit/s Optical

PC

Sub-farm A

Front end

FPGA

Front end

FPGA

Front end

FPGA

PC x12

Page 139: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Readout Board

22/10/2014 Dirk Wiedner, Mu3e collaboration 139

• FPGA readout boards

o 4 per sub-detector

• 5 Gbit/s optical inputs

o 16-28 inputs

• 10 Gbit/s optical output

o 12 outputs to PCs

• Switching network

o A-D sub-farms

o One output per PC

Front end

FPGA

Readout board

5 Gbit/s Optical

x28

PC

10 Gbit/s Optical

PC

Front end

FPGA

Front end

FPGA

Front end

FPGA

PC

Sub-farm A

x12

Page 140: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 140

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Page 141: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 141

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Pixel Sensor

Silicon FPGAs

x90

Readout board

x12

PC x48

Page 142: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 142

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

Fiber FPGAs

x48

Tile FPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

x6156 x1134 x1152

PC x48

O(8Tbit/s)

Page 143: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Tile

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 143

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

Fiber FPGAs

x48

Tile FPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PC x48

x360

Page 144: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 144

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

Fiber FPGAs

x48

Tile FPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PC x48

x360 x192 x192 O(4Tbit/s)

Page 145: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Trigger-less DAQ

22/10/2014 Dirk Wiedner, Mu3e collaboration 145

• Front end links o Pixel sensor to on-detector

FPGA

• 400 – 800 Mbit/s

• LVDS

o Timing detector readout

• Optical links from detector o Front end FPGAs

o … to readout boards

o 5 Gbit/s

• Optical links in counting room o Off-detector read out boards

o …to PC Farm

Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile Pixel Sensor

Fiber Tile

Silicon FPGAs

x90

Fiber FPGAs

x48

Tile FPGAs

x48

Readout board

x16

Readout board

x8

Readout board

x8

PC x48

x192

x96 x96

O(4Tbit/s)

Page 146: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

GPU-PC

22/10/2014 Dirk Wiedner, Mu3e collaboration 146

• PC with GPU

• 10 Gbit/s Fiber input

o 8 inputs from sub-detectors

• Data filtering

o Timing Filter on FPGA

o Track filter on GPU

o Data to tape < 100 MB/s

GPU computer

Page 147: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

GPU-PC

22/10/2014 Dirk Wiedner, Mu3e collaboration 147

• PC with GPU

• 10 Gbit/s Fiber input

o 8 inputs from sub-detectors

• Data filtering

o Timing Filter on FPGA

o Track filter on GPU

o Data to tape < 100 MB/s

FPGA PCIe board

GPU computer

Optical mezzanine connectors

Page 148: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing Filter

22/10/2014 Dirk Wiedner, Mu3e collaboration 148

• Entire event on PCIe FPGA

• Tile and Fiber data

o Easy to match

o Look for three tracks

• Reject data without three hits

o … inside time interval

1

3

2

Under discussion

Page 149: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Timing Filter

22/10/2014 Dirk Wiedner, Mu3e collaboration 149

• Entire event on PCIe FPGA

• Tile and Fiber data

o Easy to match

o Look for three tracks

• Reject data without three hits

o … inside time interval

1

3

2

Under discussion

Page 150: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Vertex Filter

22/10/2014 Dirk Wiedner, Mu3e collaboration 150

• Entire event on GPU

• Large target

o Large spread of muons

o Easy vertex separation

• Reject data without three tracks

o … inside area interval on target

1

3

2

Page 151: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Vertex Filter

22/10/2014 Dirk Wiedner, Mu3e collaboration 151

• Entire event on GPU

• Large target

o Large spread of muons

o Easy vertex separation

• Reject data without three tracks

o … inside area interval on target

1

3

2

Page 152: The Mu3e Experiment · Dirk Wiedner, Mu3e collaboration 22/10/2014. 34 • Require hit in first & last column • Look for hit in middle channel • Efficiency > 99.5% • Bad time

Schedule

22/10/2014 Dirk Wiedner, Mu3e collaboration 152

• 2012 Letter of intent to PSI, tracker prototype, research proposal

• 2013/14 Detector R&D

• 2015 Detector construction

• 2016 Installation and commissioning at PSI

• 2017 Data taking at up to a few 108 μ/s

• 2018+ Construction of new beam-line at PSI

• 2019++ Data taking at up to 2·109 μ/s