27
The low-dimensional algebraic cohomology of the Virasoro algebra Based on arXiv:1805.08433 and on-going work with Martin Schlichenmaier Jill Ecker Faculty of Science, Technology and Communication University of Luxembourg 2018 QSPACE Training School, Centro de Ciencias de Benasque Pedro Pascual, Spain, September 23 - September 30 Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 1 / 27

The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The low-dimensional algebraic cohomology of theVirasoro algebra

Based on arXiv:1805.08433 and on-going work with MartinSchlichenmaier

Jill Ecker

Faculty of Science, Technology and CommunicationUniversity of Luxembourg

2018 QSPACE Training School, Centro de Ciencias de Benasque PedroPascual, Spain, September 23 - September 30

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 1 / 27

Page 2: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Table of Contents

1 Introduction

2 The Witt and the Virasoro algebra

3 The Lie algebra cohomology

4 Results

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 2 / 27

Page 3: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Motivation

Virasoro algebra (=central extension of Witt algebra): very important∞-dimensional Lie algebra, omnipresent in 2-dimensional conformalfield theory and String Theory; see Kac, Raina and Rozhkovskaya [7].

Low-dimensional cohomology: interpretation in terms of invariants,outer derivations, extensions, deformations and obstructions, as wellas crossed modules ↔ their knowledge allows a better understandingof the Lie algebra itself.

Algebraic cohomology (arbitrary maps) vs continuous cohomology(continuous maps): valid for any base field K with char(K) = 0,independent of any topology chosen, independent of any concreterealization of the Lie algebra.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 3 / 27

Page 4: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Main Objectives

Aim: Compute the third algebraic cohomology with values in theadjoint module of the Virasoro algebra.

Byproduct: third algebraic cohomology with values in the trivialmodule of the Witt and the Virasoro algebra.

Known in the case of the adjoint module:

? First algebraic cohomology of the Witt and the Virasoro algebra; seeEcker and Schlichenmaier [2].

? Second algebraic cohomology of the Witt algebra; see Schlichenmaier[9, 8] and also Fialowski [4, 3].

? Second algebraic cohomology of the Virasoro algebra; seeSchlichenmaier [9].

? Third algebraic cohomology of the Witt algebra; see Ecker andSchlichenmaier [2].

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 4 / 27

Page 5: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The Witt algebra

Witt algebra W generated as vector space over a field K withchar(K) = 0 by the elements {en | n ∈ Z} satisfying the following Liestructure:

[en, em] = (m − n)en+m, n,m ∈ Z

Z-graded Lie algebra: deg(en) := n

Decomposition of W: W =⊕

n∈ZWn, with each Wn a 1-dimensionalhomogeneous subspace generated by en

Internally graded: [e0, en] = nen = deg(en)en, i.e. en is eigenvector ofade0 := [e0, ·] with eigenvalue n

Algebraic realization: Lie algebra of derivations of Laurentpolynomials K[Z−1,Z ]

Geometrical realization:K = C, algebra of meromorphic vector fields on CP1 holomorphicoutside of 0 and ∞, with en = zn+1 d

dz

Lie algebra of polynomial vector fields on S1, with en = e inφ ddφ

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 5 / 27

Page 6: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The Virasoro algebra

The Virasoro algebra V is the universal one-dimensional centralextension of the Witt algebra

Central extension described by short exact sequence:

0 −→ K i−→ V π−→W −→ 0 .

Exact sequence · · · fi−1→ Mifi→ Mi+1

fi+1→ . . . : ker fi = im fi−1.

As a vector space, V = K⊕W generated by en := (0, en) andt := (1, 0)

Lie structure equation:

[en, em] = (m − n)en+m − 112 (n3 − n)δ−mn t,

[en, t] = [t, t] = 0

deg(en) := deg(en) = n and deg(t) = 0 ⇒ V is Z-graded

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 6 / 27

Page 7: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The Lie algebra cohomology

Let L: Lie algebra; M: L-module and Cq(L,M): vector space ofq-multilinear alternating maps with values in M, called q-cochains(q ∈ N)Convention: C 0(L,M) := MCoboundary operators δq defined by:

∀q ∈ N, δq : Cq(L,M)→ Cq+1(L,M) : ψ 7→ δqψ ,

(δqψ)(x1, . . . xq+1) : =∑

1≤i<j≤q+1(−1)i+j+1 ψ([xi , xj ] , x1, . . . , xi , . . . , xj , . . . , xq+1)

