40
The HITRAN database: 1986 edition L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith A description and summary of the latest edition of the AFGL HITRAN molecular absorption parameters database are presented. This new database combines the information for the seven principal atmospheric absorbers and twenty-one additional molecular species previously contained on the AFGL atmospheric absorption line parameter compilation and on the trace gas compilation. In addition to updating the parameters on earlier editions of the compilation, new parameters have been added to this edition such as the self-broadened halfwidth, the temperature dependence of the air-broadened halfwidth, and the transition probability. The database contains 348043 entries between 0 and 17,900 cm- 1 .A FORTRAN program is now furnished to allow rapid access to the molecular transitions and for the creation of customized output. A separate file of molecular cross sections of eleven heavy molecular species, applicable for qualitative simula- tion of transmission and emission in the atmosphere, has also been provided. 1. Introduction The high-resolution transmission molecular absorp- tion database (known under the acronym HITRAN) is a compilation of spectroscopic parameters from which a wide variety of computer simulation codes are able to calculate and predict the transmission and emission of radiation in the atmosphere. This database is a prom- inent and long running effort established by the Air Force at the Air Force Geophysics Laboratory (AFGL) in the late 1960s in response to the requirement of a detailed knowledge of infrared transmission proper- ties of the atmosphere. With the advent of sensitive detectors, rapid computers, and higher resolution spectrometers, a large database representing the dis- L. S. Rothman is with U.S. Air Force Geophysics Laboratory, Optical Physics Division, Hanscom Air Force Base, Massachusetts 01731; R. R. Gamache is with University of Lowell, Center for Atmospheric Research, Lowell, Massachusetts 01854; A. Goldman is with University of Denver, Physics Department, Denver, Colorado 80208; J.-M. Flaud and C. Camy-Peyret are with P. & M. Curie University, Laboratory of Molecular & Atmospheric Physics, 75252 Paris, France; A. Barbe is with Rheims University, Faculty of Sci- ences, 51062 Rheims, France; N. Husson is with Ecole Polytechni- que, Dynamic Meteorology Laboratory, 91128 Palaiseau, France; C. P. Rinsland and M. A. H. Smith are with NASA Langley Research Center, Hampton, Virginia 23665; the other authors are with Jet Propulsion Laboratory, Pasadena, California 91109. Received 17 April 1987. crete molecular transitions that affect radiative propa- gation throughout the electromagnetic spectrum be- came a necessity. A wide range of applications for HITRAN has evolved including detection of trace and weakly absorbing features in the atmosphere, atmo- spheric modeling efforts, laser transmission studies, remote sensing, lidar, and a reference base for funda- mental laboratory spectroscopic research. The HI- TRAN database has been periodically updated and enhanced since it first became generally available. 1 4 The most recent edition of the HITRAN database was made available in late 1986. This latest version now unites the data on twenty-eight molecular species with bands covering regions from the millimeter through visible portion of the spectrum. Originally the data- base contained for each molecular transition the fol- lowing basic parameters: (1) resonant frequency; (2) line intensity; (3) air-broadened halfwidth; and (4) lower state energy (as well as unique quantum identifi- cations). Additional parameters have recently been provided which permit new capabilities for remote sensing in the atmosphere and capabilities to deal with nonlocal thermodynamic equilibrium effects in the up- per atmosphere. The overall structure of the database has been expanded to include files of cross-sectional data on heavy molecular species such as the chlorofluo- rocarbons (CFCs) and oxides of nitrogen which are not yet amenable to line-by-line representation. This has added to HITRAN the capability of qualitative detec- tion of anthropogenic gases in the window regions of the infrared. Ongoing research efforts will gradually move some of these data to the main body of the database. The new file structure of HITRAN is shown in Fig. 1. New parameters have been added to the 4058 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

The HITRAN database: 1986 edition

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M.Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith

A description and summary of the latest edition of the AFGL HITRAN molecular absorption parametersdatabase are presented. This new database combines the information for the seven principal atmosphericabsorbers and twenty-one additional molecular species previously contained on the AFGL atmosphericabsorption line parameter compilation and on the trace gas compilation. In addition to updating theparameters on earlier editions of the compilation, new parameters have been added to this edition such as theself-broadened halfwidth, the temperature dependence of the air-broadened halfwidth, and the transitionprobability. The database contains 348043 entries between 0 and 17,900 cm-1 . A FORTRAN program is nowfurnished to allow rapid access to the molecular transitions and for the creation of customized output. Aseparate file of molecular cross sections of eleven heavy molecular species, applicable for qualitative simula-tion of transmission and emission in the atmosphere, has also been provided.

