16
Journal of Ecology. 2019;00:1–16. | 1 wileyonlinelibrary.com/journal/jec Received: 9 July 2019 | Accepted: 10 September 2019 DOI: 10.1111/1365-2745.13292 RESEARCH ARTICLE The impact of elevated temperature and drought on the ecology and evolution of plant–soil microbe interactions Pil U. Rasmussen 1 | Alison E. Bennett 2 | Ayco J. M. Tack 1 1 Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden 2 Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA Correspondence Pil U. Rasmussen Email: [email protected] Funding information Maj and Tor Nessling foundation, Grant/ Award Number: 2014211; Research Council Vetenskapsrådet, Grant/Award Number: 2015-03993 Handling Editor: Brajesh Singh Abstract 1. Climate change is shifting the distribution of species, and may have a profound im- pact on the ecology and evolution of species interactions. However, we know little about the impact of increasing temperature and changing rainfall patterns on the interactions between plants and their beneficial and antagonistic root symbionts. 2. Here, we used a reciprocal multifactorial growth chamber experiment with seeds and soil microbial communities from three origins to investigate the impact of temperature and soil moisture on the growth, arbuscular mycorrhizal (AM) fungal colonization and root‐associated fungal community of a perennial herb. Moreover, we tested whether plants and AM fungi performed better or worse when plants were grown with their local soil biota, for example, due to plant adaptation or changes in the genetic or species composition of the soil microbial community. 3. Temperature and soil moisture generally increased plant growth, whereas tem- perature but not soil moisture increased AM fungal colonization. The strength and direction of the plants' response to temperature were dependent on soil moisture and differed among plant populations, and AM fungal colonization was further affected by the origin of the soil microbial community. The root‐associated fungal community structure was impacted by temperature, soil moisture and the soil mi- crobial origin, with interactive effects between the microbial origin and the abiotic environment. Plant biomass was lower when plants were grown with their local soil microbes, potentially due to intraspecific negative plant–soil feedbacks. 4. Synthesis. Our findings indicate that, beyond a relatively uniform increase of plant growth and arbuscular mycorrhizal (AM) fungal colonization with increasing tem- perature, plants and root‐associated fungi of different origins will vary in their response to climate change (i.e. elevated temperature and shifts in rainfall). This may create pronounced, but difficult to predict, spatial and temporal variation in the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors, arbuscular mycorrhizal fungi, local adaptation, Plantago lanceolata, plant–soil (below‐ground) interactions, plant–soil feedback, root‐associated fungi, soil moisture This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. © 2019 The Authors. Journal of Ecology published by John Wiley & Sons Ltd on behalf of British Ecological Society.

The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

Journal of Ecology. 2019;00:1–16.  | 1wileyonlinelibrary.com/journal/jec

Received:9July2019  |  Accepted:10September2019DOI: 10.1111/1365-2745.13292

R E S E A R C H A R T I C L E

The impact of elevated temperature and drought on the ecology and evolution of plant–soil microbe interactions

Pil U. Rasmussen1  | Alison E. Bennett2  | Ayco J. M. Tack1

1DepartmentofEcology,EnvironmentandPlantSciences,StockholmUniversity,Stockholm,Sweden2DepartmentofEvolution,EcologyandOrganismalBiology,TheOhioStateUniversity,Columbus,OH,USA

CorrespondencePilU.RasmussenEmail:[email protected]

Funding informationMajandTorNesslingfoundation,Grant/AwardNumber:2014211;ResearchCouncilVetenskapsrådet,Grant/AwardNumber:2015-03993

HandlingEditor:BrajeshSingh

Abstract1. Climatechangeisshiftingthedistributionofspecies,andmayhaveaprofoundim-pactontheecologyandevolutionofspeciesinteractions.However,weknowlittleabouttheimpactofincreasingtemperatureandchangingrainfallpatternsontheinteractionsbetweenplantsandtheirbeneficialandantagonisticrootsymbionts.

2. Here,weusedareciprocalmultifactorialgrowthchamberexperimentwithseedsand soilmicrobial communities from three origins to investigate the impact oftemperatureandsoilmoistureonthegrowth,arbuscularmycorrhizal(AM)fungalcolonizationandroot‐associatedfungalcommunityofaperennialherb.Moreover,wetestedwhetherplantsandAMfungiperformedbetterorworsewhenplantsweregrownwith their local soil biota, for example, due toplant adaptationorchangesinthegeneticorspeciescompositionofthesoilmicrobialcommunity.

3. Temperatureandsoilmoisturegenerally increasedplantgrowth,whereas tem-peraturebutnotsoilmoistureincreasedAMfungalcolonization.Thestrengthanddirectionoftheplants'responsetotemperatureweredependentonsoilmoistureanddifferedamongplantpopulations, andAMfungal colonizationwas furtheraffectedbytheoriginofthesoilmicrobialcommunity.Theroot‐associatedfungalcommunitystructurewasimpactedbytemperature,soilmoistureandthesoilmi-crobialorigin,withinteractiveeffectsbetweenthemicrobialoriginandtheabioticenvironment.Plantbiomasswaslowerwhenplantsweregrownwiththeirlocalsoilmicrobes,potentiallyduetointraspecificnegativeplant–soilfeedbacks.

4. Synthesis.Ourfindingsindicatethat,beyondarelativelyuniformincreaseofplantgrowthandarbuscularmycorrhizal(AM)fungalcolonizationwithincreasingtem-perature, plants and root‐associated fungi of different originswill vary in theirresponsetoclimatechange(i.e.elevatedtemperatureandshiftsinrainfall).Thismaycreatepronounced,butdifficulttopredict,spatialandtemporalvariationintheecologyandevolutionofplant–microbeinteractionswithachangingclimate.

K E Y W O R D S

abioticandbioticfactors,arbuscularmycorrhizalfungi,localadaptation,Plantago lanceolata,plant–soil(below‐ground)interactions,plant–soilfeedback,root‐associatedfungi,soilmoisture

ThisisanopenaccessarticleunderthetermsoftheCreativeCommonsAttributionLicense,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.©2019TheAuthors.Journal of EcologypublishedbyJohnWiley&SonsLtdonbehalfofBritishEcologicalSociety.

Page 2: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

2  |    Journal of Ecology RASMUSSEN Et Al.

1  | INTRODUC TION

Soil communities canhavea large impactonplant communityas-sembly,biodiversityandecosystemfunctioning(Bardgett&vanderPutten,2014;vanderHeijden,Bardgett,&vanStraalen,2008).Overthenextcentury,wemayexpecttoseeelevatedtemperaturesandchangesinrainfallregimes(IPCC,2014)changingthedistributionofsoilmicrobes and plants andmodifying the outcomeof plant–soilmicrobeinteractions.Increasingourfundamentalknowledgeoftheimpactofclimateontheecologyandevolutionofplant–soilmicrobeinteractionsmay allow us to predict the consequences of climatechangeforplant–microbeinteractionsandthesurroundingecosys-tem,andprovideavenuestomitigatetheconsequencesofclimatechangeinnaturalandappliedsystems.

Thedistributionofplantsandroot‐associatedfungi,suchasar-buscularmycorrhizal (AM) fungi and pathogens, is to a large partdriven by spatial variation in abiotic factors, such as climate, soilphysical and chemical properties and the biotic environment (e.g.Chaudhary, Lau, & Johnson, 2008; Rasmussen et al., 2018; Vályi,Mardhiah,Rillig,&Hempel,2016).Spatialheterogeneityintheabi-otic and biotic environment can also result inwithin‐species spa-tial genetic structure and local adaptation, where genotypes areadapted to their local environment (Blanquart, Kaltz, Nuismer, &Gandon,2013;Hoeksema&Forde,2008).Inthisregard,plantsareknowntoadaptbothtotheabiotic(Brady,Kruckeberg,&Bradshaw,2005;Maceletal.,2007)andbioticsoilenvironment(Crémieuxetal.,2008;Johnson,Wilson,Bowker,Wilson,&Miller,2010),andan-tagonisticandbeneficialmicrobesareknowntoadapttothe localplantgenotypes(Johnsonetal.,2010;Tack,Thrall,Barrett,Burdon,&Laine,2012).Plantsmayalsoperformbetterorworseintheirlocalsoilenvironmentduetochangesinthegeneticandspeciescompo-sitionof the localmicrobialcommunity in response to thegeneticor species composition of the local plant community (Kulmatiski,Beard,Stevens,&Cobbold,2008;vanderPuttenetal.,2013).Suchplant–soilfeedbacksmaybeeitherpositive,forexample,leadingtoincreasedmutualist densities, or negative, for example, leading toincreasedpathogendensities(vanderPuttenetal.,2013).

The ecological outcome of species interactions, and patterns oflocaladaptation,maybeimpactedbyclimatechange,bothinthecur-rentdistributionalrangeandintheexpandingrange(Bergetal.,2010).Within the existing range, the ecological outcome of plant–soilmi-crobeinteractionsdependsnotonlyonplantgenes,microbialgenesandmicrobialspeciescompositionbutalsoontheenvironmentalcon-text (Hoeksema&Forde,2008; Laine,2009;Thompson,2005).Forexample, soil moisture and temperature have been shown to alterfungal communities (Deveautour, Donn, Power, Bennett, & Powell,2018;Rasmussenetal.,2018)andmaytherebychangefeedbacksbe-tweenplantsandfungi,forexample,ifcommunitieschangefromonemore dominated by beneficialmicrobes to onemore dominated byantagonisticmicrobes orviceversa.As such, environmental changecan disrupt both plant local adaptation and plantmaladaptation tothelocalsoilmicrobialcommunitywithinthepresentrange.Climatechangemayalsoshifttherangesofspecies,whichwillresultinnew

associationsbetweenplants and their soilmicrobeswithin thenewrange.Ifplantsandsoilmicrobesshifttheirrangeinspaceandtimein a similar fashion, patterns of local (mal)adaptationmay be re‐es-tablishedwithinashorttimespan.Incontrast,ifplantswillassociatewithnewmicrobialspeciesorgenotypesinthenewrange,theinterac-tionmaybefundamentallychanged.Asanexample,ifplantsperformworsewhengrowingwith their local soil community in theexistingrange,plantperformancemaybehigherthanexpectedintheexpand-ingrangeduetotheabsenceofcertainantagonisticmicrobes,thelackoftimeforadaptationofantagonisticmicrobestothelocalplantgen-otypesortheadaptationtoandbybeneficialmicrobes.

We used a reciprocal multifactorial climate chamber experi-ment to investigate the impactof climatechange (elevated tem-peratureanddrought)ontheecologyandevolutionofplant–soilmicrobeinteractions.Forthis,weusedPlantago lanceolataplantsandsoilmicrobialcommunitiesoriginatingfromthreedifferentlo-cations (acoastal, forestandmeadowsite),planted in reciprocalcombinationswithtwotemperatureandtwosoilmoisturetreat-ments.We then assessed plant growth, AM fungal colonizationandthecompositionoftheroot‐associatedmicrobialcommunity.Weaimedtoanswerthefollowingspecificquestions:

1. What is the impact of temperature, soil moisture, plant originandsoilmicrobialoriginonplantgrowth,AMfungalcolonizationandthecompositionoftheroot‐associatedmicrobialcommunity?

2. DoplantsandAMfungiperformbetterorworsewhenplantsaregrownwiththeirlocalsoilbiota?Ifthereisevidenceforlocal(mal)adaptation,isthispatterninfluencedbytheabioticenvironment?