+∑q+1

i=1 (−1)i xi · ψ(x1, . . . , xi , . . . , xq+1) ,

with x1, . . . , xq+1 ∈ LAdjoint module M = L, x ·m = [x ,m]; trivial module M = K,x ·m = 0δq+1 ◦ δq = 0 ∀ q ∈ N → complex of vector spaces:

{0} δ−1−→ Mδ0−→ C 1(L,M)

δ1−→ · · ·δq−2−→ Cq−1(L,M)

δq−1−→ Cq(L,M)δq+1−→ Cq+1(L,M)

δq+1−→ . . .

where δ−1 := 0Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 7 / 27

Page 8: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The Chevalley-Eilenberg cohomology

q-cocycles : Zq(L,M) := ker δq

q-coboundaries : Bq(L,M) := im δq−1

qth cohomology group of L with values in M:

Hq(L,M) := Zq(L,M)/Bq(L,M)

Chevalley-Eilenberg cohomology:

H∗(L,M) :=∞⊕q=0

Hq(L,M)

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 8 / 27

Page 9: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

The degree of a homogeneous cochain

L graded Lie algebra, M a graded L-module, M internally gradedwith respect to the same grading element as the Lie algebra LExamples: adjoint module M=L; trivial module M=K withK =

⊕n∈ZKn, K0 = K and Kn = {0} for n 6= 0

A q-cochain ψ is homogeneous of degree d if ∃ a d ∈ Z s.t. for allq-tuple x1, . . . , xq of homogeneous xi ∈ Ldeg(xi ), we have:

ψ(x1, . . . , xq) ∈ Mn with n =

q∑i=1

deg(xi ) + d

; decomposition of cohomology:

Hq(L,M) =⊕d∈Z

Hq(d)(L,M)

Result by Fuks [5]:

Hq(d)(L,M) = {0} for d 6= 0 ,

Hq(L,M) = Hq(0)(L,M)

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 9 / 27

Page 10: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Main result

Main Theorem

The third algebraic cohomology of the Virasoro algebra V over a field Kwith char(K) = 0 and values in the adjoint module is one-dimensional, i.e.

dim(H3(V,V)) = 1

Use intermediate results

H3(V,W) ∼= H3(W,W)

anddim(H3(V,K))(= dim(H3(W,K))) = 1

Proof of H3(V,W) ∼= H3(W,W): uses Hochschild-Serre spectralsequence (c.f. [1]).

Proof of dim(H3(V,K)) = 1: later.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 10 / 27

Page 11: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of main theorem (I)

Short exact sequence 0 −→ K i−→ V π−→W −→ 0 of Lie algebras isalso a short exact sequence of V-modules.

In cohomology, we obtain long exact sequence:

· · · → H2(V,W)→ H3(V,K)→ H3(V,V)→ H3(V,W)→ . . . .

Second cohomology: H2(V,W) ∼= H2(W,W) and also

H2(W,W) = {0} hence H2(V,W) = 0 (c.f. [9])

Third cohomology: H3(V,W) ∼= H3(W,W) and also

H3(W,W) = {0} hence H3(V,W) = {0} (c.f. [2])

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 11 / 27

Page 12: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of main theorem (II)

The long exact sequence becomes a short exact sequence:

0→ H3(V,K)→ H3(V,V)→ 0 .

Recall 2nd intermediate result:

dim(H3(V,K)) = 1 (proof on next slide)

By exactness, we obtain the result of the main theorem:

dim(H3(V,V)) = 1 .

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 12 / 27

Page 13: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (I)

Theorem

The third cohomology group of the Witt and the Virasoro algebra withvalues in the trivial module K is one-dimensional, i.e.:

dim(H3(W,K)) = dim(H3(V,K)) = 1

First step : Find a cocycle of H3(V,K) that is not a coboundary.

Second step : There are no other cocycles up to equivalence.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 13 / 27

Page 14: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Cocycle condition and coboundary condition

The condition for a 3-cochain ψ to be a cocycle with values in thetrivial module is:

(δ3ψ)(x1, x2, x3, x4) =ψ ([x1, x2] , x3, x4)− ψ ([x1, x3] , x2, x4)

+ ψ ([x1, x4] , x2, x3) + ψ ([x2, x3] , x1, x4)

− ψ ([x2, x4] , x1, x3) + ψ ([x3, x4] , x1, x2) = 0 ,

where x1, x2, x3, x4 are elements of W or V.

