42
Xin Chen 1 , Yinghua Wu 2 and Victor S. Batista Department of Chemistry, Yale University, New Haven, CT 06520-8107 The MP/SOFT methodology for simulations of multidimensional quantum dynamics Funding: NSF CHE-0345984 • NSF ECCS-0725118 • NIH 2R01-GM043278-14 • DOE DE-FG02-07ER15909 • US-Israel BSF t t H t i ˆ 0 / ˆ t H i t e where Current Addresses: 1 Deptartment of Chemistry, Massachusetts Institute of Technology; 2 Department of Chemistry, Georgia Institute Technology. ) ˆ ( 2 ˆ ˆ 2 x V m p H Funding: NSF, NIH, DOE, BSF

The MP/SOFT methodology for simulations of multidimensional quantum dynamics

  • Upload
    mikasi

  • View
    48

  • Download
    4

Embed Size (px)

DESCRIPTION

The MP/SOFT methodology for simulations of multidimensional quantum dynamics. Xin Chen 1 , Yinghua Wu 2 and Victor S. Batista. Department of Chemistry, Yale University, New Haven, CT 06520-8107. Current Addresses: 1 Deptartment of Chemistry, Massachusetts Institute of Technology; - PowerPoint PPT Presentation

Citation preview

Page 1: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Xin Chen1, Yinghua Wu2 and Victor S. BatistaDepartment of Chemistry, Yale University, New Haven,

CT 06520-8107

The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Funding: • NSF CHE-0345984• NSF ECCS-0725118• NIH 2R01-GM043278-14• DOE DE-FG02-07ER15909• US-Israel BSF

tt Ht

i ˆ 0

/ˆ tHit e

where

Current Addresses: 1Deptartment of Chemistry, Massachusetts Institute of Technology;2Department of Chemistry, Georgia Institute Technology.

)ˆ(2

ˆˆ2

xVm

pH

Funding: NSF, NIH, DOE, BSF

Page 2: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Multiconfigurational time dependent Hartree (MCTDH) method Meyer, Burghardt, Cederbaum, Worth, Raab, Manthe, Makri, Miller, Thoss, Wang

Time dependent Gauss-Hermit (TDGH) method Billing

Multiple Spawning (MS) method Ben-Nun and Martinez

Coupled Coherent States (CCS) technique Shalashilin and Child

Matching-Pursuit Split-Operator Fourier Transform (MP/SOFT) method Wu, Chen, Batista

Numerically Exact Methods for Multidimensional Wave-Packet Propagation Based on Expansions of Coherent-States/Configurations

Page 3: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Time-Sliced Simulations of Quantum Processes

Page 4: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Wu,Y.; Batista, V.S. J. Chem. Phys. (2003) 118, 6720Wu,Y.; Batista, V.S. J. Chem. Phys. (2003) 119, 7606Wu,Y.; Batista, V.S. J. Chem. Phys. (2004) 121, 1676Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. (2005) 122, 64102Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys. (2005) 122, 114114Wu,Y.; Batista, V.S. J. Chem. Phys. (2006) 124, 224305Chen, X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313Chen, X.; Batista, V.S. J. Photochem. Photobiol. (2007) 190, 274Kim, J.; Wu, Y.; Batista, V.S. Israel J. Chem. (2009) 49, 187

MP/SOFT Method

Trotter Expansion (Strang Splitting)

0/ˆ tHi

t e

Page 5: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

Page 6: The MP/SOFT methodology for simulations of multidimensional quantum dynamics
Page 7: The MP/SOFT methodology for simulations of multidimensional quantum dynamics
Page 8: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

MP/SOFT Decomposition

Dr. Rajdeep Saha

Page 9: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Contraction Mapping

Min ε1⎡⎣ ⎤⎦⇔ ∂ ε1 / ∂ξ j =0,ξ j = xj , pj ,γ j }{

x j =Regj x$ψ

gj ψ

⎣⎢⎢

⎦⎥⎥

p j =Regj pµ ψ

gj ψ

⎣⎢⎢

⎦⎥⎥

1

2γ j

=Regj x$−xj( )

gj ψ

⎢⎢⎢

⎥⎥⎥

Page 10: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Computation of Observables

Time dependent reactant population:

Absorption Spectrum:

Page 11: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Electron Tunneling in Multidimensional Systems

Model II

Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

Page 12: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

(2-dimensional Model II)

Page 13: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

2-dimensional (model II)

Page 14: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

2-dimensional (model II)

Page 15: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

2-dimensional (Model II)

Page 16: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

20-dimensional (model II)

Benchmark calculation:

Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

Page 17: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

20-dimensional (Model II)

Wu,Y.; Batista, V.S. J. Chem. Phys. 121, 1676 (2004)

Page 18: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Thermal Correlation Functions

Time-Dependent Boltzmann Ensemble Averages

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 19: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Bloch Equation: MP/SOFT Integration

Partition Function Boltzmann Matrix:

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 20: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 21: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005) Initial classical density

Initial quantum density

Ground State, V0

Excited State, V1

Model System, cont’d

Page 22: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Calculations of Thermal Correlation Functions

Time-Dependent Position Ensemble Average

Position-Position Correlation Function:

Model System:

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 23: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Time-Dependent Position Ensemble Average

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 24: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Position-Position Correlation Function

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. 122, 64102 (2005)

Page 25: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Nonadiabatic Propagation

Chen, X., Wu,Y.; Batista, V.S. J. Chem. Phys. (2005) 122, 64102

Chen, X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313

Page 26: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

MP/SOFT Nonadiabatic Propagation

Page 27: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Embedded Strang Splitting Expansion

Chen, X.; Batista, V.S. J. Chem. Phys. (2010) in prep.