We expected that increased temperature and high moisture levelswould generally lead to an increase in plant growth, increase anddecrease inAMfungalcolonization,respectively,andaltertheroot‐associated community composition (Augé, 2001; Compant, van derHeijden,&Sessitsch,2010;Rustadetal.,2001),butthattheresponseto the abiotic environmentwill differ among plant populations andsoil biotic communities (e.g.Al‐Karaki,McMichael,&Zak,2004;Anetal.,2010).Forplantandfungal localadaptation,empiricalstudieshaveshownthatP. lanceolatacanbothbelocallyadaptedtoitslocalsoilcommunity(Mursinoff&Tack,2017)orperformworseinitslocalsoil due to negative plant–soil feedbacks (Bever, 2002; Harrison &Bardgett, 2010).Therefore,wemay expect to see either a positiveoranegativeresponse,dependingonwhichsoilmicrobialfunctionalgroupsaredominatingtheresponse.Finally,Laine(2008)showedthattemperatureaffectedpatternsoflocaladaptationofafoliarpathogentoP. lanceolata,andwethereforeexpectthattheabioticenvironmentmaylikewisemediatepatternsoflocaladaptationtothesoilbiota.

2  | MATERIAL S AND METHODS

2.1 | Study system

Plantago lanceolata is a widespread perennial herb that occurs ina wide range of habitats, for example, dry grasslands, hayfields,

Page 3: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  3Journal of EcologyRASMUSSEN Et Al.

roadsidesanddisturbedareas(Cavers,Bassett,&Crompton,1980).The plant produces rosettes and reproduces by seed productionand clonal propagation through side rosettes (Cavers et al., 1980;Mook,Haeck,vanderToorn,&vanTienderen,1992;Ross,1973).P. lanceolata associates with many soil organisms (e.g. De Deyn,Raaijmakers,vanRuijven,Berendse,&vanderPutten,2004),includ-ingAM(e.g.Rasmussenetal.,2018)andotherroot‐associatedfungi,andhasoftenbeenusedinlocaladaptationstudies(e.g.Crémieuxetal.,2008;Mursinoff&Tack,2017)andstudiesonplant–soilfeed-backs(e.g.Bever,2002;Brandt,deKroon,Reynolds,&Burns,2013;Harrison&Bardgett,2010).Thereisevidenceforgeneticvariationinbothplant(e.g.Azcon&Ocampo,1981;Graham&Eissenstat,1994;Hetrick,Wilson,&Cox,1992)andmycorrhizalfungi(Burgess,Dell,&Malajczuk,1994;Kochetal.,2004)fortheoutcomeoftheplant–mycorrhizalinteraction,asmeasuredby,forexample,thenumberoffungalstructureswithinplantrootsorthepercentageofAMfungalcolonizedplantroots.Inthisexperiment,weusedplantgrowthandAMfungalcolonizationasmeasurestoassessplantandAMfungalperformance.

2.2 | Experimental design

To investigatehowabiotic (temperatureandsoilmoisture)andbi-otic (soil biota and plant population of origin) factors affect plantgrowthtraits,AMfungalcolonization,root‐associatedfungalcom-munitystructureandadaptation,weusedareciprocalmultifactorialgrowthchamberexperiment.Seedsoriginatingfromthreelocationswerereciprocallyplantedinacombinationwithawholesoilmicro-bial inoculumor a sterile control. These12 combinations of plantoriginandsoilmicrobialoriginwerethensubjectedtofourabioticenvironments: (a) low temperature and low soil moisture; (b) lowtemperature and high soilmoisture; (c) high temperature and lowsoilmoisture;and(d)hightemperatureandhighsoilmoisture.Thesefactorsmayrepresentsomeofthekeyabioticfactorsaffectedbycli-matechange.Eachcombinationoffactorswasreplicatedfourtimes.

2.2.1 | Plant origin

Inordertoinvestigatehowplantgeneticvariationinfluencesplantgrowth,AMfungalcolonization,root‐associatedfungalcommunitystructureandlocaladaptation,wecollectedseeds(27–103seedsperplant) fromsixplant individualsateachof threeplantpopulationsincentralSweden.ThesethreeSwedishplantpopulationsarepartof the global plant demographic networkPlantPopNet (www.plantpopnet.com):ÖstraRyd is a rocky seashore surroundedby forest(hereafterreferredtoascoast site),Tjuvstigenisameadow‐likeroad-sidesurroundedbyforest (hereafterreferredtoas forest site),andTullgarnnäsisasemi‐openmeadowclosetotheseashoregrazedbycattle(hereafterreferredtoasmeadow site;seeTableS1fordetailedabiotic and biotic measurements from these three populations).Seedsfromthesamemotherplantwererandomlyallocatedamongtreatmentcombinations,withtwoseedsfromthesamemotherplantgrownineachpot(withtheexceptionof10pots,whereonlyasingle

seedwasplanted). Ifboth seedsgerminated,oneof the seedlingswasremoved.

To inform the abiotic treatments and allow comparison be-tweenthefieldandgrowthchamber,wealsoassessedtheabioticandbioticconditionsattheP. lanceolatapopulationsfromwhichtheseedsoriginated.Morespecifically,werecordedabove‐groundandbelow‐ground temperature using iButton data loggers (DS1922L;MaximIntegrated,SanJose,CA,USA),measuredsoilmoistureusinga soilmoisturemeter (HH2,SM300;Delta‐T,Cambridge,UK) andassessedplantgrowthtraitsandAMfungalcolonization(seeTableS1forfurtherdetails).Threesoilsamplesweretakenateachfieldsitelocationandfrozenat−20°Cforlatermolecularidentificationofthefungalcommunity.

2.2.2 | Soil microbial origin

Toinvestigatetheeffectofthesoilmicrobialcommunitiesonplantgrowth,AMfungalcolonization,root‐associatedfungalcommunitiesandadaptation,wecollectedsoilfromthesamelocationsaswecol-lectedseeds.Soilwascollectedateachlocationtoadepthof15cm,pooledandpassedthrougha1cmsieveandthenhomogenizedthor-oughly.Carewastakentosterilizesurfacesandavoidcrosscontami-nationbetweensoilsthroughouttheexperiment.

Our main aim was to investigate the impact of the bioticsoilcommunity.To isolatetheeffectofthethreesoilmicrobialcommunities fromdifferences in thesoilphysicalandchemicalpropertiesinwhichtheywereembedded,andatthesametimereducebias in responsetoapotential spike innutrientsduetosoil sterilization (Troelstra,Wagenaar, Smant, & Peters, 2001),wetookthefollowingapproach(assummarizedvisuallyinFigureS1). First, we filled 560ml potswith c. 300ml 3:1mixture ofsterile potting soil (Plugg‐ och såjord, SWHorto,Hammenhög,Sweden) and sand (Specialsand,Rådasand, Lidköping, Sweden).Soil sterilizationwas conducted by double autoclaving the soilmixtureat121°Cfor1hr.Wethen inoculatedthepots (exceptthecontroltreatment)withamixof56mlofsoilfromeachsoilorigin (one live and two sterile). The sterile control treatmentreceived3×56mlofsterilesoilfromeachlocation.Lastly,thepotsweretoppedwithc.50mlofthesterilepottingsoilmixture.Taken together, this approachallowedus to isolate theeffectsof the soil microbial community from concurrent differencesin the abiotic soil environment, such as soil pH, chemistry andphysical structure.Using a commercial soil inoculatedwithmi-crobeshas frequentlybeenused ina rangeof local adaptation(e.g.Hoeksema&Thompson,2007;Lankau,Wheeler,Bennett,&Strauss,2011)andplant–soil feedbackstudies (e.g.Callaway,Thelen,Rodriguez,&Holben,2004;Packer&Clay,2000),eventhough themethod has potential caveats regarding the estab-lishmentandfunctioningoftheexperimentalsoilcommunities.Tovalidatewhetherthesoilcommunitiesatthefieldsitesestab-lishedthemselveswithintheexperimentalsetting,wecomparedthefungi inthesoilattheoriginalsiteswiththefungithathadcolonizedtherootsintheendoftheexperiment.

Page 4: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

4  |    Journal of Ecology RASMUSSEN Et Al.

2.2.3 | Temperature treatment

Plantsweregrown inclimatechambersateither loworhigh tem-perature(15°Cand25°C)andadaylengthof16hr.Thedifferenceintemperaturebetweenthelowandhightreatmentswasbasedonapproximatedifferencesinsoiltemperaturerecordedinthefieldatthethreefocalplantpopulations (TableS1),andsuchtemperaturegenerallyfollowsthelong‐termexpectationintemperatureincreaseof theworst‐caseemissionsclimatechangescenario (IPCC,2014).Werandomizedtheplacementofplantswithineachclimatecham-berevery2weeks.

2.2.4 | Soil moisture treatment

For the first 2 weeks after seed sowing, pots in all treatmentswere given 100mlwater three times aweek. For the following3 weeks, the high soil moisture treatment continued to receive100ml,whereasthe lowsoilmoisturetreatmentreceived50mlwater,threetimesaweek.Hereaftersoilmoisturewasmaintainedatamaximumof40%and10%watervolume,asmeasuredonaTypeHH2moisturemeterwithaSM300sensor(Delta‐TDevicesLtd,Cambridge,UK),forthehighandlowsoilmoisturetreatmentrespectively.ThesevaluesmatchedthevariationinsoilmoisturebetweenP. lanceolatapopulationsatthefieldsites(TableS1)andfollow the expectation of an increasing frequency of summerdroughtinEurope(IPCC,2014).Apilotstudyshowedthatthelowwater treatmentallowedplants tosurvive,butat thesame timegavevisualsignsofdroughtstress.

2.3 | Measurements

We recorded seedling emergence for each pot. Every fortnight,starting19daysafter sowing,we recorded thenumberof leavesandthelengthandwidthofthelongestleaf.Fromthesemeasures,wecalculatedleafsize(leaflength×leafwidth),totalleafarea(leaflength × leaf width × number of leaves) and leaf allometry (leafwidth/leaflength)(Rasmussenetal.,2017).Weadditionallymeas-uredplantrosetteshape(flatorhigh)74daysaftersowing.Plantswere harvested after 80 days, and leaves and roots were sepa-rated. Leaf biomasswas assessed byweighing leaves before andafteroven‐dryingat60°C,while rootswerewashed,cut to2cmpieces,mixed thoroughly, frozen and then later freeze‐dried andweighed.Wealsocalculatedtheroottoshootratio.Theresultsforthefullsetofplantmeasurescanbefound intheSupplementaryInformation,whileonlykeyplantgrowthmeasuresarepresentedinthemaintext.

To determine AM fungal root colonization, dried roots weretransferredtotissuecassettes,clearedfor5minin3%KOH,acid-ifiedfor30minin2%HClandstainedfor20minin0.05%trypanblue solution (Koske & Gemma, 1989; Phillips & Hayman, 1970).RootswerethenscoredforAMfungalcolonizationusingthegridlineintersectmethodat100 intersectionsperroot (McGonigle,Miller,Evans,Fairchild,&Swan,1990).

