40
The molecular spectrum of hemoglobinopathy; Thalassemia and Hb variants Cornelis L. Harteveld Dpt. Of Clinical Genetics, Hemoglobinopathy Reference Center LEIDEN UNIVERSITY MEDICAL CENTER

The molecular spectrum of hemoglobinopathy; Thalassemia ...plan.medone.co.kr/70_icksh2019/data/SS07-3_Cornelis_Leonard_Harteveld.pdf · Sequencing β-gene . HbA. 2 . HbF. Fully Automatedsample

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

I have no personal or financial interests to declare:

I have no financial support from an industry source at the

current presentation.

대한혈액학회 Korean Society of Hematology

COI disclosureName of author : 홍 길 동 or Gildong Hong

Epidemiology hemoglobinopathies

7% world population is carrier of hemoglobinopathy

~350,000 baby’s born each year with Sickle Cell Anemia (SCA) or Thalassemia Major (TM)

Wednesday, March 20, 2019C.L.Harteveld, LUMC 5

11p

16p ζ α2 α1

ε Gγ Aγ δ β

Alpha-globin gene cluster

Beta-globin gene cluster

Globin genes

Wednesday, March 20, 2019C.L.Harteveld, LUMC 6

Hemoglobine-switch

11p

16p ζ α2 α1

ε Gγ Aγ δ β

HbF HbA

Embryonisch HbHbA2

Hb switch: embryo (Hb Gower I,II, Hb Portland) > foetus (HbF) > adult (HbA)

C.L.Harteveld, LUMC

Sickle Cell Disease

Structural defect: sickle cell anemia (SCA)

C.L.Harteveld, LUMC

β-Thalassemia

Expression defect: Thalassemia

α-thalassemiaβ-thalassemia

Pathology determined by unbalance between α- and β-chains

20-Mar-199 Insert > Header & footer

Patient β-thal intermedia/major: αα/αα vs β+β+ , β+β0 or β0β0

Patient α-thal to HbH disease: -α/αα, --/αα , --/-α, --/-- vs β/β

βα

Prevention and management of Hemoglobinopathy

20-Mar-19Insert > Header & footer10

Implementation of basic health interventions1. Management of Sickle Cell Anemia (SCA)

-early diagnosis-penicillin prophylaxis-vaccination

To reduce excess mortality amongst children under 5 years

3. Prevention of SCA and TM-carrier detection -information and counseling-prenatal diagnosis

To reduce the number of affected births

2. Management of Thalassemia Major (TM)-early diagnosis-transfusion /chelation therapy

To prevent unnecessary complications of treatment

Carrier detection

through laboratory diagnosis

Diagnostics of hemoglobinopathy

20-Mar-19Insert > Header & footer12

HemoCytometry

Hbseparation

DNA ClinicalDiag-nosis

C.L.Harteveld, LUMC

Flow Chart for Diagnostics of HbP

Hematology HPLC and Hb electrophoresis

Gap-PCR for7 most commonα-thal deletions

normal

Sequencing α-genes

MicrocyticHypochromicNormal iron

MLPA

Hb variant

Sequencing β-gene

HbA2 HbF

RBC (x 1012 /l)

1716151413121110987

7

6

5

4

Hb(mmol/land g%)

normal βT/β βT/ βT

Hemocytometry thalassemia genotypes

normal βT/β βT/ βT

MCV (fl)100

90

80

70

60

50

MCH (fmoland pg)

323028262422201816

normal βT/β βT/ βT

normal βT/β βT/ βT

βT/β trait

normal

βT/ βT

Intermediamajor

10.5109.58.78.17.56.96.25.654.5

2.001.871.741.621.491.371.251.121.00

normal

α-thaltrait

HbH disease

C.L.Harteveld, LUMC

Flow Chart for Diagnostics of HbP

Hematology HPLC and Hb electrophoresis

Gap-PCR for7 most commonα-thal deletions

normal

Sequencing α-genes

MicrocyticHypochromicNormal iron

MLPA

Hb variant

Sequencing β-gene

HbA2 HbF

C.L.Harteveld, Hemoglobinopathies Lab

HPLC and CE : Hb variants and quantitation

Normal HbS carrier

HbSHbAHbA97.5%

HbA22.5% HbA2

5.6%

β-thal carrier

C.L.Harteveld, LUMC

Flow Chart for Diagnostics of HbP

Hematology HPLC and Hb electrophoresis

Gap-PCR for7 most commonα-thal deletions

normal

Sequencing α-genes

MicrocyticHypochromicNormal iron

MLPA

Hb variant

Sequencing β-gene

HbA2 HbF

Fully Automated sample preparation and Sanger sequencing

• Approx. 10% of all alpha-thal defects• All Hb variants of the alpha-globin chain