1. Introduction

The high-resolution transmission molecular absorp-tion database (known under the acronym HITRAN) isa compilation of spectroscopic parameters from whicha wide variety of computer simulation codes are able tocalculate and predict the transmission and emission ofradiation in the atmosphere. This database is a prom-inent and long running effort established by the AirForce at the Air Force Geophysics Laboratory (AFGL)in the late 1960s in response to the requirement of adetailed knowledge of infrared transmission proper-ties of the atmosphere. With the advent of sensitivedetectors, rapid computers, and higher resolutionspectrometers, a large database representing the dis-

L. S. Rothman is with U.S. Air Force Geophysics Laboratory,Optical Physics Division, Hanscom Air Force Base, Massachusetts01731; R. R. Gamache is with University of Lowell, Center forAtmospheric Research, Lowell, Massachusetts 01854; A. Goldman iswith University of Denver, Physics Department, Denver, Colorado80208; J.-M. Flaud and C. Camy-Peyret are with P. & M. CurieUniversity, Laboratory of Molecular & Atmospheric Physics, 75252Paris, France; A. Barbe is with Rheims University, Faculty of Sci-ences, 51062 Rheims, France; N. Husson is with Ecole Polytechni-que, Dynamic Meteorology Laboratory, 91128 Palaiseau, France; C.P. Rinsland and M. A. H. Smith are with NASA Langley ResearchCenter, Hampton, Virginia 23665; the other authors are with JetPropulsion Laboratory, Pasadena, California 91109.

Received 17 April 1987.

crete molecular transitions that affect radiative propa-gation throughout the electromagnetic spectrum be-came a necessity. A wide range of applications forHITRAN has evolved including detection of trace andweakly absorbing features in the atmosphere, atmo-spheric modeling efforts, laser transmission studies,remote sensing, lidar, and a reference base for funda-mental laboratory spectroscopic research. The HI-TRAN database has been periodically updated andenhanced since it first became generally available.1 4The most recent edition of the HITRAN database wasmade available in late 1986. This latest version nowunites the data on twenty-eight molecular species withbands covering regions from the millimeter throughvisible portion of the spectrum. Originally the data-base contained for each molecular transition the fol-lowing basic parameters: (1) resonant frequency; (2)line intensity; (3) air-broadened halfwidth; and (4)lower state energy (as well as unique quantum identifi-cations). Additional parameters have recently beenprovided which permit new capabilities for remotesensing in the atmosphere and capabilities to deal withnonlocal thermodynamic equilibrium effects in the up-per atmosphere. The overall structure of the databasehas been expanded to include files of cross-sectionaldata on heavy molecular species such as the chlorofluo-rocarbons (CFCs) and oxides of nitrogen which are notyet amenable to line-by-line representation. This hasadded to HITRAN the capability of qualitative detec-tion of anthropogenic gases in the window regions ofthe infrared. Ongoing research efforts will graduallymove some of these data to the main body of thedatabase. The new file structure of HITRAN is shownin Fig. 1. New parameters have been added to the

4058 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 2: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

EOF

EOF

EOF

IIITRAN

file 1

1 SELECT. FOR I

file 2HITRAN database

100 bytes/transition

51 trans. /record

file 3Reference Tables

file 4Cross sections

Fig. 1. File Structure of HITRAN.

present edition of HITRAN as well as fields includedfor anticipated parameters. Table I illustrates theactual image in the new database of an individualmolecular transition. Formerly the database adheredto the card image concept, i.e., each transition wasrestricted to 80 characters; the new format has beenexpanded to 100 characters per transition. The newparameters are: the transition probability, the self-broadened halfwidth, and the exponent of tempera-ture dependence of air-broadened halfwidth. Datafields have also been reserved for pressure shift of thetransition, accuracy criteria for the three principalparameters, and references to the sources of the latterparameters. These fields have not at present beenimplemented (with some minor exceptions that will bediscussed in Sec. II). We discuss below the definitionof two of the newly presented parameters.