2.4 | Molecular methods and bioinformatics

Todeterminethefungalcommunitycompositionwithin treatmentroots (excluding the sterile soil treatment) and from soil taken atthefieldsites,DNAwasextractedfromc.25mgfreeze‐driedrootmaterialor fromc.250mgfrozensoilusingNucleoSpinPlantandSoil kits (Macherey‐Nagel, Düren, Germany). Extracted DNAwassenttoMcGillUniversityandGénomeQuébecInnovationCentre,Montréal,Canada,where fungalDNAwas sequencedonaMiSeqplatform (Illumina Inc. San Diego, CA, USA) using primers fITS7(Ihrmarketal.,2012)andITS4(White,Bruns,Lee,&Taylor,1990),whichtargeta250–450bpfragmentencompassingtheentireITS2region with flanking sequences in the 5.8 and LSU genes. Theseprimers cover most of the root‐associated fungal community andhavebeenchosenastheuniversalDNAbarcodeforfungi(Schochetal.,2012).Itisworthnotingthough,thattheseprimersdonotpickupallfungalgroupsequally(e.g.Schadt&Rosling,2015;Schochetal.,2012).However,Lekbergetal.(2018)showedthatwhileprimerstargetingtheITSorSSUregiongeneratedslightlydifferentcommu-nities,thecommunitiesrespondedsimilartotheenvironmentalpa-rameterstested.Furthermore,insufficientgeneticvariabilitywithintheITSregionsmeansthatspecies‐levelassignmentscanbeunre-liableornon‐valid.Assuch,species‐level identificationsshouldbeinterpretedwithcaution.

Primers were removed using CutAdapt (Martin, 2011). WeusedtheDADA2ITSpipelinetofilterthereadsusingthestandardDADA2 filtering parameters (Callahan et al., 2016). TheDADA2algorithmuses a parametric errormodelwhich is trainedon theentire dataset. This model is then applied to correct and groupsequences into amplicon sequence variants (ASVs) (Callahan,McMurdie,&Holmes,2017;Callahanetal.,2016).Chimeraswereremoved,andlastly,taxonomywasassignedusingtheUNITEdata-base(Abarenkovetal.,2010;Kõljalgetal.,2005),wheretheDADA2pipelineusesanativeimplementationofthenaiveBayesianclas-sifiermethodfortaxonomicassignment(Wang,Garrity,Tiedje,&Cole,2007).

After removal of plant reads (c. 40%), 2,209,193 reads wereobtained from the116 root samples and436,500 reads from thenine soil samples collected at the original sites. Species accumu-lation curves showed that the sequencing effort inmost sampleswassufficient(FigureS2).Fromthesereads,atotalof3,580fungalASVswererecorded.Forfurtheranalyses,weusedthesetof200mostcommonASVsmakingup90%of thetotalnumberof reads,excludingonesamplewithtoofewreads(<500reads),henceforthreferredtoasroot‐associatedfungi.ThesetofmostcommonASVsdidnot includeAM fungi,whichwereonly found inc. halfof thesamples(n=57).AnAMfungalASVtable,whichincluded118AMfungalASVsmakingup0.2%ofthetotalamountofreads,wasana-lysedseparatelyanddetailsonanalysisandresultscanbefoundintheSupplementaryInformation(AnalysisS1).DNAsequenceshavebeendeposited atNCBIunder accessionnumbersPRJNA564044andPRJNA564041 for root samples from theexperimentand fortheoriginalsoilsamplesrespectively.

Page 5: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  5Journal of EcologyRASMUSSEN Et Al.

2.5 | Statistical analyses

To investigate theeffectof theabiotic andbioticenvironmentonplant growth, AM fungal colonization, observed root‐associatedfungalrichness,root‐associatedfungalShannondiversity(Shannon,1948) and local adaptation, we used generalized linear mixed ef-fectsmodelswithnormaldistributionsusingthelme4 and carpack-ages inr v.3.4.2 (Bates,Maechler,Bolker,&Walker,2014;Fox&Weisberg,2011;RCoreTeam,2017),whileseedlingemergenceandrosetteshapewereanalysedwithabinomialdistributionand logitlinkfunction.Non‐significantthree‐andfour‐wayinteractionswereexcludedfromthemodels.ThesignificanceofrandomeffectswastestedusingtheMASSpackage(Venables&Ripley,2002),andsig-nificantplantandsoilmicrobialoriginmaineffectswereassessedbyposthocTukeytests.

To test the effect of the abiotic and biotic environment onthe root‐associated fungal community composition, we usedPERMANOVAasimplementedinthefunctionadonisinther‐pack-agevegan(Oksanenetal.,2015).CCAwasusedtovisualizehowfun-galcommunitytreatmentsdifferedamongtreatmentlevelsandhowcommunity composition at theoriginal field sitesoverlappedwiththetreatmentcommunities.Weusedbothrelativeabundancesandpresence–absencedataforallthestatisticalanalyses.AllcommunitydatawereHellingerpre‐transformed(Legendre&Gallagher,2001).

2.5.1 | The effect of environmental factors on seedling emergence and plant growth

Toinvestigatetheimpactoftheabioticandbioticenvironmentonseedlingemergenceandplantgrowth,wemodelledseedlingemer-gence,leafnumber,leaflength,leafwidth,leafsize,totalleafarea,leaf allometry, rosette shape, leaf fresh and dry weight, root dryweightandtheroottoshootratioasafunctionofplant origin,soil microbial origin,temperature,soil moistureandtheir interactions.Toaccountforvariationamongsiblingsfromdifferentmotherplants,we added mother plantnestedwithinplant originasarandomeffect.Weusedarepeatedmeasuresanalysisby includingdate and plant IDinmodelswherewemeasuredgrowthtraitsrepeatedly,includingtwo‐way interactions betweendate and the experimental factors.Forrosetteshape,weexcludedtheinteractionsfromthemodeldueto problems with model convergence. When the effect of treat-mentsdifferedbetweendates,wealsoconductedseparatemodelsfor eachdate.We further testedwhetherAM fungal colonizationmediatedtheeffectsoftheabioticandbioticenvironmentonplantgrowthbyaddingitasacovariateinthemodel(AnalysisS2).

2.5.2 | The effect of environmental factors on root‐associated fungi

Toinvestigatetheimpactoftheabioticandbioticenvironment,wemodelled AM fungal colonization and root‐associated fungal rich-nessanddiversityasa functionofplant origin,soil microbial origin,temperature, soil moisture and their interactions. To account for

variation among siblings from different mother plants, we addedmother plantnestedwithinplant originasarandomeffect.Toachievehomogeneousresiduals,diversitywasln+1transformed.Wealsotestedwhetherplantbiomassmediatedtheimpactoftheenviron-mentalfactorsonAMfungalcolonizationbyaddingitasacovariateinthemodel(AnalysisS2).

Toinvestigatewhetherroot‐associatedfungalcommunitieswereinfluencedbytheabioticandbioticenvironment,wemodelledfun-galcommunitycompositionasafunctionofplant origin,soil microbial origin,temperature, soil moistureandtheirinteractions,inadditiontomother plantnestedwithinplant origin.

2.5.3 | The effect of abiotic factors on plant and AM fungal adaptation

To investigatewhether plants and AM fungi performed better orworsewhengrowninlocalornon‐localcombinations,andhowtheabioticenvironmentmayinfluencepatternsoflocaladaptation,weassessed seedling emergence, plant growth traits and AM fungalcolonization in local (sympatric) and non‐local (allopatric) combi-nationsofplantsandsoilbiota.Specifically,wemodelledseedlingemergence,plantgrowthandAMfungalcolonizationasafunctionofplant origin,soil microbial origin,temperature, soil moisture and sym-patry(Blanquartetal.,2013;Laine,2005;Mursinoff&Tack,2017).Sympatryiscategorizedaseitherlocalornon‐localcombinationsofplantandsoilmicrobialorigin,whichcapturesthevariationbetweenlocalandnon‐localconditionsafteraccountingforthemaineffectsofplantandmicrobialorigin(Blanquartetal.,2013)andtheabiotictreatmentlevels.Totestwhethertheabioticenvironmentmightin-fluencepatternsof local (mal)adaptionofplantsandAMfungi,wealsoaddedtheinteractionssympatry × temperature,sympatry × soil moisture and sympatry × temperature × soil moisture.Forthoseplantgrowthtraitsthatweremeasuredeveryfortnight,weranrepeatedmeasuresanalysesaddingtheeffectsofdateanditsinteractionwithsympatry, temperature and soil moisture as listed above. The ran-domeffectplant IDwasalsoaddedto themodels.As thesemod-elsshowedthatthepatternofsympatrychangedovertime,weranmodelsforeachindividualtimepoint.Thesterilesoiltreatmentwasnotincludedinthesemodels.

3  | RESULTS

3.1 | The impact of climate on the ecology of plants and root‐associated fungi

3.1.1 | The effect of environmental factors on seedling emergence and plant growth

Inmostpots,eitheroneortwoseedlingsemerged,exceptfor34potswherenoseedlingsemerged.Emergenceofseedlingswasnotinfluencedbythemaineffectsinvestigated(Table1).Insteadseed-ling emergencewas influenced by the interaction between plantoriginandtemperature,whereseedlingemergencewashigherfor

Page 6: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

6  |    Journal of Ecology RASMUSSEN Et Al.

seedlingsfromthemeadowsiteinthehightemperaturetreatment,unlikeseedlingsfromthecoastalandforestsites(Figure1).Asig-nificanteffectoftheinteractionbetweensoilmicrobialoriginandsoilmoisturewas found, but this interactionwas driven only bydifferencesbetweenplantsinthesterilesoiltreatmentandplantsinoculated with live soil microbial communities (cf. Table 1 andTableS2).

Highertemperatureandsoilmoistureledtoanincreaseinmostof the plant growth traits (Figure 2a, b, Table 1, and Tables S2–S4), and severalplantgrowth traitswereaffectedbyplantorigin(Figure2d–fandFigureS3,Table1,andTablesS2–S4).Soilmicrobialoriginhadastrongeffectonshootandrootweight,aswellastheroottoshootratio(Figure2g–i,andFigureS3),butthispatternwas–unlike themaineffectsof temperature, soilmoistureandplantorigin–mostlydrivenbythesteriletreatment(cf.Table1andTableS2).Plantsgrowninsterilesoilwerelarger,inparticularintermsofrootbiomass(Figure2h,TableS4).Theroottoshootratioofplantsgrowninthesterilesoilwasmuchlargerthanforplantsgrownwithlivemicrobial communities (Figure2i, TableS4), indicating a rela-tively larger investment in roots than shoots.Therewere severalsignificant two‐way interactions, which all included temperature(Figure2,Table1andTableS3).Theimpactoftemperatureonleaflengthandroottoshootratio,butnotrootbiomass,differedamongplantpopulations(Figure2d–f),whereastheimpactofsoilmoisturedifferedbetweenthetemperaturetreatmentsforrootbiomassandthe root to shoot ratio (Figure 2b, c). Temperature alsomodifiedtheeffectof thesoilmicrobialorigin (Figure2g–i,Table1),but–likethesignificantmaineffectofsoilmicrobialorigin–thispatternwasdrivenbydifferentresponsesofplantsgrowingintheliveandsterile soil (cf.Table1andTableS2).Notably,while theeffectoftemperaturewasalreadyapparentinthenewlyemergingseedlings,theeffectofplantoriginbecamemoreapparenttowardstheendoftheexperiment(TablesS3andS5).Foranin‐depthcomparison

TAB

LE 1

 Theimpactofplantorigin,soilmicrobialorigin,temperature,soilmoisture,theirtwo‐wayinteractionsandmotherplantonseedlingemergenceandplantgrowthtraitsof

Plan

tago

lanc

eola

ta

Pl

ant o

rigin

(P)

Soil

mic

robi

al

orig

in (M

ic)

Tem

pera

ture

(T

)So

il m

oist

ure

(Moi

)P

× M

icP

× T

P ×

Moi

Mic

× T

Mic

× M

oiT

× M

oiM

othe

r pl

ant

Seedlingemergence(n=192)

0.483

0.286

0.387

0.61

00.