Page 28: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys. 122, 114114 (2005)

Single Avoided CrossingTime-Dependent Populations

Page 29: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Single Avoided CrossingTransmission Probabilities

Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys. 122, 114114 (2005)

PT(1

)

PT(2

)

Page 30: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Dual Avoided Crossings with quantum interferences between the crossings

Stuckelberg oscillations in Transmission Probabilities

Wu,Y.; Herman, M.F.; Batista, V.S. J. Chem. Phys. 122, 114114 (2005)

PT(1

)

PT(2

)

Page 31: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Chen,X.; Batista, V.S. J. Chem. Phys. (2006) in prep.Nonadiabatic Dynamics of Pyrazine

S1/S2 Conical Intersection

Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313

Benchmark Calcs.: 4-mode model

Page 32: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Nonadiabatic Dynamics of PyrazineS1/S2 Conical Intersection

Chen,X.; Batista, V.S. J. Chem. Phys. (2006) 125, 124313

Benchmark Calcs.: 24-mode model

Page 33: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Benchmark Calcs.: 24-mode model

Page 34: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Transient appearance of the C=O stretching mode of the keto*-state of HBT after excitation of the enol → enol* transition.

Ultrafast Excited State Intramolecular Proton Transfer in HBT

E. T. J. Nibbering, H. Fidder and E. Pines Annu. Rev. Phys. Chem. (2005) 56:337-67

310-350 nm

IVR~ 750 fs, 15 ps ~50 fs

Kim, J.; Wu, Y.; Batista, V.S. Israel J. Chem. (2009) 49, 187

Page 35: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Energy (kcal/mol)

Energy (kcal/mol)

OH bond length (a.u.)

S0

S1

OH bond length (a.u.)

CCC bend. angle

(degrees)

Reaction Surface V0(r1,r2)

KETO

CCC bend. angle

(degrees)

ENOL

Page 36: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

t=0 fst=50 fst=100 fst=200 fst=300 fst=400 fst=500 fst=600 fst=700 fst=800 fst=900 fs

ESIPT or ESIHT ?

Ultrafast Charge Redistribution in HBT

Kim, J.; Wu, Y.; Batista, V.S. Israel J. Chem. (2009) 49, 187

Page 37: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

PR(t), (TDSCF)PR(t), (MP/SOFT)

Tr [ρ2(t)], (MP/SOFT)

ESIPT in HBT: 69-Dimensional MP/SOFT Wavepacket Propagation

t = 50 fs

Page 38: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

UV-Vis Photoabsorption Spectrum of HBT

MP/SOFT spectrum

Experiments:Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Faraday Discuss. 122:27–40Rini M, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Chem. Phys. Lett. 374:13–19

Page 39: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

t = 0 fs

t = 500 fs

Ultrafast Excited State Intramolecular Proton Transfer in HBT

Wavenumber [cm-1]1700 1600 1500 1400 1300 1200 1100 1000

IR - S1 (Calc.)

Wavenumber [cm-1]1700 1600 1500 1400 1300 1200 1100 1000

IR - S0 (Calc.)

Page 40: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

IR I

nten

sity

IR I

nten

sity

IR I

nten

sity

Wavenumber [cm-1]

Wavenumber [cm-1]

Wavenumber [cm-1]

1700 1600 1500 1400 1300 1200 1100 1000

1700 1600 1500 1400 1300 1200 1100 1000

1700 1600 1500 1400 1300 1200 1100 1000

IR - S0 (Exp.)

IR - S0 (Calc.)

IR - S1 (Calc.)

Infrared spectra of HBT

Page 41: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Wavenumber [cm-1]

Wavenumber [cm-1]

TheoreticalExperimental

Transient infrared spectra of HBT

Experiments:Rini M,KummrowA, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Faraday Discuss. 122:27–40Rini M, Dreyer J, Nibbering ETJ, Elsaesser T. 2003. Chem. Phys. Lett. 374:13–19

Page 42: The MP/SOFT methodology for simulations of multidimensional quantum dynamics

Conclusions

• We have introduced the MP/SOFT method for time-sliced simulations of quantum processes in systems with many degrees of freedom. The MP/SOFT method generalizes the grid-based SOFT approach to non-orthogonal and dynamically adaptive coherent-state representations generated according to the matching-pursuit algorithm. • The accuracy and efficiency of the resulting method were demonstrated in simulations of excited-state intramolecular proton transfer in 2-(2’-hydroxyphenyl)-oxazole (HPO), as modeled by an ab initio 35-dimensional reaction surface Hamiltonian, as well as in benchmark simulations of nonadiabatic quantum dynamics in pyrazine.• Further, we have extended the MP/SOFT method for computations of thermal equilibrium density matrices (equilibrium properties of quantum systems), finite temperature time-dependent expectation values and time-correlation functions. The extension involves solving the Bloch equation via imaginary-time propagation of the density matrix in dynamically adaptive coherent-state representations, and the evaluation of the Heisenberg time-evolution operators through real-time propagation.