The condition for a 3-cocycle ψ to be a coboundary with values in thetrivial module is:

ψ(x1, x2, x3) = (δ2φ)(x1, x2, x3)

⇔ ψ(x1, x2, x3) = φ ([x1, x2] , x3) + φ ([x2, x3] , x1) + φ ([x3, x1] , x2) ,

where φ is a 2-cochain with values in K and x1, x2, x3 are elements ofW or V.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 14 / 27

Page 15: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Inspiration from continuous cohomology (I)

Let t be the coordinate along S1. Elements of Vect(S1) : f (t) ddt ,

with f real-valued smooth function on S1.

Continuous cohomology: dim(H3c(Vect(S1),R)) = 1 (see Fuks and

Gelfand [6]) .

Generator given by Godbillon-Vey cocycle (c.f. [6]) :

G V :

(fd

dt, g

d

dt, h

d

dt

)7→∫S1

det

f g hf ′ g ′ h′

f ′′ g ′′ h′′

dt

with f , g , h ∈ C∞(S1). Prime = derivative w.r.t. t.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 15 / 27

Page 16: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Inspiration from continuous cohomology (II)

Geometrical realization of the Witt algebra: en = ie intd

dt.

We obtain:

G V (en, em, ek) = −∫S1

det

1 1 1n m kn2 m2 k2

e i(n+m+k)tdt

= (n −m)(n − k)(m − k)

∫S1

e i(n+m+k)tdt

Integral evaluates to zero if n + m + k 6= 0, otherwise it yields thevalue 1.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 16 / 27

Page 17: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (II)

Trilinear map Ψ ∈ H3(W,K) :

Ψ :W ×W ×W → K

defined on basis elements ei as follows:

Ψ(ei , ej , ek) = (i − j)(j − k)(i − k)δi+j+k,0

Trivial extension to a map of H3(V,K) :

Ψ : V × V × V → K ,

by setting Ψ(x1, x2, x3) = 0 whenever one of the elements x1, x2 or x3

is a multiple of the central element t.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 17 / 27

Page 18: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (III)

Proposition 1

The trilinear maps Ψ and Ψ define non-trivial cocycle classes of H3(W,K)and H3(V,K), respectively.

Proof.

Ψ and Ψ are cocycles of H3(W,K) and H3(V,K) respectively: shownby direct computation.

Ψ and Ψ are not coboundaries: evaluate at e−1, e1, e0

→ Ψ(e−1, e1, e0) = 2 but (δ2Φ)(e−1, e1, e0) = 0 for all 2-cochainsΦ :W ×W → K, shown by direct computation. Similarly for Ψ.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 18 / 27

Page 19: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (IV)

Second step : There are no other non-trivial cocycles than Ψ resp.

Ψ, up to multiples and coboundaries.(dimension of H3(W,K)) = dim(H3(V,K) is at most one)

Fuks [5]: We only need to consider degree zero cohomology. Ψ and

Ψ are of degree zero.

Let ψ be an arbitrary degree zero 3-cocycle of V or W.

Set:

ψ′ = ψ − ψ(e−1, e1, e0)

2Ψ resp. ψ′ = ψ − ψ(e−1, e1, e0)

Then ψ′(e−1, e1, e0) = 0 because

Ψ(e−1, e1, e0) = Ψ(e−1, e1, e0) = 2.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 19 / 27

Page 20: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (V)

Proposition 2

Let ψ be a 3-cocycle for V or W with ψ(e−1, e1, e0) = 0 .

Then ψ is a coboundary .

ψ′ fulfills ψ′(e−1, e1, e0) = 0 ⇒ ψ′ = 0 up to coboundaries:

ψ =ψ(e−1, e1, e0)

2Ψ resp. ψ =

ψ(e−1, e1, e0)

⇒ Then any 3-cocycle ψ of V or W is a multiple of Ψ resp. Ψ, up tocoboundaries, if Proposition 2 is true

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 20 / 27

Page 21: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VI)

Proof of Proposition 2: elementary but tedious computations.

Proof in three steps:

Step 1 Fuks [5]: Reduce to degree zero cochains and cocycles.

Step 2 Perform cohomological change ψ → ψ − δ2φ (Lemma 1)

Step 3 Use fact that we are dealing with cocycles; i.e. use cocycleconditions (Lemma 2).

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 21 / 27

Page 22: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VII)

Step 1

Cochains and cocycles can be defined entirely by a system ofcoefficients in K.