966

0.00

30.

064

0.27

70.

042

0.21

3—

Leafnumber(

n=948)

<0.0

010.

172

<0.0

010.

144

0.850

0.00

10.

333

0.26

20.

114

0.00

50.

06

Leaflength(n=948)

<0.0

010.

029

<0.0

010.

346

0.25

7<0

.001

0.42

50.

019

0.69

90.378

0.00

2

Leafwidth(n=948)

0.00

20.

219

<0.0

010.

004

0.31

70.

207

0.51

30.

691

0.32

90.

397

0.8

Leafallometry(n=948)

<0.0

010.

130

0.02

70.

244

0.24

00.

002

0.05

50.

043

0.228

0.52

70.

03

Shootdw(n=158)

0.46

40.108

<0.0

01<0

.001

0.14

30.

966

0.811

0.854

0.25

3<0

.001

0.4

Rootdw(n=158)

0.42

2<0

.001

<0.0

01<0

.001

0.588

0.07

70.886

<0.0

010.

226

<0.0

010.8

Roottoshootratio(n=158)

0.32

1<0

.001

0.04

90.

003

0.876

0.00

50.852

<0.0

010.814

0.04

61.

0

Not

e: Shownare

p‐values,withsignificantvaluesinbold.

Forp‐valueswhenexcludingthesterilesoiltreatment,seeTableS2.

Forp‐valuesonallplantgrowthmeasuresand

p‐valuesofdate,andinteractionsbetweendate,plantorigin,soilmicrobialoriginandsoilmoisture,seeTableS3.

Abbreviations:fw=freshweight,dw=dryweight.

F I G U R E 1  Theimpactoftemperatureandplantoriginonnumberofseedlingsemerged(n=192).Shownisaninteractionplotwherethelinesconnectthemeanvaluesforeachtreatmentcombination

0.5

0.7

0.9

1.1

1.3

1.5

Low High

Temperature

Num

ber o

f see

dlin

gs e

mer

ged

Coast

Forest

Meadow

Plant origin

Page 7: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  7Journal of EcologyRASMUSSEN Et Al.

ofplantsinthefieldsiteandplantgrowthwithintheexperimentalsetting,seeAnalysisS3.

3.1.2 | The effect of environmental factors on root‐associated fungi

We detected a large diversity of fungi in all treatment combina-tions(Figure3).Themajorityoffungiwerepresentatrelativelylowabundances,withtheexceptionfortwoparticularlyabundantfungalspecies (Figure3).TheplantpathogencomplexOlpidium brassicae,likelyOlpidium virulentus (Lay,Hamel,&St‐Arnaud,2018),had thehighestrelativeabundance inall treatmentcombinations,whereas

the secondmost abundant species, the yeastApiotrichum xylopini was only abundant in the low temperature and low soil moisturetreatments and inplants and soil originating from the coastal site(Figure3).

Themaindriversoftheroot‐associatedfungalcommunityweretemperature and the origin of the soil microbial community. AMfungalcolonizationwashigher in thehigh temperature treatment,whereas root‐associated fungal richnesswas lower at higher tem-peratures(Figure4a,b,Tables2andS6).Temperaturealsoimpactedthe composition of the fungal community (Table 2, Figure 5). AMfungal colonization and root‐associated fungal richnesswere low-est when plants were grown with soil biota from the forest site,

F I G U R E 2  Theimpactof(a–c)temperatureandsoilmoisture,(d–f)temperatureandplantoriginand(g–i)temperatureandsoilmicrobialoriginonleaflength(n=158)atharvest,rootbiomass(n=158)andtheroottoshootratio(n=158)inPlantago lanceolata.Shownareinteractionplotswherethelinesconnectthemeanvaluesforeachtreatmentcombination.Non‐significantinteractionsareindicatedbyNS

6

8

10

12

14

16

18

20Le

af le

ngth

(cm

)

6

8

10

12

14

16

18

20

Leaf

leng

th (c

m)

6

8

10

12

14

16

18

20

Temperature

Leaf

leng

th (c

m)

0.0

0.1

0.2

0.3

0.4

0.5

Roo

t bio

mas

s (g

)

0.0

0.1

0.2

0.3

0.4

0.5R

oot b

iom

ass

(g)

0.0

0.1

0.2

0.3

0.4

0.5

Temperature

Roo

t bio

mas

s (g

)

0.2

0.3

0.4

0.5

0.6

Roo

t to

shoo

t rat

io

0.2

0.3

0.4

0.5

0.6

Roo

t to

shoo

t rat

io

0.2

0.3

0.4

0.5

0.6

Low High

Low High

Low High

Low High

Low High

Low High

Low High

Low High

Low High

Temperature

Roo

t to

shoo

t rat

io

Soil moisture

High

Low

Soil microbial

origin

Coast

Forest

Meadow

Sterile

Coast

Forest

Meadow

Plant origin

(a)

NS

NS

(b) (c)

(d) (e) (f)

(g) (h) (i)

Page 8: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

8  |    Journal of Ecology RASMUSSEN Et Al.

F I G U R E 3  Therelativeproportionofroot‐associatedfungalspeciesineachtreatmentcombinationdependingonplantorigin,soilmicrobialorigin,temperatureandsoilmoisture.Plant=plantorigin,Soil=soilmicrobialorigin,Temp=temperature,Moisture=soilmoisture,H=high,L=lowandCoast,ForestandMeadowrefertothethreesites

0.00

0.25

0.50

0.75

1.00R

elat

ive

prop

ortio

n of

read

s

Plant Soil Temp Moisture

CoastForest

MeadowCoast

ForestMeadow

H L H L

SpeciesOlpidium brassicae complexApiotrichum xylopiniChalara sp.Conlarium sp.Didymellaceae sp.Drechslera sp.Fusarium oxysporumGibberella tricinctaGlarea sp.Guehomyces pullulansLachnum asiaticumLeotia lubricaLoramyces macrosporusMelanommataceae sp.Microdochium phragmitisPyrenochaetopsis leptosporaSaccharicola sp.Trichocladium opacumUnknownRemaining ASVs (<0.02 each)

F I G U R E 4  Theimpactof(a–b)temperatureand(c–d)soilmicrobialoriginonarbuscularmycorrhizal(AM)fungalcolonizationandroot‐associatedfungalrichnessintherootsofPlantago lanceolata plants(n=116).Shownareboxplots,wherethethickhorizontallineshowsthemedian,boxesrepresentthefirstandthirdquantileandwhiskersrepresenteithertheminimumandmaximumvalueor1.5timestheinterquartilerangeofthedata(whicheverissmaller).Significantdifferences(p<.05)amongsoilmicrobialorigins,basedonposthocTukeytests,areindicatedbydifferentletters

AM

fung

al c

olon

izat

ion

(%)

0

25

50

75

100

Sterile Coast Forest Meadow

a

b

c

b

Soil microbial origin

(c)

0

25

50

75

100

Low High

AM

fung

al c

olon

izat

ion

(%)

0

10

20

30

40

50

Low High

Roo

t−as

soci

ated

fung

al ri

chne

ss

0

10

20

30

40

50

Coast Forest Meadow

Soil microbial origin

aa

b

Roo

t−as

soci

ated

fung

al ri

chne

ss

Temperature Temperature(d)

(a) (b)

Page 9: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  9Journal of EcologyRASMUSSEN Et Al.

intermediate when plants were grown with soil biota from thecoastalsiteandhighestwhenplantsweregrownwithsoilbiotafromthemeadowsite(Figure4c,d,Table2andTableS6).Soilmicrobialorigin also strongly influenced root‐associated fungal communitycomposition(Figure5,Table2).Notably,thefungalcommunitycom-positionofsoilfromthecoastalandmeadowsitesoverlappedwiththecommunitycompositionattheoriginalfieldlocations,whereasthecommunitycompositionofsoilfromtheforestsitedifferedfromthesoilattheoriginalfieldlocation(Figure5).

Soil moisture affected the root‐associated fungal communitycomposition both directly and interactively (i.e. as mediated bythe origin of themicrobial community and temperature; Table 2).Diversityandcomposition,butnotrichness,differedamongplantsfromdifferentorigins(Table2).

3.2 | The impact of climate on plant and AM fungal adaptation

Plantgrowthwasreducedwhenplantsweregrownwiththeirlocalcompared to non‐local soilmicrobial communities (Figure 6a, b; asignificant effect of ‘sympatry’ in Table S7).Overall, the effect ofsympatrywasnot (or onlyweakly) affectedby the environmentalconditions (Table S7), indicating that patterns of (mal)adaptationwerenotaffectedbyclimaticconditions.

AMfungalcolonization levelswereaffectedbythe interactionbetweenplantandsoilmicrobialorigin(Figure6c,Table2andTableS2).However,wedidnotdetectadifferenceinAMfungalcoloniza-tionbetweenplantsgrownwiththeirlocalornon‐localsoilmicrobialcommunity(Figure6c,TableS7).

4  | DISCUSSION

We investigated the environmental drivers of plant growth,AMfungal colonization, fungal community structure andpatternsoflocal adaptation. Plant growth was influenced by climate (tem-peratureandsoilmoisture)aswellastheoriginoftheplantandsoil microbial community. As predicted, the response of plantsto changes in temperature was conditional on plant origin, soilmicrobial community and soil moisture. AM fungal colonizationand root‐associated fungal community structure were stronglyaffected by temperature, soilmicrobial origin and soilmoisture.Plantsperformedworsewhengrownwiththeirlocalsoilmicrobialcommunity,whichmaybeduetointraspecificnegativeplant–soilfeedbacks. Our findings illustrate that genetic variation amongplantpopulationsand themicrobial communitywillplayamajorrole in the response of plant growth and plant–microbial inter-actionstoachangingclimate,butalsothatthe localplantgeno-typesdo–potentiallyduetonegativeplant–soilfeedbacks–notalwaysperformbestwhengrowingwiththeirlocalsoilmicrobialcommunity.Incontrasttoourexpectation,wefoundnoorweakeffectsofclimateonpatternsofplantandAMfungallocaladapta-tion.GiventhevariableresponsesofplantsofdifferentorigintoTA

BLE

2 Theimpactofplantorigin,soilmicrobialorigin,temperature,soilmoisture,theirtwo‐wayinteractionsandmotherplantonAMfungalcolonizationandroot‐associatedfungal

richness,diversityandcommunitycompositionofP

lant

ago

lanc

eola

ta

Pl

ant o

rigin

(P

)So

il m

icro

bial

or

igin

(Mic

)Te

mpe

ratu

re (T

)So

il m

ois‐

ture

(Moi

)P

× M

icP

× T

P ×

Moi

Mic

× T

Mic

× M

oiT

× M

oiM

othe

r pla

nt

AMfungi

Colonization(n=116)

0.805

<0.0

010.

024

0.21

50.

062

0.13

00.

461

0.29

50.

620

0.27

61.

000

Root‐associatedfungi

Richness(n=116)

0.868

0.01

10.

036

0.14

60.

157

0.13

10.

127

0.086

0.72

10.580

0.987

Diversity(n=116)

0.00

40.

004

0.06

6<0

.001

0.75

30.

210

0.34

30.

213

0.831

0.75

01.

000

Communitycomposition

(relabund)(

n=115)

0.01

00.

001

0.00

20.

001

0.21

40.

355

0.49

50.

014

0.00

90.