S13F S6R S13F S8RF S18R

S3F R

2A

2BF S18R

S3F R

1A

1B

α2 α1

Direct sequencing for point mutation analysis

β

HBLBF1 HBLBR1

HBLBF2 HBLBR2

HBLBF3 HBLBR3

HBLBF4 HBLBR4

• Detection rate approx. 90% of all beta-thal defects• All Hb variants of the beta-globin chain

~10% deletions

~90% deletions

20-Mar-19Insert > Header & footer21

ε Gγ Aγ δ βNorm HetLW Het SEA Het MedI Het20.5 Het FILNorm HetRW HomRW α-tripl.

3000

20002500

150012001000

500

Multiplex gap-PCR for the most common thalassemia deletions

Other deletion types of α-thalassemia: MLPA

20-Mar-19Insert > Header & footer22

C.L.Harteveld, Hemoglobinopathies Lab

…. Sometimes patterns are more complex…

Can’t do without

DNA analysis

Wednesday, March 20, 2019C.L.Harteveld, LUMC 24

fundamental genetics

α2 α1

δ β

HbA22.6%

HbA97.4%

Simplified genetics:

Case 1: complex CE pattern

Hb Bart’s (γ4)

HbA (α2β2)

HbF (α2γ2)+ HbAQ (αQ2β2)

HbF Q-Thailand (αQ2γ2)

HbE (α2βE2)

HbE Q-Thailand (αQ2βE2)

Fraction % Hb type

Proband18 days

Child detected during neonatal screening:

Molecular analysis revealed 3 defects:

- Hb Q-Thailand (α1cd74 Asp>His)- -α4.2 deletion- HbE (βcd26Glu>Lys)

HbE HbA HbA2

α2 α1

γγ δ β

HbF

HbQE HbQ HbQA2 HbQF

HbBart’s

Fraction % Hb type

HbA (α2β2)HbF (α2γ2)+HbA Q-ThailandHbF Q-Thailand (αQ2γ2)HbE (α2βE2)HbA2 (α2δ2)HbE Q-Thailand (αQ2βE2)HbA2 Q-Thailand (αQ2δ2)

Proband 18 daysProband87 days

HbE HBA HbA2

α2 α1

γγ δ β

HbF

HbQE HBQ HbQA2 HbQF

HbBart’s

Case 1: complex CE pattern

Child detected during neonatal screening:

Molecular analysis revealed 3 defects:

- Hb Q-Thailand (α1cd74 Asp>His)- -α4.2 deletion- HbE (βcd26Glu>Lys)

HbBart’s

HbF+HbQ

HbA HbQFHbEHbQE

Hom HbE Het -α4.2HbQ-Thailand

Het -α4.2HbQ-Thailand /het HbE

2.5 wks

3 months2 yrs

Case 1: complex CE pattern

HbE/beta-thal

Insert > Header & footer29

Type of mutation determines phenotypic severity ….HbE is an Hb variant with a beta-thalassemic effect:

Cd 26 GAG>AAG β

mRNA1 βE

mRNA2 thalassemia

HbE carrier: ~25-30% HbE

Wednesday, March 20, 2019C.L.Harteveld, LUMC 30

This was reported asHbE carrier (!)

HbE coincides with HbA2 peak….but usually 30%, NOT 37.9%

Case 2: Pitfalls ….to (β)E or not to (β)E.

…but this is how a real HbE carrier looks like!