A parameter, Rif, which is both independent of tem-perature and isotopic abundance, has been added tothe new edition of the database with the expectationthat it will be quite useful for atmospheric calculationsand applications utilizing Einstein coefficients. Thetransition probability, Rif, is related to the intensity ofa transition, Sif, from state i to state f by

Sif(T)= h v if[1-exp(-c 2 vjf/T)I gLG

3hc Q(T

X exp(-C2Ej1T)Rif' *l1-36. (1)

Here Vif is the resonant frequency of the line, Ei is theenergy of the lower state of the transition, gi is thenuclear spin degeneracy of the lower level, Q(T) is thetotal internal partition sum, I, is the natural isotopicabundance, and c2 is the second radiation constant (hc!k). The reference temperature T on the database istaken to be 296 K. The units for the parameters aregiven in Table I. In terms of the effective dipolematrix operator, M, Rif can be expressed as

Rif = I(iIMlf)12. (2)

On the present compilation, Rif has been calculatedas Rif/Q(To). Thus a user, at this time, must multiply

the current Rif value given on the compilation by theappropriate value of Q (296 K) to take full advantage ofthis parameter. In future editions Eq. (1), as well asthe corresponding relation for quadrupole transitions,

S -q(7 = if5 v3[1 - exp(-c2 1}f/T)] Q()

X exp(-c2 Ej/T)Rf - 10-36, (3)

will be fully implemented. Similar to the expressionfor intensities for dipolar transitions, Rq in Eq. (3) isexpressed as the square of the matrix element of thequadrupole moment operator.

Provision for the self-broadened halfwidth, y incm'1/atm at 296 K, has been made on the database.Presently, carbon dioxide and acetylene are the onlytwo species where this parameter appears, althoughthere is much available data for self-broadened half-widths for other species; these will be introduced insubsequent editions of the database.

The exponent for temperature dependence of theair-broadened halfwidth has also been introduced inthis edition. This parameter has begun to be mea-sured accurately for various molecular species and hasappeared in a previous edition of the GEISA (gestionet tude des informations spectroscopiques atmos-pheriques) databank.5 The definition of the expo-nent, n, is given by

y(T) = (To) (-T) l (4)

where y(T) is the air-broadened halfwidth in units ofcm-1/atm and To is the reference temperature, 296 K.One should note the inversion of the temperature ratioin the definition in Eq. (4) which permits the storage ofa positive value on the HITRAN database. Table IIsummarizes the range of values of the coefficient foreach molecule presently in HITRAN.

A great amount of effort was also made for thisedition to create a more uniform treatment of therotational quantum numbers (and other quantumidentifiers unique to a transition). Presently this hasbeen accomplished by formatting the transitions intoone of six classes, shown in Table III. In addition, thevibrational quantum numbers (and electronic designa-tion where necessary) which cover whole bands havenow been designated by indices to provide a rapidmeans of access for applications such as nonlocal ther-modynamic equilibrium calculations. The isotopicvariants of a species have also been assigned sequentialindices in the order of the telluric relative abundance(see Table IV). For example, in Table I, molecule 2,i.e., C02, appears three times and the isotope code is 1,2, or 3 corresponding, respectively, to 626(12C1602),636(13C1602 ), and 628(16012Cl8O). This has made itnecessary to include correspondence tables in associat-ed files on the database. The values of the naturalisotopic abundance, Ia in Eqs. (3) and (4), assumed forthe current HITRAN database are given in Table IV.In this version of the database, provision has also beenmade for the error estimates of the frequency, intensi-

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4059

Page 3: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table I. Example of Direct Image of Lines on 1986 HITRAN Databaseiso Frequency Intensity

Mo v S R - , E n S or y v' v" Q'- - - --_ -- - -_ - - --_- - --_ - - --_- - --_- - - - - -

Q. IER IRef- - . _ . . . . . ..-- -

31 800.276500281 800.287000101 800.30190031 800.30470031 800.322500101 800.32270023 800.326900271 800.332030101 800.36160031 800.379600101 800.416400271 800.41675031 800.43410022 800.444000101 800.44700021 800.451200