016

0.04

4

Communitycomposition

(presabs)(n=115)

0.22

20.

001

0.00

10.

001

0.29

70.

404

0.49

20.

001

0.01

70.

002

0.483

Not

e: Shownare

p‐values,withsignificantvaluesinbold.

Abbreviations:relabund=relativeabundance,presabs=presenceabsence.

Page 10: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

10  |    Journal of Ecology RASMUSSEN Et Al.

temperature, in combinationwith negative plant–soil feedbacks,we predict complex but profound effects of climate change ontheecologyandevolutionofplants and soilmicrobes innaturalsystems.

4.1 | The impact of climate on the ecology of plants and root‐associated fungi

4.1.1 | The effect of environmental factors on seedling emergence and plant growth

Plantgrowthandrelativeinvestmentinabove‐groundbiomasswasconsistentlyhigherinthewarm(25°C)comparedtothecold(15°C)temperaturetreatment,consistentwithstudiesperformedinboththe lab and field, including studies onP. lanceolata (Clemmensen& Michelsen, 2006; Heinemeyer, Ineson, Ostle, & Fitter, 2006;

Olsrud et al., 2004). Low soilmoisture,mimicking low rainfall ordroughtconditions,ledtoreducedplantgrowthandhigherbelow‐groundbiomass.Asdroughteventsincreaseandprecipitationlev-elschangeasaconsequenceofglobalchange(IPCC,2014),wemayexpecttoseeanegativeimpactonplantgrowthandperformanceandhigher investmentbelow‐ground. Interestingly, the increasedroot toshoot ratio in response to increasingdroughteventsmaybecounteractedbyasimultaneousdecrease intheroottoshootratio in response to increased temperature. Drought stress haspreviouslybeenshowntoincreaserootcolonizationbyAMfungi(Jayne&Quigley,2014), andAM fungihave thereforebeenpro-posedasanimportantmechanismforplantsandecosystemstoal-leviatetheeffectsofdrought(Mohanetal.,2014).However,inourstudy,wefoundnodifferencesinAMfungalcolonizationbetweentwostronglydivergentmoisturetreatments.Moreover,therewasnodifferenceinplantresponsestodroughtbetweenplantsgrown

F I G U R E 5  Theimpactof(a)temperature,(b)soilmoisture,(c)plantoriginand(d)soilmicrobialoriginontheroot‐associatedfungalcommunitycompositionofPlantago lanceolata(n=115)asbasedoncanonicalcorrespondenceanalysis(CCA).Colouredcirclesrepresentdispersionellipsesforeachgroupusingthestandarddeviationofpointscores(usingtheordiellipsefunctioninthepackageveganinR).Thefirsttwoaxesexplained2.5%and2%ofthevariationrespectively.Largersymbolsin(d)representtheroot‐associatedfungalcommunitiesfoundinthesoilattheoriginallocations

–4 –3 –2 –1 –4 –3 –2 –10 1 2 3 0 1 2 3

–30

12

(a)

CC

A ax

is 2

CCA axis 1CCA axis 1

Soil moistureTemperatureLowHigh

LowHigh

Plant origin

MeadowForestCoast

Soil microbialorigin

MeadowForestCoast

–4 –3 –2 –1 0 1 2 3

CCA axis 1

–4 –3 –2 –1 0 1 2 3

CCA axis 1

–2–1

–30

12

CC

A ax

is 2

–2–1

–30

12

CC

A ax

is 2

–2–1

–30

12

CC

A ax

is 2

–2–1

(b)

(c) (d)

Page 11: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  11Journal of EcologyRASMUSSEN Et Al.

in sterileor inoculated soil.Oneexplanation for thisdiscrepancymay lie in the fact that previous studieshave focusedononeora few species of AM fungi (e.g. Al‐Karaki et al., 2004; Porcel &Ruiz‐Lozano,2004;Wu&Xia,2006),whileweusedamixedfieldinoculumwhichcontainsadiversemixofbothbeneficialandan-tagonisticsoilmicrobes.Hence,thebenefitsofincreasedcoloniza-tion levelsbybeneficialmicrobes in response todroughtmaybe

absentwithin thenaturalcontext.Thishighlights the importanceof comparing the effect of beneficialmicrobes not only in isola-tionbutalsoembeddedwithintheirnaturalmicrobialcommunity,therebyobtainingamorerealisticpictureoftheresilienceofnatu-ralsystemstoglobalchange.Interestingly,soilmoisturefrequentlychangedplantresponsestotemperature,illustratingthattheeffectofelevatedtemperaturecanbeeitherexacerbatedoralleviatedbychangesinrainfallpatternsanddrought.

Notably,theoriginoftheplantsmediatedtheresponseofplantstotemperature.Suchdependencyoftheresponseofplantstotheabiotic environment on plant genetics may be a common featureofnaturalsystems(DeLongetal.,2019;Franks,Weber,&Aitken,2014; Jump & Penuelas, 2005). For example, Al‐Karaki and Al‐Raddad(1997)demonstratedthattheresponseofwheattodroughtdiffered among plant genotypes. Variable responses among plantpopulations to changes in climatic conditions may thereby play amajorroleinmaintainingspatialandtemporalheterogeneityinplanttraitsanddemography.

4.1.2 | The effect of environmental factors on root‐associated fungi

root‐associated fungal communities differed among the low andhigh temperature treatment, andAM fungal colonization increasedwith temperature while root‐associated fungal richness decreased.IncreasedAMfungalcolonization is frequently reported inobserva-tionalandexperimentalstudiesinresponsetoincreasedwarming(e.g.Compantetal.,2010;Staddon,Heinemeyer,&Fitter,2002);however,effectsofwarmingonroot‐associatedfungal richnessare lessclear,withreportsofno(Fujimura,Egger,&Henry,2008;Gemletal.,2015),increased(Gemletal.,2015)ordecreased(Gemletal.,2015;Morgadoetal.,2015)richness,likelydependingonthetaxonomicorfunctionalgroup (Gemletal.,2015).Root‐associated fungicanhavemany im-portantecosystemfunctions,suchascarbonstorage(Clemmensenetal.,2013)andimprovingsoilstructure(Rillig&Mummey,2006).Giventhestrongdependenceofroot‐associatedfungalspeciesrichnessandcommunitycompositionontemperature,wemayalsoseeshiftsinim-portantecosystemfunctionsandservicesastheclimatechanges.

We found that AM fungal colonization was not significantlyinfluencedbysoilmoisture.However,aspredicted,theroot‐asso-ciatedfungalcommunitycompositionwasaffectedbothdirectlyand interactively (as mediated by soil microbial origin and tem-perature)by soilmoisture.Previous studieshave similarly foundthatAMfungalcolonizationisnotalwaysaffectedbychangesinprecipitation (e.g.Hawkes et al., 2011), but that the communitycomposition can be (Barnes, van derGast,McNamara, Rowe, &Bending, 2018; Deveautour et al., 2018; Hawkes et al., 2011).Like inourstudy,Gemletal. (2015), investigatingarctic fungi inAlaska,foundaninteractiveeffectofmoistureandtemperature,wheretheeffectoftemperaturedifferedbetweendryandmoisttussocks.

Perhaps not surprisingly, both AM fungal colonization androot‐associated fungal community structure differed among

F I G U R E 6   Plantago lanceolata(a)shootbiomass,(b)rootbiomassand(c)AMfungalcolonizationwhenplantsweregrownwiththeirlocal(n=39)andnon‐local(n=79)soilmicrobialcommunity.Shownin(a–b)areboxplots,wherethethickhorizontallineshowsthemedian,boxesrepresentthefirstandthirdquantileandwhiskersrepresenteithertheminimumandmaximumvalueor1.5timestheinterquartilerangeofthedata(whicheverissmaller),and(c)showsabarplotwithmeans±SE

0.0

0.2

0.4

0.6

Roo

t bio

mas

s (g

)

Local Non−local

0.0

0.5

1.0

1.5

Sho

ot b

iom

ass

(g)

Local Non−local

(c)

(a)

(b)

0

10

20

30

Local Non−local

AM

fung

al c

olon

izat

ion

(%)

Coast Forest Meadow

Plant origin

Page 12: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

12  |    Journal of Ecology RASMUSSEN Et Al.

plantsgrown insoiloriginating fromthe threenaturalP. lanceo-latapopulations.Otherstudieshavesimilarlyfoundthatroot‐as-sociatedfungalcommunitiesdifferamongthesameplantspeciesgrown at different locations (Ji et al., 2013; Rasmussen et al.,2018). Root‐associated fungi were to some degree influencedbyplantorigin,matchingthecommonlyreportedeffectsofhostidentityandgeneticvariationonfungalcommunitystructure:Forexample,Anetal.(2010)demonstratedthatAMfungalcoloniza-tion levels differed amongmaize plants of different genotypes,andBecklin,Hertweck,andJumpponen (2012) showedthatdif-ferentalpinetreespecieshosteddifferentAMandnon‐AMfungalcommunities.

4.2 | The impact of climate on plant and AM fungal adaptation

Plant performancewas lowerwhen plantswere grownwith theirlocal soil microbial community, suggesting negative intraspecificplant–soil feedbacks,whichmaybedue to anaccumulationof lo-callyadaptedpathogenicmicrobesinthesoil(Felker‐Quinn,Bailey,&Schweitzer,2011;Lankauetal.,2011;vanderPuttenetal.,2013;Wagg,Boller,Schneider,Widmer,&vanderHeijden,2015).Thiscor-respondstofindingsofastronglynegativeplant–soilfeedbackinP. lanceolatabyHarrisonandBardgett(2010),whoshowedthatplantsperformedworsewhen grown in soil conditioned byP. lanceolata thaninsoilpreviouslyconditionedbyamixedplantcommunity.Assuch,ourfindingscontrasttostudiesdetectinglocaladaptationofplantstotheirlocalAMfungalcommunity(Johnsonetal.,2010;Rúaetal.,2016).Interestingly,negativeintraspecificplant–soilfeedbackscanalsobecausedbyachangeintheAMfungalcommunity.AsanexampleofnegativefeedbackmediatedbyAMfungi,Bever(2002)foundthatAMfungiassociatedwithP. lanceolatawerepoorgrowthpromoters,andP. lanceolataplantsgrewbetterwithAMfungifromsoilpreviouslyoccupiedbyanotherplantspecies.Notably,thispat-ternofnegativeplant–soilfeedbackswasnotaffectedbytheabioticenvironmentalconditions(temperatureandsoilmoisture).Thissug-geststhatclimatechangemaynotaffectpatternsof localadapta-tionwithinthecurrentrange,unlesstheindividualspeciesshiftoutoftheirpresentrange.Theoverallnegativeimpactofthelocalsoilcommunityinourstudymayindicatethattemporalchangesinpath-ogencommunitycomposition,orgeneticchangeswithinindividualpathogenspecies,overridechangesinthegeneticsandcommunitycompositionofbeneficialsoilmicrobes.

