36
The influence of the magnetic field on the kinetic of the chemical reaction Antonella De Ninno ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development October 9 th -12 th , 2014 Pamporovo, BULGARIA

The influence of the magnetic field on the kinetic of the chemical reaction

Embed Size (px)

DESCRIPTION

The influence of the magnetic field on the kinetic of the chemical reaction. October 9 th -12 th , 2014 Pamporovo, BULGARIA. Antonella De Ninno ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development. October 9 th -12 th , 2014 Pamporovo, BULGARIA. - PowerPoint PPT Presentation

Citation preview

Page 1: The influence of the magnetic field on the kinetic of the chemical reaction

The influence of the magnetic field on the kinetic of the

chemical reactionAntonella De Ninno

ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development

October 9th-12th, 2014Pamporovo, BULGARIA

Page 2: The influence of the magnetic field on the kinetic of the chemical reaction

Summary

1. The supra-molecular structure of liquid water

2. Non-isolated systems out of equilibrium

3. The effect of weak magnetic field on hydration of

molecules

4. Low Energy/matter exchanges in aqueous systems

October 9th -12th, 2014Pamporovo, BULGARIA

Page 3: The influence of the magnetic field on the kinetic of the chemical reaction

Models of liquid water

Röngten: floating low density clusters in high density matrix

Bernal and Fowler : the revenge of the thermodynamics

Linus Pauling: the idea of hydrogen bond

Stanley and Teixeira the concept of infinite connected network or gel

In the last decades a great number of Molecular Dynamics (MD) simulations have been carried on these bases.

Robinson: domains of different density. The mixture model provides for the specific volume the simple expression:

Philippa Wiggins and Martin Chaplin extended this two phase liquid concept to room temperature water in terms of: Low Density Water LDW is the hydrating water around cell membranes and DNA double helix and High Density Water HDW is the “bulk” water.

( , ) ( , ) ( , ) 1 ( , ) ( , )I IIV p T f p T V p T f p T V p T

Page 4: The influence of the magnetic field on the kinetic of the chemical reaction

Electrodynamic coherence

Later on, the existence of water in two different populations made up by molecules having different degree of mutual correlation has been demonstrated according to first principles: it can be proved that when

the temperature T is lower than a critical Tcrit and the

density N is higher than a critical Ncrit

an ensemble of particles is subjected to a collective coherent oscillation between a couple of internal levels of its components, thus generating a

collective behaviour.

These collective behaviour is responsible for the long-range forces which account for the actual existence of the condensed state.

Page 5: The influence of the magnetic field on the kinetic of the chemical reaction

Water represents a remarkable example of such a general principle:

at room temperature a dynamical superposition of two populations, Fc , Fnc of

coherent and non-coherent molecules is thereby established,

depending on temperature.

According to this view, each atom or molecule belongs to one of the two fractions in a dynamical sense, i.e. it fluctuates between a coherent and a non-

coherent state with a characteristic time life ~ 5·10-15 sec. The coherent

fraction represents the lowest energy, ordered state while the non coherent fraction is populated by monomers and dimers such as the gas phase.

The vibrational spectra of liquid water can be easily interpreted in agreement with this theory .

Very recent time-resolved optical Kerr effect investigation (pub, on Nature Comm.) have shown the evidence of the coexistence of two local configuration, interpreted as high density and low density water form from ambient to supercooled conditions

Page 6: The influence of the magnetic field on the kinetic of the chemical reaction

Non-isolated systems out of equilibrium

Nanoaggregates – Alexander Konovalov

EZ water – Jerry Pollack

Aquaphotomics – Roumiana Tsenkova

Stable aggregates of water at room temperature –

Vittorio Elia

Page 7: The influence of the magnetic field on the kinetic of the chemical reaction
Page 8: The influence of the magnetic field on the kinetic of the chemical reaction

Actually, we know that the Temperature is not the only

parameter influencing the fraction of coherent population:

Temperature (“ab initio” calculations)

Contact with surfaces (Pollack, Konovalov,

Tsenkova)

Exchange of low amount of mechanical energy

with the environment (Elia)

Electromagnetic fields (will see in the following)

Page 9: The influence of the magnetic field on the kinetic of the chemical reaction

Water• Gases are fully non coherent systems• Liquids are systems where electron clouds are coherent• Solids are systems where nuclei, too, are coherent

• Liquid water is peculiar, since the coherent oscillation connects two electronic configurations that have extreme features:

1) The ground configuration where all electrons are tightly bound (the ionization potential is 12.60 eV, corresponding to soft X-rays and to an excitation temperature of 145.000 °C !)

2) The excited configuration has an energy E=12.06 eV, only 0.54 eV below the ionization threshold. So for each molecule there is an almost free electron!

( ) ( ) 1c ncF T F T

Page 10: The influence of the magnetic field on the kinetic of the chemical reaction

Let’s have a look on the surface of solutes in water, or, what is the same on a wet surface. Negatively charged surface

Ө ӨӨ ӨӨ Ө Ө ӨӨ ӨӨ Ө

Positively charged surface

( ) ( ) ( )r ii

( ) ( ) ( )r ii

Page 11: The influence of the magnetic field on the kinetic of the chemical reaction

The general theory of the Van der Waals Forces (1961)

The basic idea of the theory is that the interactions between non-polar bodies is considered to take place through a fluctuating electro magnetic field.

These fluctuations are all the spectral components which have wavelengths large compared to the atomic dimensions.

All the properties of these long wavelength fluctuations, are completely specified through the complex dielectric permeability of the body.

The only limitation is that all the characteristic dimensions of the bodies must be large compared to the inter-atomic distances. Thus it applies to the macromolecules involved in the biological reactions.

Page 12: The influence of the magnetic field on the kinetic of the chemical reaction

Forces between two bodies separated by a medium depend on the dielectric constant of 1, 2of the two bodies and 3 of the medium which fills the gap

d

2 3( )

8F d

d

1 2

1 3 2 3

1 3 2 30

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

i i i id

i i i i

~ 1-2 m d < characterize the absorption spectrum of the body

Page 13: The influence of the magnetic field on the kinetic of the chemical reaction

Suppose that both bodies are sufficiently rarefied. From the point of view of macroscopic electrodynamics this means that their dielectric permeability are close to 1. We obtain the classical London formula (1930)

41 1 2 2

1 22 61 2 1 20 0

( )3( )

2

f feU d d d

m d

3 1

Page 14: The influence of the magnetic field on the kinetic of the chemical reaction

Attraction and repulsion depend on the medium which fills the gap

It has to be noted that if the two bodies differ and the medium between them is water the interaction can be either an attraction or a repulsion:

If and have opposite sign

then F < 0 and the bodies will repel each other.

If and have the same sign

then F > 0 and the bodies will attract

2 3 1 3

1 3 2 3

for “large” separation, the forces are determined by the electrostatic values of the dielectric constants.

Page 15: The influence of the magnetic field on the kinetic of the chemical reaction

Two atoms in water (Pitaevskii, 1959)

Weak solution of N1 and N2 atoms in the same solvent

Gap filled with pure water For small concentrations the dielectric permeabilities ε1 and ε2

differ little from that of pure solvent ε3= ε

1 21 22 3 2

1 20 1 0 2 0

1( )

32N N

i iF R N N d

R N N i

This force corresponds to an interaction energy of the dissolved atoms equal to:

1 23 6 2

1 20 1 0 2 0

3 1( )

16N N

i iU R d

R N N i

Page 16: The influence of the magnetic field on the kinetic of the chemical reaction

We see that when the dissolved molecules interact strongly with the solvent the interaction forces between them are no longer determined by their polarizability

but depend on the dielectric constant of the solvent !