4.316E-25 3.777E-07.0599.00002.270E-23 4.717E-05.0750.00004.680E-23 2.421E-07.0630.00001.286E-24 1.131E-05.0618.00001.243E-23 1.274E-06.0610.00001.840E-22 2.195E-06.0630.00005.380E-26-2.668E-05.0793.11031.100E-22-3.212E-02.1000.00001.910E-22: 2.278E-06.0630.00006.830E-24 6.554E-07.0602.00005.300E-23 1.025E-05.0630.00001.330E-22 2.035E-02.1000.00004.723E-25 2.225E-05.0618.00006.390E-26 1.396E-04.0653.08465.180E-23 1.002E-05.0630.00003.210E-26 1.731E-05.0661.0872

1162.00600.761483.94700.50105.93600.50

1636.93510.76720.65800.76277.86000.50

1326.41920.752354.24000.50277.80700.50707.21200.76851.01800.502221.36110.501982.04700.761844.81880.75851.04100.502481.56150.75

0.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.000000.00000

2 12418 62 117 72 1 8 4 42 159 9512 11615 12 126 2248 3

19 142 126 2242 11515 12 145 24419 143 25010408 32 145 24414 6

2517 9 38218 7 381

- 9 3 7 - 8458 850 3821614 2 382-25 125 - 84

R 13 1864 8 382

+25 125 + 841514 2 382

+44 143 + 843 8 382

49 941 382R 38 186

-44 143 - 84P 37 186

FORMAT (I2,Il,F12.6,lP2E1O.3,0P2F5.4,F1O.4,F4.2,F8.5,2I3,2A9,3Il,3I2)- 100 characters per transition

This format corresponds as follows:

Mo - 12 -iso- I -v - F12.6 -S - ElO.3 -R - E10.3 -y - F5.4 -s - F5.4 -E" - FlO.4 -n - F4.2 -y - F8.5 -

v' - I3 -v" - I3 -Q' - A9 -Q" - A9-IER- 31 -IRef-3I2 -

Molecule numberIsotope number (1- most abundant, 2- second, etc.)Frequency in cm 2

Intensity in cm t'/(molec cm ) @ 296KTransition probability in Debyes (presently lacking internal partition sum)Air-broadened halfwidth (HWHM) in cm 1Iatm @ 296KSelf-broadened halfwidth HWHM) in cm- /atm @ 296KLower state energy in cmCoefficient of temperature dependence of air-broadened halfwidthShift of transition due to pressure (presently empty; some coupling coefficientsinserted)Upper state global quanta indexLower state global quanta indexUpper state local quantaLower state local quantaAccuracy indices for frequencyt, intensity, and halfwidthIndices for lookup of references for frequency, intensity, and halfwidth (notpresently used)

tIER code for frequency when used:IER estimated error in wavenumber

0123456

2 1.2 0.1 and < 1.02 0,01 and < 0.12 0.001 and < 0.012 0.0001 and < 0.0012 0.00001 and < 0.0001< 0.00001

ty, and the air-broadened halfwidth (see Table I).This has only been implemented for some of the transi-tions as described in Sec. II.

The first file on the compilation is a FORTRAN pro-gram called SELECT that enables the user to interacti-vely access the HITRAN database (the second file) tocreate files of portions of the atlas of interest based onselected criteria such as frequency range, molecule,isotope, vibrational bands, and intensity cutoff. Theuser can readily customize his output to correspond tospecific program requirements or storage limitations.

Presently 348,043 transitions are given on the highresolution portion of HITRAN. A summary of thetransitions now incorporated is given in Table V. Thespecies are given in Table V in the order of theirmolecule index identification in the compilation. Fig-ure 2 displays the spectral regions in which parameterscan be found for each molecule in HITRAN.

In the following section modifications, updates, andadditions to the database since the last edition3'4 arediscussed. This is not meant to be a definitive discus-sion, and users are advised to consult the references formore detailed information. As a convenience to theuser, some of the major updates planned will also bementioned.

II. New or Modified Data

A. H2 0

The ground state pure rotation band of the mono-deuterated isotope of water (HDO) has been updated.The data are from the Jet Propulsion Laboratory(JPL) Catalog6 and were derived from a fit whichincluded the microwave and submillimeter lines re-ported by Messer et al.

7 and an extensive set of groundstate energy levels from the high resolution FTS mea-

4060 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

0000000000000000

Page 4: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table II. Range of Air-Broadened Halfwidths and TemperatureDependences

M~olecule nmin. max. min. max.