We detected no signal of AM fungal adaptation to local plantgenotypes,asinferredbythelackofdifferencesinrootcolonizationbetweenplantsgrownintheir localandnon‐localsoil. Incontrast,Johnson et al. (2010) found that AM fungi producedmore fungalstructures when grown in their local compared to non‐local soil,and that locally adaptedmycorrhizasweremoremutualisticwhenresourceswere limited. Inaccordancewith this,Revillini,Gehring,and Johnson (2016) argue that local adaptation of soil mutualistshappenswhenresourcesarescarce, therebypromotingplant–mu-tualistinteractionsinordertoameliorateresourcelimitation.When

resources areplentiful, it promotesopportunistic plantpathogensrelative to commensal and mutualist microbes. The patterns ob-served here for AM fungi could therefore be due to the lack ofresourcescarcitywithintheexperiment,despitetheuseofalow‐nu-trientbackgroundsoil,andsuggestthatwithincreasednutrientlev-elsinnaturalenvironments,pathogensmaybecomeanincreasinglydominantforcecomparedtobeneficialmicrobesinthestructureandevolutionofplantcommunities.Asthereisnoclearcutconsensusonhowtomeasurefungalfitness(Bennett&Bever,2009;Pringle&Taylor,2002),futurestudiesmayincludemultiplepotentialcompo-nentsoffungalfitness,including,forexample,numberofarbusculesandamountofextraradicalhyphae.

To disentangle the effects of the local soil abiotic environ-ment from that of the local soil microbial community, we useda background soil inoculated with live and sterile inocula fromeach location, an approach frequently used in studies on localadaptation and plant–soil feedbacks (e.g. Callaway et al., 2004;Holah&Alexander,1999;Lankauetal.,2011).Weverifiedthatinoculations were successful by assessing whether the fungalcommunitiesthatestablishedwithintheexperimentweresimilarto thosepresent in theoriginal field sites.We found thatwhilesoil at the original costal andmeadow communities overlappedwell with the communities found in treatment roots, the com-munitycompositionfromtheoriginal forestsitediffered inonedimensionof themultivariateordinationspace fromthatof thecommunitiesintheexperiment.Notallsoilfungiwillestablishinpottingsoilorcolonizeroots,andthismaybebehindthediscrep-ancybetweenthefungalcommunitycompositionintherootsoftreatmentplantsandthesoilatoneoftheoriginal locations (asfurthersupportedbythehigherspeciesrichnessinthesoilattheoriginallocations).Overall,acomparisonbetweenthesoilattheoriginalsitesandthefungicolonizingtherootsintheexperimentillustrates that the soil biota that establishwithin experimentalsettingsmayretainahighsimilaritytothesoilbiotaintheorigi-nalsoil,butmayalsodeviatefromtheoriginalsoilbiotainsomeaspects. A frequently overlooked caveat of soil inoculations iswhetherestablishedmicrobesretaintheirfunctioningwithintheexperimentalenvironment, liketheirroleintheexchangeofnu-trientsbetweenplantsandbeneficialmicrobes,andthe(severityof)attackbyharmfulmicrobes.Whilebothlocaladaptationandplant–soilfeedbackstudiesrelyonthefactthatthefunctioningofmicrobesisretainedinexperimentalsettings,thisassumptionis rarely tested, and therefore would be an important area forfutureresearch.

5  | CONCLUSION

Our findings imply that climatic changes (elevated temperatureanddrought)mayhavealargeimpactonplantgrowthandroot‐associated fungal community structure, but that the directionand strength of the response will differ throughout the land-scape due to spatial variation in plant genes and soilmicrobial

Page 13: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  13Journal of EcologyRASMUSSEN Et Al.

communities.Thissuggeststhatelevatedtemperaturesmayhavevariableoutcomesonplant–soilmicrobe interactions in naturalsystems.Plantsperformedworsewith their local soilmicrobialcommunity,apatternthatmaybedrivenbynegativeintraspecificplant–soilfeedbacks.Interestingly,wedetectednosignsthatcli-mate(i.e.temperatureordrought)willaffectthispatternof(mal)adaptation;however,whenplantsandmicrobesshifttheirdistri-bution intoanewrange,plantperformancemaybehigherthanexpectedduringtheinitialcolonizationstage.Futurestudiesmayfurtherinvestigatetheimportanceof,andbalancebetween,theforcesthatshapeplantadaptationtothelocalsoilmicrobialcom-munity,andadaptationofthebeneficialandpathogenicsoilmi-crobialcommunitytothelocalplantgenotypes.Forthis,wemaycombinedetailedgrowthchamberexperiments focusingon theunderlyingmechanismswithexperimentalfieldmanipulationstoobserve the realized outcome of the ecological and evolution-ary dynamics in natural populations. Such knowledgemay leadtoadvances in theeffectivenessof restorationand sustainablemanagement,aswellasincreaseourabilitytomitigatethecon-sequencesofanthropogenicenvironmentalchangeonplantsandsoilmicrobes.

ACKNOWLEDG EMENTS

WethankLinneaStrömforhelpinthelab,JohanEhrlénforadvice,aswell as seeds fromanddataon, twoof thePlantago lanceolata populationsandMassimoPerniceandAndreasNovotnyforadviceon thebioinformatics.Theauthorsacknowledge funding fromtheMaj and Tor Nessling foundation (2014211 to A.J.M.T.) and theResearch Council Vetenskapsrådet (2015‐03993 to A.J.M.T.). Theauthorsdeclarenoconflictofinterest.

AUTHORS' CONTRIBUTIONS

P.U.R.andA.J.M.T.conceivedanddesignedtheexperiment.P.U.R.conductedtheempiricalandmolecularworkandanalysedthedata.P.U.R.wrotethefirstdraft,andP.U.R.,A.E.B.andA.J.M.T.allcon-tributedtothefinalmanuscript.

DATA AVAIL ABILIT Y S TATEMENT

Dataassociatedwiththisstudyaredeposited intheDryadDigitalRepository: https://doi.org/10.5061/dryad.dt7bh4b (Rasmussen,Bennett, & Tack, 2019). DNA sequences are deposited at NCBIunderBioProjectsPRJNA564044andPRJNA564041.

ORCID

Pil U. Rasmussen https://orcid.org/0000‐0003‐0607‐4230

Alison E. Bennett https://orcid.org/0000‐0002‐1037‐0713

R E FE R E N C E S

Abarenkov, K., Henrik Nilsson, R., Larsson, K.‐H., Alexander, I. J.,Eberhardt, U., Erland, S., … Kõljalg, U. (2010). The UNITE data-base for molecular identification of fungi – Recent updates andfuture perspectives.New Phytologist, 186(2), 281–285. https://doi.org/10.1111/j.1469‐8137.2009.03160.x

Al‐Karaki,G.N.,&Al‐Raddad,A.(1997).Effectsofarbuscularmycorrhi-zalfungianddroughtstressongrowthandnutrientuptakeoftwowheat genotypes differing in drought resistance.Mycorrhiza, 7(2),83–88.https://doi.org/10.1007/s005720050166

Al‐Karaki,G.N.,McMichael,B.,&Zak,J.(2004).Fieldresponseofwheattoarbuscularmycorrhizalfungianddroughtstress.Mycorrhiza,14(4),263–269.https://doi.org/10.1007/s00572‐003‐0265‐2

An,G.‐H.,Kobayashi, S., Enoki,H., Sonobe,K.,Muraki,M.,Karasawa,T.,& Ezawa, T. (2010).Howdoes arbuscularmycorrhizal coloniza-tionvarywithhostplantgenotype?Anexamplebasedonmaize(Zea mays) germplasms. Plant and Soil, 327(1–2), 441–453. https://doi.org/10.1007/s11104‐009‐0073‐3

Augé,R.M.(2001).Waterrelations,droughtandvesicular‐arbuscularmy-corrhizalsymbiosis.Mycorrhiza,11(1),3–42.https://doi.org/10.1007/s005720100097

Azcon, R., & Ocampo, J. A. (1981). Factors affecting the vesicu-lar‐arbuscular infection and mycorrhizal dependency of thirteenwheat cultivars. New Phytologist, 87(4), 677–685. https://doi.org/10.1111/j.1469‐8137.1981.tb01702.x

Bardgett,R.D.,&vanderPutten,W.H.(2014).Belowgroundbiodiver-sityandecosystemfunctioning.Nature,515(7528),505–511.https://doi.org/10.1038/nature13855

Barnes,C.J.,vanderGast,C.J.,McNamara,N.P.,Rowe,R.,&Bending,G.D.(2018).Extremerainfallaffectsassemblyoftheroot‐associatedfungalcommunity.New Phytologist,222(4),1172–1184.https://doi.org/10.1111/nph.14990

Bates, D., Maechler, M., Bolker, B., &Walker, S. (2014). lme4: Linearmixed‐effectsModelsUsingEigenandS4.RPackageVersion,1(1‐7).Retrievedfromhttp://CRAN.R‐project.org/package=lme4

Becklin, K. M., Hertweck, K. L., & Jumpponen, A. (2012). Host iden-tity impacts rhizosphere fungalcommunitiesassociatedwith threealpine plant species.Microbial Ecology,63(3), 682–693. https://doi.org/10.1007/s00248‐011‐9968‐7

Bennett, A. E., & Bever, J. D. (2009). Trade‐offs between arbuscularmycorrhizal fungal competitive ability and host growth promo-tion inPlantago lanceolata. Oecologia,160(4), 807–816. https://doi.org/10.1007/s00442‐009‐1345‐6

Berg,M.P.,Kiers,E.T.,Driessen,G.,vanderHEIJDEN,M.,Kooi,B.W.,Kuenen,F.,…Ellers,J.(2010).Adaptordisperse:Understandingspe-cies persistence in a changingworld.Global Change Biology,16(2),587–598.https://doi.org/10.1111/j.1365‐2486.2009.02014.x

Bever,J.D.(2002).Negativefeedbackwithinamutualism:Host‐specificgrowthofmycorrhizalfungireducesplantbenefit.Proceedings of the Royal Society B: Biological Sciences,269(1509), 2595–2601. https://doi.org/10.1098/rspb.2002.2162

Blanquart,F.,Kaltz,O.,Nuismer,S.L.,&Gandon,S.(2013).Apracticalguide to measuring local adaptation. Ecology Letters, 16(9), 1195–1205.https://doi.org/10.1111/ele.12150

Brady,K.U.,Kruckeberg,A.R.,&Bradshaw,H.D.Jr(2005).Evolutionaryecology of plant adaptation to serpentine soils. Annual Review of Ecology, Evolution, and Systematics, 36(1), 243–266. https://doi.org/10.1146/annurev.ecolsys.35.021103.105730

Brandt,A. J.,deKroon,H.,Reynolds,H.L.,&Burns, J.H. (2013).Soilheterogeneity generated by plant‐soil feedbacks has implicationsfor species recruitmentandcoexistence. Journal of Ecology,101(2),277–286.https://doi.org/10.1111/1365‐2745.12042

Burgess,T.,Dell,B.,&Malajczuk,N.(1994).Variationinmycorrhizalde-velopmentandgrowthstimulationby20Pisolithusisolatesinoculated

Page 14: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

14  |    Journal of Ecology RASMUSSEN Et Al.

ontoEucalyptus grandisW.HillExMaiden.New Phytologist,127(4),731–739.https://doi.org/10.1111/j.1469‐8137.1994.tb02977.x

Callahan,B.J.,McMurdie,P.J.,&Holmes,S.P.(2017).Exactsequencevariantsshouldreplaceoperationaltaxonomicunitsinmarker‐genedata analysis. The ISME Journal, 11(12), 2639–2643. https://doi.org/10.1038/ismej.2017.119

Callahan,B.J.,McMurdie,P.J.,Rosen,M.J.,Han,A.W.,Johnson,A.J.A.,&Holmes,S.P.(2016).DADA2:High‐resolutionsampleinferencefromIlluminaamplicondata.Nature Methods,13(7),581–583.https://doi.org/10.1038/nmeth.3869

Callaway,R.M.,Thelen,G.C.,Rodriguez,A.,&Holben,W.E.(2004).Soilbiotaandexoticplantinvasion.Nature,427(6976),731–733.https://doi.org/10.1038/nature02322

Cavers, P. B., Bassett, I. J., &Crompton, C.W. (1980). The biology ofCanadianweeds.:47.Plantago lanceolataL.Canadian Journal of Plant Science,60(4),1269–1282.https://doi.org/10.4141/cjps80‐180

Chaudhary,V.B.,Lau,M.K.,&Johnson,N.C.(2008).Macroecologyofmicrobes‐biogeographyoftheGlomeromycota. InA.Varma (Ed.),Mycorrhiza(pp.529–563).BerlinHeidelberg:Springer‐Verlag.