Dielectric properties of water

( ) ( ) ( ) ( ) ( )coh coh non coh non cohT F T T F T T

29812calc T K

exp 29879

T K

non interacting dipoles

0160coh T K

coherent domains

experimental value

Sta

tic

die

lect

ric

const

ant

large distance

s

with respect to the wavelength of the em fluctuation

*

*

Page 17: The influence of the magnetic field on the kinetic of the chemical reaction

20033 7

20

23 1 1( ) ( )

64N

N

cU d

R N

Energy is decreased by the formation of aggregates of coherent water having a higher

static dielectric constant (Konovalov nanoaggregates)

The magnetic field may protect the pile-up of the energy aligning the magnetic dipoles associated to the CDs thus stabilizing the aggregates.

Aqueous solutions used by Prof. Konovalov ‘s group have typical

absorption line in their spectrum in the range of 200-600 nm.

Hence, whenever the average distance among particles exceed

such a length the following formula holds

Page 18: The influence of the magnetic field on the kinetic of the chemical reaction

Average distance less than200/400 nm depending on the substances

Average distance greater than200/400 nm depending on the substances

Page 19: The influence of the magnetic field on the kinetic of the chemical reaction

The observed stable nano objects have a size of hundreds of nanometers which is in the same range of the wavelength characteristic of the spectrum of the solute.

We suggest that whenever the dilution exceed a certain threshold where the average distance among solutes d ≫ water Coherent Domains gather to form a mesoscopic region in order to decrease the free energy of the system.

Stable water cluster may have a permanent electric charge (ζpotential) due to the quasi-free electrons at the border of the CDs. In bulk water such a feature cannot be observed because the lifetime of a CD is too short (10-15 sec)

Page 20: The influence of the magnetic field on the kinetic of the chemical reaction

We are talking about the arrangement of extended structures formed by the water coherent domains and the solutes.

It is also possible that their collective vibrations could become coherent due to the principle of minimization of energy, this implies that water shift its oscillation frequency or (what is the same) its energy gap.

Experimental hints:

Blu shift of the IR spectrum of EZ water

aquaphotomics

Page 21: The influence of the magnetic field on the kinetic of the chemical reaction

Water permittivity

short distance

s

*

with respect to the wavelength of the em fluctuation*

Hic sunt leones !(here are the lions!)

Page 22: The influence of the magnetic field on the kinetic of the chemical reaction

A film of water on the surface of a solid body (EZ water)

2 38 R

( ( ), ( ))w sF i i

For “large” thickness is proportional to R-4 with a coefficient

depending on the electrostatic dielectric constants of the film

and of the solid surface

( )Rwater

solid

The chemical potential of the film per unit volume of the liquid

is:

The function may change sign and be non-monotonic according to the sign of the difference ( )w s

Page 23: The influence of the magnetic field on the kinetic of the chemical reaction

The collective vibration of dangling charges (SO3-

sulfonic groups) of the surface and of the coherent water molecules could become coherent (blue shift) in order to further reduce the energy of the system water + Nafion

Perm

itti

vit

y v

s fr

equency

at

25

°C f

or

Nafion 1

17

( ) 0coh Nafion

( ) 0noncoh Nafion

Open the way for a theory for EZ water

Page 24: The influence of the magnetic field on the kinetic of the chemical reaction

Naf

ion

Dielectric constant 160

Dielectric constant 12

Non coherent molecules can enter intothe Nafion structure.After a threshold of hydration they areattracted toward the surface

Naf

ion Nafion acts as a phase separator

EZ water

Page 25: The influence of the magnetic field on the kinetic of the chemical reaction

The effect of weak magnetic field on hydration of molecules

Page 26: The influence of the magnetic field on the kinetic of the chemical reaction

PhenylalanineExposure to a static magnetic field 1 Gauss – 30 minutes

FTIR

spect

ra o

f aqueous

solu

tion o

f L-

phe

( )log

( )a

unprotonatedform basepH pK

protonatedform acid

Page 27: The influence of the magnetic field on the kinetic of the chemical reaction

pKa1 = 2.88± 0.03 MAGNETIC FIELD pKa1 = 3.31±

0.04

=+0.43

pKa2= 9.51±0.04 MAGNETIC FIELD pKa2=

9.41±0.04

=-0.1

The exposure of L-Phe to the magnetic field has an

effect similar to the exposure to NIR radiation, which

is known to cause significant changes in the hydration

properties of such molecules.