H2O 0.0061 0.1046 -- 0.64 --CO2 0.0559 0.0899 0.75 0.7903 0.045 0.077 -- 0.76 --

N2O 0.0686 0.0974 0.64 0.82CO 0.047 0.088 -- 0.69 --

CH4 0.0445 0.0920 0.63 1.00O2 0.032 0.062 -- 0.5 ---NO 0.043 0.063 -- 0.5 ---

sO20.110 0.152 -- 0.5 ---

NO2 0.062 0.073 -- 0.5 ---NH, 0.043 0.090 -- 0.5 ---

HNO3 -- 0.13 -- -- 0.5 ---

OH -- 0.083 -- -- 0.5 ---

HF 0.020 0.126 -- 0.5 ---HC1 0.0135 0.0953 0.20 0.88HBr 0.015 0.123 -- 0.5 ---HI 0.008 0.100 -- 0.5 ---

C1O -- 0.085 -- -- 0.5 ---

OCS -- 0.07 -- -- 0.5 ---H2CO 0.107 0.108 0.5HOC1 -- 0.06 -- -- 0.5 ---

N2 -- 0.06 -- -- 0.5 ---

HCN 0.0819 0.1566 -- 0.5 ---

CH3C1 -- 0.08 -- -- 0.5 ---H2 02 -- 0.10 -- -- 0.5 C2H2 0.0400 0.1158 -- 0.75 --CHe -- 0.10 -- -- 0.5 ---

PH, -- 0.075 -- -- 0.5 ---

Table Ill. Formats of the Six Classes of Local Quanta

Group 1: Asymmetric Rotors,

H20, 03, S02, NO2 , HNO3 , H2CO, HOC1, H202 , H2S

J', K', K', F', Sy.'; J", Ka, Kc" F", Sy."I2, I2 , I2, I2, Al ; 12, 2, I2, I2 Al

Group 2: Diatomic and Linear Molecules with Integer J

CO2. N20, CO, HF, HC1, HBr, HI, OCS, N2 , HCN, C2 H2

_ Br, F", _; r, J ", Sy."5X,A1, I2,1X; 4X,A1, I3, Al

Group 3: Spherical Rotors

Methane (CH4 only, not CH3D)

J', R', C', N', Sye'; J", R", C", N", Sym"12, I2, A2, 12, Al ; I2, I2, A2, I2, Al

Group 4: Symmetric Rotors

CH3D, NH3 , CH3 C1, C2H , PH3

J', K', C', _, Sye'; J", K", C", -, Sye"12, 12, A2, 2X, Al I2, 12, A2, 2X, Al

Group 5: Triplet Ground Electronic States

02

tBr, F", ; Br, N", Br, J", _, Sym"3X,Al, F4.1, 1X; Al, I2, Al, I2, 2X, Al

Group 6: Doublet Ground Electronic States (Half Integer J)

NO, OH, C1O

I Br, F", _; _, Br, J" , lye"

5X, Al, I2, 1X; 3X, Al, F4.1, Al

Notes: Price and double prices refer to upper and lower states

respectively; Br is the P-, Q-, or R- branch symbol; J is the

rotational quantum number; Sye is e or f for l-type doubling, + or

- for symmetry, etc. (for further explanation see references).

presently using group 2 quantum notation on the tape.

surements of Toth.8 The estimated uncertainty of theline positions varies from line to line and ranges from0.02 to 0.000001 cm-' for these lines. The uncertaintyis given for each line in the parameter IER(1) on theHITRAN database (see Table I). The line intensitiesare accurate to 2-5%.

The bands of water in the 6.3- and 2.7-,um regionsshown in Table V have been updated by incorporating

Table IV. Isotopic Variants In HITRAN

Molecule AFGL relative Molecule AFGL relativeisotope natural isotope natural

cede abundance cede abundance

H2 O 161 0.9973 HNO, 146 0.9891181 0.0020171 0.0004 OH 61 0.9975162 0.0003 81 0.0020

62 0.00015CO2 626 0.9842

636 0.0110 HF 19 0.99985628 0.0039627 0.0008 H 15 0.7576638 0.000044 17 0.2423637 0.000009828 0.0000040 HBr 19 0.5068728 0.000002 11 0.4930