Clemmensen,K.E.,Bahr,A.,Ovaskainen,O.,Dahlberg,A., Ekblad,A.,Wallander,H.,… Lindahl, B.D. (2013). Roots and associated fungidrive long‐term carbon sequestration in boreal forest. Science,339(6127),1615–1618.https://doi.org/10.1126/science.1231923

Clemmensen, K. E., & Michelsen, A. (2006). Integrated long‐term re-sponses of an arctic–alpinewillow and associated ectomycorrhizalfungi toanalteredenvironment.Canadian Journal of Botany,84(5),831–843.https://doi.org/10.1139/b06‐039

Compant, S., van der Heijden, M. G. A., & Sessitsch, A. (2010).Climate change effects on beneficial plant‐microorganism in-teractions. FEMS Microbiology Ecology, 73, 197–214. https://doi.org/10.1111/j.1574‐6941.2010.00900.x

Crémieux,L.,Bischoff,A.,Šmilauerová,M.,Lawson,C.S.,Mortimer,S.R.,Doležal,J.,…Steinger,T.(2008).Potentialcontributionofnaturalene-miestopatternsoflocaladaptationinplants.New Phytologist,180(2),524–533.https://doi.org/10.1111/j.1469‐8137.2008.02545.x

DeDeyn,G.B.,Raaijmakers,C.E.,vanRuijven,J.,Berendse,F.,&vanderPutten,W.H.(2004).Plantspeciesidentityanddiversityeffectsondifferenttrophiclevelsofnematodesinthesoilfoodweb.Oikos,106(3),576–586.https://doi.org/10.1111/j.0030‐1299.2004.13265.x

DeLong, J. R., Semchenko,M., Pritchard,W. J.,Cordero, I., Fry, E. L.,Jackson,B.G.,…Bardgett,R.D.(2019).Droughtsoillegacyoverridesmaternal effectsonplant growth.Functional Ecology,33(8), 1400–1410.https://doi.org/10.1111/1365‐2435.13341

Deveautour, C.,Donn, S., Power, S. A., Bennett, A. E., & Powell, J. R.(2018).Experimentallyalteredrainfallregimesandhostroottraitsaf-fectgrasslandarbuscularmycorrhizalfungalcommunities.Molecular Ecology,27(8),2152–2163.https://doi.org/10.1111/mec.14536

Felker‐Quinn,E.,Bailey,J.K.,&Schweitzer,J.A.(2011).Soilbiotadriveexpressionofgeneticvariationanddevelopmentofpopulation‐spe-cificfeedbacksinaninvasiveplant.Ecology,92(6),1208–1214.https://doi.org/10.1890/10‐1370.1

Fox, J., &Weisberg, S. (2011). An R companion to applied regression(Version 2). Retrieved fromhttp://socserv.socsci.mcmaster.ca/jfox/Books/Companion

Franks,S.J.,Weber,J.J.,&Aitken,S.N.(2014).Evolutionaryandplas-tic responses to climate change in terrestrial plant populations.Evolutionary Applications, 7(1), 123–139. https://doi.org/10.1111/eva.12112

Fujimura,K.E.,Egger,K.N.,&Henry,G.H.R.(2008).Theeffectofexper-imentalwarmingon the root‐associated fungalcommunityofSalixarctica. The ISME Journal, 2(1), 105–114. https://doi.org/10.1038/ismej.2007.89

Geml, J.,Morgado, L.N., Semenova,T.A.,Welker, J.M.,Walker,M.D., & Smets, E. (2015). Long‐term warming alters richness and

composition of taxonomic and functional groups of arctic fungi.FEMS Microbiology Ecology,91(8),fiv095.https://doi.org/10.1093/femsec/fiv095

Graham,J.H.,&Eissenstat,D.M.(1994).Hostgenotypeandtheforma-tionandfunctionofVAmycorrhizae.Plant and Soil,159(1),179–185.https://doi.org/10.1007/BF00000107

Harrison, K. A., & Bardgett, R. D. (2010). Influence of plant spe-cies and soil conditions on plant‐soil feedback in mixed grass-land communities. Journal of Ecology, 98(2), 384–395. https://doi.org/10.1111/j.1365‐2745.2009.01614.x

Hawkes, C. V., Kivlin, S.N., Rocca, J.D.,Huguet, V., Thomsen,M.A.,& Suttle, K. B. (2011). Fungal community responses to precip-itation. Global Change Biology, 17(4), 1637–1645. https://doi.org/10.1111/j.1365‐2486.2010.02327.x

Heinemeyer,A.,Ineson,P.,Ostle,N.,&Fitter,A.H.(2006).Respirationof the external mycelium in the arbuscular mycorrhizal symbiosisshows strong dependence on recent photosynthates and acclima-tion to temperature.New Phytologist,171(1), 159–170. https://doi.org/10.1111/j.1469‐8137.2006.01730.x

Hetrick,B.A.D.,Wilson,G.W.T.,&Cox,T.S.(1992).Mycorrhizaldepen-denceofmodernwheatvarieties, landraces, andancestors.Canadian Journal of Botany,70(10),2032–2040.https://doi.org/10.1139/b92‐253

Hoeksema, J.D., & Forde, S. E. (2008). Ameta‐analysis of factors af-fecting localadaptationbetween interactingspecies.The American Naturalist,171(3),275–290.https://doi.org/10.1086/527496

Hoeksema, J.D.,&Thompson, J.N. (2007).Geographic structure inawidespread plant‐mycorrhizal interaction: Pines and false truf-fles. Journal of Evolutionary Biology, 20(3), 1148–1163. https://doi.org/10.1111/j.1420‐9101.2006.01287.x

Holah, J. C., & Alexander, H. M. (1999). Soil pathogenic fungi havethe potential to affect the co‐existence of two tallgrass prai-rie species. Journal of Ecology, 87(4), 598–608. https://doi.org/10.1046/j.1365‐2745.1999.00383.x

Ihrmark,K.,Bödeker,I.T.M.,Cruz‐Martinez,K.,Friberg,H.,Kubartova,A.,Schenck,J.,…Lindahl,B.D.(2012).Newprimerstoamplifythefungal ITS2region‐evaluationby454‐sequencingofartificialandnatural communities. FEMS Microbiology Ecology, 82(3), 666–677.https://doi.org/10.1111/j.1574‐6941.2012.01437.x

IPCC. (2014). Climate change 2014: synthesis report. Contribution ofworkinggroupsI,II,andIIItothefifthassessmentreportofthein-tergovernmentalpanelonclimatechange(CoreWritingTeam,R.K.Pachauri,&L.A.Meyer,Eds.).Retrievedfromwww.ipcc.ch/report/ar5/syr

Jayne,B.,&Quigley,M. (2014). Influenceof arbuscularmycorrhizaongrowthandreproductiveresponseofplantsunderwaterdeficit:Ameta‐analysis.Mycorrhiza,24(2), 109–119.https://doi.org/10.1007/s00572‐013‐0515‐x

Ji, B., Gehring, C. A.,Wilson, G.W. T., Miller, R. M., Flores‐Rentería,L.,&Johnson,N.C. (2013).PatternsofdiversityandadaptationinGlomeromycota from three prairie grasslands. Molecular Ecology,22(9),2573–2587.https://doi.org/10.1111/mec.12268

Johnson,N.C.,Wilson,G.W.T.,Bowker,M.A.,Wilson,J.A.,&Miller,R.M.(2010).Resourcelimitationisadriveroflocaladaptationinmy-corrhizalsymbioses.Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2093–2098. https://doi.org/10.1073/pnas.0906710107

Jump,A.S.,&Penuelas,J.(2005).Runningtostandstill:Adaptationandtheresponseofplantstorapidclimatechange.Ecology Letters,8(9),1010–1020.https://doi.org/10.1111/j.1461‐0248.2005.00796.x

Koch,A.M.,Kuhn,G.,Fontanillas,P.,Fumagalli,L.,Goudet,J.,&Sanders,I.R.(2004).Highgeneticvariabilityandlowlocaldiversityinapop-ulationof arbuscularmycorrhizal fungi.Proceedings of the National Academy of Sciences of the United States of America,101(8), 2369–2374.https://doi.org/10.1073/pnas.0306441101

Page 15: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

     |  15Journal of EcologyRASMUSSEN Et Al.

Kõljalg, U., Larsson, K.‐H., Abarenkov, K., Nilsson, R. H., Alexander, I.J., Eberhardt,U.,…Vrålstad,T. (2005).UNITE:Adatabaseprovid-ing web‐based methods for the molecular identification of ecto-mycorrhizal fungi.New Phytologist,166(3), 1063–1068. https://doi.org/10.1111/j.1469‐8137.2005.01376.x

Koske,R.E.,&Gemma,J.N.(1989).Amodifiedprocedureforstainingroots to detect VAmycorrhizas.Mycological Research,92(4), 486–505.https://doi.org/10.1016/S0953‐7562(89)80195‐9

Kulmatiski,A.,Beard,K.H.,Stevens,J.R.,&Cobbold,S.M.(2008).Plant‐soilfeedbacks:Ameta‐analyticalreview.Ecology Letters,11(9),980–992.https://doi.org/10.1111/j.1461‐0248.2008.01209.x

Laine,A.‐L.(2005).Spatialscaleoflocaladaptationinaplant‐pathogenmetapopulation. Journal of Evolutionary Biology, 18(4), 930–938.https://doi.org/10.1111/j.1420‐9101.2005.00933.x

Laine,A.‐L.(2008).Temperature‐mediatedpatternsoflocaladaptationin a natural plant–pathogenmetapopulation.Ecology Letters,11(4),327–337.https://doi.org/10.1111/j.1461‐0248.2007.01146.x

Laine, A.‐L. (2009). Role of coevolution in generating biological diver-sity:Spatiallydivergentselectiontrajectories.Journal of Experimental Botany,60(11),2957–2970.https://doi.org/10.1093/jxb/erp168

Lankau, R. A., Wheeler, E., Bennett, A. E., & Strauss, S. Y. (2011).Plant‐soil feedbacks contribute to an intransitive compet-itive network that promotes both genetic and species di-versity. Journal of Ecology, 99(1), 176–185. https://doi.org/10.1111/j.1365‐2745.2010.01736.x

Lay,C.‐Y.,Hamel,C.,&St‐Arnaud,M.(2018).Taxonomyandpathogenic-ityofOlpidium brassicaeanditsalliedspecies.Fungal Biology,122(9),837–846.https://doi.org/10.1016/j.funbio.2018.04.012

Legendre,P.,&Gallagher,E.D.(2001).Ecologicallymeaningfultransfor-mationsforordinationofspeciesdata.Oecologia,129(2),271–280.https://doi.org/10.1007/s004420100716