Page 28: The influence of the magnetic field on the kinetic of the chemical reaction

H2Omodifications

aggregation

pKa shift

Page 29: The influence of the magnetic field on the kinetic of the chemical reaction

Cr-EDTAClassic form (H4y) EDTA

The unusual property of EDTA is its ability to chelate or

complex metal ions in 1:1 metal-to-EDTA complexes

3 42 6 . 2 .. .

( ) ( ) 6aq liqaq aqCr H O EDTA Cr EDTA H O

Page 30: The influence of the magnetic field on the kinetic of the chemical reaction

Absorbance at l = 540.0 nm of the EDTA-Cr(III) complex.

Two cuvettes C1 and C2.To the C2 cuvette have been applied two permanent, rare earth oxides, magnets having dimensions 52 x 13x 7 mm. The magnitude of the field is 2800±100 Gauss inside the cuvette.

Kinetic of formation of EDTA-Cr (III) complex: difference in the absorbance of exposed – not exposed samples.

Following the formation of the complexvia the UV-vis spectroscopy

Page 31: The influence of the magnetic field on the kinetic of the chemical reaction

Kinetic data, available in the literature, show that the

rate constant for the reaction is accelerated with

increasing the EDTA:concentration, pH, temperature, decreasing ionic strength and dielectric constant of

the reaction medium

These results point towards an associative

mechanism supported by the decrease of enthalpy and a

large negative entropy for substitution of water by ligand

compared to water exchange.

Page 32: The influence of the magnetic field on the kinetic of the chemical reaction

157.2 3H KJmol 1128 8S JKmol

1109.6H KJmol 112S JKmol

Substitution of water by a ligand

The much higher entropy gain of the reaction implies a larger

scale ordering realized in the construction of the complex

Water exchange

The magnetic field increases the kinetic constant affecting the ordered structures of water molecules surrounding the hydrophobic chains.It increases the fraction of non coherent molecules available for the substitution of water by a ligand. The energy of the system water + solute is decreased.

Page 33: The influence of the magnetic field on the kinetic of the chemical reaction

Other experimental reports

1. Very High field: 10T

1. Refraction index increases of 0.1% (Hosoda et al.- J. of Phys Cem A, 2004, 108, 1461)

2. High field: 6T

1. Modifications when O2 is dissolved: Raman bands, contact

angle, electrolytic potential (Otsuka and Ozeki – J. of Phys Chem B Lett 2006,110,1509-1512)

3. Low field: 45-65 mT

1. Vaporization enthalpy increases

2. Viscosity increases

3. Surface tension increases (Toledo et al. – J. of Mol Struct 2008, 888, 409-425)

Page 34: The influence of the magnetic field on the kinetic of the chemical reaction

Energy/matter exchanges in aqueous systems

The spontaneous evolution of the system is influenced by the environment (temperature, energy exchange, magnetic field).

In general it can be said that a system doesn’t reach the thermodynamic equilibrium unless the system is isolated. This principle is valid not only for the living matter but also for the inanimate one.

These considerations have been the basis of the experimental work of an Italian chemist, Giorgio Piccardi, in the ‘50s.

Page 35: The influence of the magnetic field on the kinetic of the chemical reaction

we suggest that water is the medium in which these exchanges at very low energy occur.

Page 36: The influence of the magnetic field on the kinetic of the chemical reaction

Thank you for your attention