0, 666 0.9928 HI 17 0.99985668 0.0040686 0.0020 CdO 56 0.7559

76 0.2417N20 446 0.9904

456 0.0036 OCS 622 0.937546 0.0036 624 0.0416448 0.0020 632 0.0105447 0.0004 822 0.0019

CO 26 0.9865 H2 CO 126 0.986236 0.011 136 0.011128 0.0020 128 0.002027 0.0004

HOC1 165 0.7558CH 211 0.9883 167 0.2417

311 0.0111212 0.00059 N2 44 0.9928

02 66 0.9952 HCN 124 0.985268 0.0040 134 0.0111'67 0.0008 125 0.0036

N0 46 0.9940 CHRCl 215 0.749056 0.0036 217 0.239548 0.0020

HNO 1661 0 9949so2 626 0.9454

646 0.0420 C 2H. 1221 0. 97761231 0.0219

NO2 646 0.9916

C2H. 1221 0.9776NH, 4111 0.9960

5111 0.0036 PH, 1111 0.99955

data from Flaud et al.9 These are the bands that werenot previously3 added to the database from Ref. 9.With the addition of the data in Table V, all the data ofFlaud et al.9 are present on the database producing aself-consistent set of water data. In general the accu-racy of the line positions is better than +0.005 cm-1,and the line intensities are accurate to s20% (with theweaker lines being somewhat less accurate). The datashow a deterioration of accuracy for high J lines.10

The v2 band of monodeuterated water has been re-placed with the data of Toth.8 The line positions areaccurate to 0.0004 cm-' for all unblended lines andslightly blended lines of medium to strong intensity.The line intensities were calculated by the F-factorformalism with corrections for centrifugal distortionand the AK effect. The line intensities are accurate to-5% for the stronger lines and for the weaker lines theuncertainty is -20%.

The air-broadened halfwidths of all water vaporlines on the database have been updated using thecalculations of Gamache and Davies1' for the principalisotopic species (H2

16 0) and the optimum combinationalgorithm12 13 for all other species (HDO, H2

170,H2

18 0). All calculations were for N2 broadening andhave been scaled to air using the factor 0.9. Values forthe principal isotope have an estimated uncertainty

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4061

Page 5: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V. Band Centers and Band Sums

H 0 Molecule: number of lines = 472022

Band Isotope Vibrational Band Frequency number Sum ofCenters upper lower min max lines Intensity

161181171162161181171161161161

1403.1515.1550.1553.1556.1588.1591.1594.2062.2153.2161.

4891637746538832793257498306288183

2723.67992782.01173072.0463139.0533144 .9783151.6303632.9613640.2453649.6853653.1433657.0533707.4673719.8913722.1893728.9373736.5223741.5673748.3183755.930

162161181171161181171161161181161

162162161181171161181161181171161162161181171161181171161

000 -000 -000 -000 -0 1 0 -01 0 -0 1 0 -020 -100 -001 -

0 1 0 -030 -020 -020 -020 -0 1 0 -010 -010 -1 0 0 -001 -001 -

1 0 0 -020 -030 -020 -020 -020 -1 1 0 -11 0 -1 0 0 -1 0 0 -1 0 0 -001 -021 -0 1 1 -0 1 1 -0 1 1 -001-001 -001 -

000000000000010010010020100001

000020010010010000000000010010010

000000010000000000010010000000000000020010010010000000000

from 10 to 15%, with the less abundant species beingslightly less accurate (20%).

B. C02

A complete update of the energy levels and intensi-ties of the carbon dioxide parameters has been imple-mented for this edition of HITRAN. A summary ofthis effort is given by Rothman14 which has been en-

0-

6-6-0-

0-

21 -21 -26 -86 -86 -

1104 -1271 -1287 -1343 -

995 -1 0 0 9 -1063 -782 -

1221 -2066 -1298 -

2332 -2486 -2813 -2806 -2887 -2565 -3624 -3172 -3108 -3223 -2823 -3236 -3570 -3525 -3591 -3203 -3160 -3227 -2894 -