Lekberg,Y.,Vasar,M.,Bullington,L.S.,Sepp,S.‐K.,Antunes,P.M.,Bunn,R.,…Öpik,M.(2018).Morebangforthebuck?Canarbuscularmy-corrhizalfungalcommunitiesbecharacterizedadequatelyalongsideother fungi using general fungal primers?New Phytologist, 222(4),971–976.https://doi.org/10.1111/nph.15035

Macel,M., Lawson, C. S.,Mortimer, S. R., Šmilauerova,M., Bischoff,A., Crémieux, L., Steinger, T. (2007). Climate vs. soil factors inlocal adaptation of two common plant species. Ecology, 88(2),424–433.https://doi.org/10.1890/0012‐9658(2007)88[424:CVSFIL]2.0.CO;2

Martin, M. (2011). Cutadapt removes adapter sequences from high‐throughputsequencingreads.EMBnet.Journal,17(1),10–12.https://doi.org/10.14806/ej.17.1.200

McGonigle,T.P.,Miller,M.H.,Evans,D.G.,Fairchild,G.L.,&Swan,J.A.(1990).Anewmethodwhichgivesanobjectivemeasureofcolonizationof rootsbyvesicular‐arbuscularmycorrhizal fungi.New Phytologist,115(3), 495–501. https://doi.org/10.1111/j.1469‐8137.1990.tb00476.x

Mohan,J.E.,Cowden,C.C.,Baas,P.,Dawadi,A.,Frankson,P.T.,Helmick,K.,…Witt,C.A. (2014).Mycorrhizal fungimediationof terrestrialecosystemresponsestoglobalchange:Mini‐review.Fungal Ecology,10,3–19.https://doi.org/10.1016/j.funeco.2014.01.005

Mook,J.H.,Haeck,J.,vanderToorn,J.,&vanTienderen,P.H.(1992).Thedemographic structureofpopulations. InP. J.C.Kuiper,&M.Bos (Eds.), Plantago: A multidisciplinary study (pp. 69–87). Berlin,Heidelberg:Springer‐Verlag.

Morgado,L.N.,Semenova,T.A.,Welker,J.M.,Walker,M.D.,Smets,E.,&Geml,J.(2015).SummertemperatureincreasehasdistincteffectsontheectomycorrhizalfungalcommunitiesofmoisttussockanddrytundrainArcticAlaska.Global Change Biology,21(2),959–972.https://doi.org/10.1111/gcb.12716

Mursinoff,S.,&Tack,A.J.M.(2017).Spatialvariationinsoilbiotame-diates plant adaptation to a foliar pathogen.New Phytologist,214,644–654.https://doi.org/10.1111/nph.14402

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R.,O’Hara,R.B.,…Wagner,H.(2015).vegan:communityecologypack-age (Version 2.2‐1). Retrieved from http://CRAN.R‐project.org/package=vegan

Olsrud,M.,Melillo,J.M.,Christensen,T.R.,Michelsen,A.,Wallander,H.,&Olsson,P.A.(2004).Responseofericoidmycorrhizalcolonizationand functioning to global change factors.New Phytologist, 162(2),459–469.https://doi.org/10.1111/j.1469‐8137.2004.01049.x

Packer,A.,&Clay,K.(2000).Soilpathogensandspatialpatternsofseed-lingmortalityinatemperatetree.Nature,404(6775),278–281.https://doi.org/10.1038/35005072

Phillips, J.M.,&Hayman,D.S. (1970). Improvedprocedures forclear-ing roots and staining parasitic and vesicular‐arbuscular mycor-rhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society,55(1),158–160.https://doi.org/10.1016/S0007‐1536(70)80110‐3

Porcel,R.,&Ruiz‐Lozano,J.M.(2004).Arbuscularmycorrhizalinfluenceonleafwaterpotential,soluteaccumulation,andoxidativestressinsoybeanplantssubjectedtodroughtstress.Journal of Experimental Botany,55(403),1743–1750.https://doi.org/10.1093/jxb/erh188

Pringle, A., & Taylor, J. W. (2002). The fitness of filamentous fungi.Trends in Microbiology, 10(10), 474–481. https://doi.org/10.1016/S0966‐842X(02)02447‐2

RCoreTeam.(2017).R:Alanguageandenvironmentforstatisticalcom-puting(Version3.4.2).Retrievedfromhttp://www.R‐project.org/

Rasmussen,P.U.,Amin,T.,Bennett,A.E.,KarlssonGreen,K.,Timonen,S.,vanNouhuys,S.,&Tack,A.J.M.(2017).Plantandinsectgeneticvariationmediate the impact of arbuscularmycorrhizal fungi on anatural plant–herbivore interaction. Ecological Entomology, 42(6),793–802.https://doi.org/10.1111/een.12453

Rasmussen,P.U.,Bennett,A.E.,&Tack,A.J.M.(2019).Datafrom:Theimpact of elevated temperature and drought on the ecology andevolutionofplant‐soilmicrobeinteractions.Dryad Digitial Repository,https://doi.org/10.5061/dryad.dt7bh4b

Rasmussen, P. U., Hugerth, L. W., Blanchet, F. G., Andersson, A. F.,Lindahl,B.D.,&Tack,A.J.M.(2018).MultiscalepatternsanddriversofAMfungalcommunities intherootsandroot‐associatedsoilofawildperennialherb.New Phytologist,222,1248–1261.https://doi.org/10.1111/nph.15088

Revillini, D., Gehring, C. A., & Johnson, N. C. (2016). The role of lo-cally adapted mycorrhizas and rhizobacteria in plant‐soil feed-back systems. Functional Ecology, 30(7), 1086–1098. https://doi.org/10.1111/1365‐2435.12668

Rillig, M. C., & Mummey, D. L. (2006). Mycorrhizas and soilstructure. New Phytologist, 171(1), 41–53. https://doi.org/10.1111/j.1469‐8137.2006.01750.x

Ross,M.D.(1973).Inheritanceofself‐incompatibilityinPlantago lanceo-lata. Heredity,30(2),169–176.https://doi.org/10.1038/hdy.1973.19

Rúa,M.A.,Antoninka,A.,Antunes,P.M.,Chaudhary,V.B.,Gehring,C.,Lamit, L. J.,…Hoeksema, J.D. (2016).Home‐fieldadvantage?evi-denceoflocaladaptationamongplants,soil,andarbuscularmycor-rhizal fungi throughmeta‐analysis.BMC Evolutionary Biology,16(1),https://doi.org/10.1186/s12862‐016‐0698‐9

Rustad,L.,Campbell,J.,Marion,G.,Norby,R.,Mitchell,M.,Hartley,A.,…Gurevitch,J.(2001).Ameta‐analysisoftheresponseofsoilrespira-tion,netnitrogenmineralization,andabovegroundplantgrowthtoexperimentalecosystemwarming.Oecologia,126(4),543–562.https://doi.org/10.1007/s004420000544

Schadt,C.W.,&Rosling,A. (2015).Commenton “globaldiversityandgeographyofsoilfungi”.Science,348(6242),1438–1438.https://doi.org/10.1126/science.aaa4269

Schoch, C. L., Seifert, K. A.,Huhndorf, S., Robert, V., Spouge, J. L., &Levesque,C.A.,…FungalBarcodeConsortium. (2012).Nuclear ri-bosomalinternaltranscribedspacer(ITS)regionasauniversalDNAbarcode marker for Fungi. Proceedings of the National Academy of

Page 16: The impact of elevated temperature and drought on the ...€¦ · the ecology and evolution of plant–microbe interactions with a changing climate. KEYWORDS abiotic and biotic factors,

16  |    Journal of Ecology RASMUSSEN Et Al.

Sciences of the United States of America,109(16),6241–6246.https://doi.org/10.1073/pnas.1117018109

Shannon, C. E. (1948). A mathematical theory of communica-tion. Bell System Technical Journal, 27, 379–423. https://doi.org/10.1002/j.1538‐7305.1948.tb01338.x

Staddon,P.L.,Heinemeyer,A.,&Fitter,A.H. (2002).Mycorrhizasandglobalenvironmentalchange:Researchatdifferentscales.Plant and Soil,244(1),253–261.https://doi.org/10.1023/A:1020285309675

Tack,A. J.M., Thrall, P.H., Barrett, L.G., Burdon, J. J.,& Laine,A.‐L.(2012). Variation in infectivity and aggressiveness in space andtime in wild host‐pathogen systems: Causes and consequences.Journal of Evolutionary Biology, 25(10), 1918–1936. https://doi.org/10.1111/j.1420‐9101.2012.02588.x

Thompson, J.N. (2005).The geographic mosaic of coevolution (1st ed.).Chicago,IL:UniversityofChicagoPress.

Troelstra, S. R., Wagenaar, R., Smant, W., & Peters, B. A. M. (2001).Interpretationof bioassays in the studyof interactions between soilorganismsandplants:Involvementofnutrientfactors.New Phytologist,150(3),697–706.https://doi.org/10.1046/j.1469‐8137.2001.00133.x

Vályi, K.,Mardhiah,U., Rillig,M. C., &Hempel, S. (2016). Communityassemblyandcoexistenceincommunitiesofarbuscularmycorrhizalfungi.The ISME Journal,10(10),2341–2351.https://doi.org/10.1038/ismej.2016.46

vanderHeijden,M.G.A.,Bardgett,R.D.,&vanStraalen,N.M.(2008).Theunseenmajority:Soilmicrobesasdriversofplantdiversityandproductivity in terrestrial ecosystems. Ecology Letters, 11(3), 296–310.https://doi.org/10.1111/j.1461‐0248.2007.01139.x

vanderPutten,W.H.,Bardgett,R.D.,Bever,J.D.,Bezemer,T.M.,Casper,B.B.,Fukami,T.,…Wardle,D.A. (2013).Plant‐soil feedbacks:Thepast, the present and future challenges. Journal of Ecology,101(2),265–276.https://doi.org/10.1111/1365‐2745.12054

Venables,W.N.,&Ripley,B.D.(2002).ModernAppliedStatisticswithS.Retrievedfromhttp://www.stats.ox.ac.uk/pub/MASS4

Wagg,C.,Boller,B.,Schneider,S.,Widmer,F.,&vanderHeijden,M.G.A. (2015). Intraspecific and intergenerational differences in plant‐soil feedbacks. Oikos, 124(8), 994–1004. https://doi.org/10.1111/oik.01743

Wang,Q.,Garrity,G.M.,Tiedje,J.M.,&Cole,J.R.(2007).NaiveBayesianclassifierforrapidassignmentofrRNAaequencesintothenewbac-terial taxonomy. Applied and Environmental Microbiology, 73(16),5261–5267.https://doi.org/10.1128/AEM.00062‐07

White,T.J.,Bruns,T.,Lee,S.J.W.T.,&Taylor,J.W.(1990).Amplificationand direct sequencing of fungal ribosomal RNA genes for phylo-genetics.PCR Protocols: A Guide to Methods and Applications,18(1),315–322.

Wu,Q.‐S., & Xia, R.‐X. (2006). Arbuscular mycorrhizal fungi influencegrowth, osmotic adjustment and photosynthesis of citrus underwell‐wateredandwaterstressconditions.Journal of Plant Physiology,163(4),417–425.https://doi.org/10.1016/j.jplph.2005.04.024

SUPPORTING INFORMATION

Additional supporting information may be found online in theSupportingInformationsectionattheendofthearticle.

How to cite this article:RasmussenPU,BennettAE,TackAJM.Theimpactofelevatedtemperatureanddroughtontheecologyandevolutionofplant–soilmicrobeinteractions.J Ecol. 2019;00:1–16. https://doi.org/10.1111/1365‐2745.13292