20
The Landsat Data Continuity Mission(LDCM): Landsat 8 Not your fathers Landsat John R Schott, Aaron Gerace and Nima Pahlevan Sponsor: United States Geological Survey (USGS) and NASA/Goddard January 2012

The Landsat Data Continuity Mission(LDCM): Landsat 8€¦ · The Landsat Data Continuity Mission(LDCM): Landsat 8 Not your fathers Landsat John R Schott, Aaron Gerace and Nima Pahlevan

  • Upload
    buidung

  • View
    235

  • Download
    0

Embed Size (px)

Citation preview

The Landsat Data Continuity Mission(LDCM):Landsat 8

Not your fathers Landsat

John R Schott, Aaron Gerace and Nima PahlevanSponsor: United States Geological Survey (USGS) and NASA/Goddard

January 2012

2

LDCM carries two pushbroom instruments:The 9 band Orbital Land Imager (OLI) and

The 2 band Thermal Infrared Sensor (TIRS) ETM+ OLI

• Same swath width, same resolution as L 7• global coverage, merged OLI-TIRS product

33

Size Matters

Landsat 7&8 (30m)

16 day repeat

Free web access

Terra‐MODIS (500m)

Daily coverage

Free web access

Rochester Embayment (Lake Ontario)

4

LDCM Features: New bands

LDCM Response

0

0.2

0.4

0.6

0.8

1

350 850 1350 1850 2350Wavelength

Resp

onse

5

LDCM Features: 12 bit Quantizationvs. 8 bit on L7

OLI (12-bit)

Landsat 7 (8-bit)

6

46 vs. 68 units of chlorophyll

OLI’s pushbroom design leads to

significantly better SNR

SNR for ~ 3% refelector

CA

BlueGreen

Red

NIR

050

100150200250300350

0 1 2 3 4 5 6

Band numbers

Mea

n/St

d OLI

L7

7

Water IOPs-Absorb-Scatter

Modeling the Constituent Retrieval Process: Hydrolight

Wind Speed

Sensor locationSolar location

CHL SM CDOM

8

Spectralsampling

Quantize

AVIRIS

ETM+

OLI

Add Noise

Modeling the Constituent Retrieval Process: At the Sensor

Sensorresponse

Hydrolightoutput

9

Modeling the Constituent Retrieval Process:

M

CD

OM

CHL

Top of Atmosphere

Air/Water Interface

CHL=3SM=4

CDOM=7

CHL(g/L)

SM(mg/L)

CDOM

0 0 0.5 .5 .51 1 .753 2 15 4 27 8 4

12 10 724 14 1046 20 1268 24 14

Modtran

10

Interpolation Process

min [(ST - SP)2 ]

λ

Sp predicted

SQ Error[CHL] [SM] [CDOM]

TRUE

FALSE

[ SM ][CDOM ]

LUT

[CH

L]

11

AVIRIS

ETM+

OLI

Modeling the Constituent Retrieval Process: Summary

– Average residuals can be expressed as a percent of the total range of constituents. CHL [0 – 68], SM [0 – 24], CDOM [0 – 14]

– 10% error is our target for this experiment.

Spectralsampling QuantizeAdd Noise

Sensorresponse

HydrolightOutputX 2000

Constituentretrieval

12

Results: Perfect atmospheric compensation

13

SNR Margins

14

Results: Perfect atmospheric compensation

15

Atmospheric Compensation IssuesHydrolight-generated water pixels as seen

through a 40km visibility atmosphere.

• (Left) TOA Radiance, (Right) Resampled to six LDCM bands.• Three Atmospheric compensation algorithms developed to take

advantage of deep blue band ,near zero reflectance in NIR/SWIR and model based empirical line method (ELM).

16

OLI Atmospheric CompensationExperiment 3: Real Data

17

Temperature is a driving factor impacting hydrodynamics and therefore materials

transport and water qualityTrue Color Composite Thermal Channel

Cold center

Warm ring

• Hydrodynamic models calibrated with surface thermal maps can help bridge temporal gaps and provide estimates of subsurface behavior

1818

One Possible Solution to Landsa’st Temporal Resolution

Hydrodynamic modeling, when calibrated, can compensate low temporal resolution ofLandsat

A well‐calibrated model enables pre‐casting and forecasting of the state of the environment

Hydrodynamic models can estimate 3‐D flow and material transport

– Integrate Landsat data with hydrodynamic (HD) modeling

Day 1 Day 16HD

360‐hours gap of imagery

19

Hydrodynamic Modeling: Inputs

ALGE Hydrodynamic Model

– Nudging Vectors (hourly).• Whole lake simulation provides nudging vectors for small scale simulation.

Landsat 5: July 13th, 2009Lake Ontario simulation: Surface Currents

20

Collaborations for 2012, 2013 & 2014 Field Seasons