1648977906101

1030559449503302292

18951932196018602407222021562910252022672612

3133336239174046399443393790414541944127434741223869391238584282434142434350

1728766622461750202117129

2719

1653121187

86686852668

1741402

16365

1333953313388247

1132

3

365553387

13021651

49101

34527711529

1546

5. 268E- 171 .066E- 191 .943E-20

2. 585E-212 .225E- 204 .632E- 237. 921E- 241 .016E- 235. 977E- 253. 072E -25

2 .816E -215. 135E- 241. 644E- 232. 464E-248. 157E - 212 I1O1E- 203 .823E- 211 .038E- 171 .820E- 222. 267E- 252 .626E -22

N

N

N

N

N

NN

N

6. 337E- 228. 468E- 237. 303E-231.325E-222. 409E- 237.571E- 20 N7 .920E- 261. 946E- 229. 468E- 221 .699E - 224.955E-19 N1 .416E- 211 .158E-24

5. 356E- 246 .618E- 252 .923E- 211.393E-202. 516E- 217.200E-18 N

continued

hanced by the great amount of high resolution linepositions of many bands observed in the period sincethe last edition of the database. More importantly, inthis period Fourier transform spectrometers and diodelaser systems have provided measurements of manyband and line intensities of unprecedented photomet-ric accuracy. The theoretical technique of Wattsonand Rothman 5 has also been applied so that a higher-

4062 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 6: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation

4099.9564145.4734666.7935089.5395221.245234.9775276.7765310.4685320.2625331.2695372. 1146134 .0306775.106871.517201.547249.8117445.07

9833.5810284.410298.10314.10328.7210524.310581.10597.10599.6610613.4110868.861 0990.11011.11032.

11813.1912139.212151.2612407.6412565.00

6. 426E- 233. 504E-233 .955E-223. 671E- 235.646E-233 .716E-206.620E-221. 476E-21

9. 627E- 248. 042E- 19

1. 589E-23

1 .785E-23

3.047E-215. 061E-20

4 .579E-206. 431E-19

5. 837E- 21

1 .207E-24

2. 329E-221 .627E-24

1.913E-258. 939E-223. 990E-234 .151E-229. 856E-231 .807E-23

4. 946E-202. 873E-243. 803E- 251. 557E-21

4 .269E-231. 002E-233. 970E- 246. 360E-252. 083E-214.099E-244. 202E-237.641E-242. 585E-222. 116E-205. 649E-22

4. 560E-24

7. 311E-252. 381E-21

5. 362E-23

1. 317E-239. 284E -22

2. 575E-238. 417E-23continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4063

8238827383418356837387348761877987928807896689839000

.84

.95

.32

.70

.82

.97

.579

.75

.63

.000

.53

.13

162162161162181161161181171161162161161161161161161

161161181171161161161181171161181171161

161161181171161161181171161161161181171161

161161161161161

1 1 0 -030-030-0 1 1 -

I 1 0 -1 1 0 -

021-0 1 1 -

0 1 1 -

0 1 1 -200-040-120-021-200-1 0 1 -002-

041-130-031-031-031-121-210-

1 1 -

012-012-012-

041-220-121-121-121-022-201-201-300-201-102-003-003-003-

131-310-211-112-013-

000000000000000000010000000000000000000000000000000

010000000000000010000000000000000000000

000000000000000000000000000000000000000000

000000000000000

3843-3879-4250-4850-4791-4602-4908-4808-5505-4609-5154-5904-6227-6205-6446-6489-6832-

8083-7845-8181-8240-7948-7759-8198-8472-8538-8188-8722-8808-8569-

9607-10050-9412-10158-9276-10293-10285-10344-10143-9999-9364-10761-10855-10507-

11522-11808-11689-12055 -12249 -

44974640593253855728600658125963584062555508719075227804794080518183

8506898486568533912790899207919290729556929192419671

1038110568105451050511027108001090510823110281118311300111641115111529

1237312456126971275312938

86060266257644399128573486

1306216215610930976

1361813

5776

32810235

42924737833522683315558

511

15311214170

4789927917535778238914776559

220221458212240

Page 7: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 2

13256.13448.13642.13652.6513820.92213828.313910.814066.19314221.14314318.80214536.87

14640.15107.15119.15344.15347.15742.15832.