Hb D-IranSilent alpha-variantNormalhematology

Hb EMicrocytichypochromic

CE

CE

Unbalanced α / β synthesis

20-Mar-1931 Insert > Header & footer

Hemolytic anemia in beta-thalassemia intermedia/major

Due to unbalanced α- / β-chain synthesis

- alpha-thalassemia; excess beta-chains- beta-thalassemia; excess alpha-chains

Proteolytic processes degrade excess,

…..but if unbalance becomes too excessive this may result in

β-thal-intermedia

Everything depends on the balance in life

Case 3 Child is beta-thal carrier, but unexpected severely anemic

αααanti 3.7-α3.7 Cd 39 CAG>TAG

(HBB:c.118C>T)

1 2 3

Hb 15.5 11.6 7.2 g%

RBC 5.31 5.39 3.67 1012/l

Ht 0.46 0.37 0.25 l/l

MCV 86 69 67 fl

MCH 29.1 21.6 19.9 pg

ZPP 62 83 270 μmol/mol heme

Hp - - <24.3 Mg/100ml serum

HPLC A2 2.9 5.1 4.8 %

CE A2 2.8 5.2 4.4 %

1 2

3

Example : genetic consequences

1 2

-α3.7

Dupαα

DuplicationDeletion -α3.7

Child: MLPA Alpha-gene cluster (P140B2, MRC-Holland)

Example : genetic consequences

αααanti 3.7-α3.7

1 2

3

ααTel MRE normal

Case 3 Child is beta-thal carrier, but unexpected severely anemic

Cd 39 CAG>TAG(HBB:c.118C>T)

αααα

ααTel MRE ααMRE-α3.7Tel MREβ0

β5 x α1 x β

Example : genetic consequences

Counseling:Triplication+ quadruplication+ beta-thal =Severe beta-thalintermedia

20-mrt-1935 Insert > Header & footer

A beta-thal carrier becoming transfusion dependent later in life: “late-onset TM”

Case 4: other case of ‘late-onset TM’ from Greece:

20-mrt-1936 Insert > Header & footer

Daughter (norm)

Hb (g/l) 75 140

RBC (x10 12/l)

- 4.8

MCV (fl) 79.7 87

MCH (pg) 27.4 29

HbF (%) 6.7 0

HbA2 3.2 2.5

treatment Transfusion dependent

HBB:c.315+1G>A (IVS2-1g>a)

5 Mb deletion

Two different mechanisms:Mosaicism due to ‘second’ (somatic) mutation!

20-mrt-1937 Insert > Header & footer

1. Uni Parental Iso Disomy (UPID) 11p

Greek patient2. Deletion 5Mb on 11p

Italian patient

*

* *

*

5Mb deletion takes away HBB and H19 + IGF2 :

38 Insert > Header & footer

CNV’s patient

CNV’s mother

SNPs patient

SNPs mother

Affymetrix CytoScan HD Array with Chromosome Analysis Suite (ChAS, version 3.0) (Thermo Fisher Scientific, CA, USA).

Chromosoom 11

IGF2 H19

IGF2 H19

M

Pmethylated

This might explain the late onset: growth advantage for cells deprived of beta-synthesis

IGF2 H19

IGF2 H19

P

Pmethylated

methylated

Conclusion

• More laboratory tools become available in time (Next Generation Sequencing)

• Clinical genetic lab is changing

• Whole Exome/Genome Sequencing is still expensive, but becomes cheaper

• More emphasis on functionality of Variants of Unknown Significance (VUS) found by WES/WGS

• Therefore RNA and protein technologies will become more important

• Hemoglobinopathy diagnosis relies on phenotype-genotype correlation:Hematology, Hb separation and DNA analysis

Acknowledgements

20-Mar-1940 Insert > Header & footer

LUMC/LDGA:Sandra ArkesteijnGreet BakkerJeanette ter HuurneSharda BisoenRianne SchaapMaaike VerschurenLinda VijfhuizenClaudia RuivenkampCathy Bosch

Frank BaasChristi van Asperen

LUMC/LGTC:Rolf VossenEmile de MeijerQuint HottentotStefan WhiteHenk Buermans

Human and Clinical Genetics:Johan den Dunnen

National and KapodistrianUniversity of Athens:

Joan Traeger-Synodinos