Write

ψ(ei , ej , ek) := ψi ,j ,k and ψ(ei , ej , t) := ci ,j

with ψi ,j ,k , ci ,j ∈ K.

We have: ψi ,j ,k = 0 if i + j + k 6= 0 and ci ,j = 0 if i + j 6= 0

because we are considering degree zero cochains (c.f. [5])

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 22 / 27

Page 23: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (VIII)

Step 2

Lemma 1

Every 3-cocycle ψ′ ∈ H3(V,K) satisfying ψ′(e1, e−1, e0) = 0 iscohomologous to a 3-cocycle ψ ∈ H3(V,K) with coefficientsci ,j , ψi ,j ,k ∈ K fulfilling:

ci ,j = δi ,−j

(1

6i (i − 1)(i + 1)c2,−2

)and ψi ,j ,1 = 0 ∀ i , j ∈ Z

Similarly for WProof: elementary algebra but technical; use coboundary conditions

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 23 / 27

Page 24: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Proof of dim(H3(W ,K)) = dim(H3(V ,K)) = 1 (IX)

Step 3

Lemma 2

Let ψ ∈ H3(V,K) be a 3-cocycle such that:

ci ,j = δi ,−j

(1

6(i − 1)(i)(i + 1)c2,−2

)and ψi ,j ,1 = 0 ∀ i , j ∈ Z .

Then:

ci ,j = 0 ∀ i , j ∈ Z and ψi ,j ,k = 0 ∀ i , j , k ∈ Z

Similarly for WProof: elementary algebra, but complicated; use cocycle conditions

⇒ Every 3-cocycle ψ satisfying ψ(e1, e−1, e0) = 0 is a coboundary

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 24 / 27

Page 25: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Summary

dim(H3(V,V)) = 1H3(W,W) = {0} Long exactsequence

H3(V,W) ∼= H3(W,W) dim(H3(V,K)) = 1

Hochschild-Serre spectral

sequence

Proposition 1 Proposition 2

Ψ is a cocycle

Ψ is not acoboundary

Lemma 1

Lemma 2

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 25 / 27

Page 26: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

References

[1] Jill Ecker and Martin Schlichenmaier, The Low-Dimensional Algebraic Cohomology of the VirasoroAlgebra, (2018), arXiv:1805.08433.

[2] Jill Ecker and Martin Schlichenmaier, The Vanishing of the Low-Dimensional Cohomology of the Wittand the Virasoro algebra, (2017), arXiv:1707.06106.

[3] Alice Fialowski, Deformations of some infinite-dimensional Lie algebras, J. Math. Phys. 31 (1990),no. 6, 1340–1343, MR1054321.

[4] Alice Fialowski, Formal rigidity of the Witt and Virasoro algebra, J. Math. Phys. 53 (2012), no. 7,073501, 5, MR2985241, arXiv:1202.3132, DOI:10.1063/1.4731220.

[5] D. B. Fuks, Cohomology of infinite-dimensional Lie algebras, Contemporary Soviet Mathematics,Consultants Bureau, New York, 1986, Translated from the Russian by A. B. Sosinskiı, MR874337.

[6] I. M. Gelfand and D. B. Fuks, Cohomologies of the Lie algebra of vector fields on the circle, Funkcional.Anal. i Prilozen. 2 (1968), no. 4, 92–93, MR0245035.

[7] Victor G. Kac, Ashok K. Raina, and Natasha Rozhkovskaya, Bombay lectures on highest weightrepresentations of infinite dimensional Lie algebras, second ed., Advanced Series in MathematicalPhysics, vol. 29, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2013, MR3185361.

[8] Martin Schlichenmaier, An elementary proof of the formal rigidity of the Witt and Virasoro algebra,Geometric methods in physics, Trends Math., Birkhauser/Springer, Basel, 2013, pp. 143–153,MR3363999.

[9] Martin Schlichenmaier, An elementary proof of the vanishing of the second cohomology of the Witt andVirasoro algebra with values in the adjoint module, Forum Math. 26 (2014), no. 3, 913–929,MR3200354, arXiv:1111.6625, DOI:10.1515/forum-2011-0143.

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 26 / 27

Page 27: The low-dimensional algebraic cohomology of the Virasoro algebrabenasque.org/2018qspace/talks_contr/267_Ecker_benasque.pdf · 2018. 9. 28. · Virasoro algebra(=central extension

Thank you for your attention!

Jill Ecker (U. of Luxembourg) Cohomology of the Virasoro Algebra 2018 QSPACE Training School 27 / 27