026499949787757

16821 .62616825.2316898.416898.82817227.717312.5417458.20317495. 51717748.073

161161161161161161161161161161161

161161161161161161161

161161161161161161161161161

141 -042 -320 -221 -301 -202 -122 -023 -400 -103 -004 -

151 -330 -231 -212 -311 -410 -113 -

321 -222 -302 -401 -420 -123 -500 -203 -104 -

000000000000000000000000000000000

000000000000000000000

000000000000000000000000000

13291 -13319 -13480 -13311 -13274 -1331 8 -13 5 49-13932 -13958 -13926 -141 37 -

14922 -152 5 0 -14907 -150 8 3 -14945 -15606 -155 8 4 -

16465 -16624 -16487 -1 6 486 -17129 -17125 -17145 -17143 -17473 -

1382913942139401416314217141431413814425146471465714776

15220154151552515667157241593915965

171921710817092172281728117628177151778717880

418

216

330169

3863

173235

64

2

10611023735

109

14348

134227

1077

108182

49

2.557E-241. 433E-246. 094E- 241. 767E -221 .083E- 217 .894E- 233. 216E- 246. 970E- 243. 975E - 232. 052E-222 .423E- 24

4 .602E- 261 .764E- 254 .649E- 241.379E- 238. 775E- 239 .991E - 251 .200E- 23

4.351E-235. 582E- 242. 096E- 238. 554E-23

1 .104E-25

1 .819E-24

3.94 5E- 241 .839E-23

2. 499E- 25continued

order self-consistent set of band intensities for theparallel bands of the main isotope have been fur-nished. The extensive new high resolution observa-tions provide access to the majority of the vibrationalenergy levels for the two most abundant isotopic spe-cies below -7000 cm-'. For the most abundant asym-metric species, 12C160180, this is also true up to -5000cm

Of the 634 bands of carbon dioxide considered, 573survived the intensity criterion to be included on theHITRAN database. Line positions that have beeninterpolated from the least-squares fit of observedtransitions14 are generally accurate to 0.0004 cm-'.Some line positions have accuracies good to 0.0001cm ; however, due to the calibration problem discov-ered between different spectroscopic facilities,16 thereremains a discrepancy of the former amount in manycases (see additional discussion of this problem belowunder the subsection for the methane molecule). Thisabsolute calibration problem will be addressed in fu-ture work on the line positions. The intensities thathave been updated are believed to be good to -10%.Much work is in progress at this time to improve theintensities of the bands on the database. Observa-tions are being made on significant perpendicularbands previously only approximated, and importantresults are being obtained to provide higher-order reli-

able Herman-Wallis coefficients which will greatly im-prove the accuracy of the higher rotational lines than isnow on the database.

New air-broadened halfwidths have been applied toall the carbon dioxide lines on the database. Thesehave been taken from Ari6 et al.

1 7 A linear regressionfit was applied to their data to extend the air-broad-ened values from Iml = 40 to 80; a constant value of0.0606 cm- 1 /atm was assumed beyond Iml = 80. (Therunning index m equals -J" for the P branch, J" forthe Q branch, and J" + 1 for the R branch.) The newvalues of halfwidth generally parallel the previous re-sults, but show higher values at low J. These newparameters have been assumed for all bands and iso-topes. Similarly, self-broadened halfwidths havebeen taken from Ref. 17 and have been adopted for allCO2 bands.

Sizable discrepancies have been observed for sometime between observed and simulated spectra usingthe normal set of molecular parameters in the vicinityof strong Q branches.18 This difference has been espe-cially noted in the 15-,m region of CO2. This phenom-enon is attributed to line coupling (also called rotation-al collisional narrowing, line mixing, line interference,or Q-branch collapse) which manifests itself as a dis-tortion of the line shape. For this edition, line cou-pling coefficients for three perpendicular bands, the

4064 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 8: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

CO molecule:2

Table V, continuation 3

number of lines = 59554Number of bands on Compilation =

Vibrational bandupper lower Isotope

20003 - 11101 62613302 - 12201 62612202 - 11101 63612202 - 11101 62621103 - 20002 62611102 - 10001 63611102 - 10001 62821102 - 20001 62611102 - 10001 62614402 - 05501 62612202 - 03301 62820002 - 11101 62813302 - 04401 62613302 - 04401 63611102 - 02201 62821102 - 12201 62620002 - 11101 62722203 - 13302 62612202 - 03301 62612202 - 03301 63611102 - 02201 62720002 - 11101 62621103 - 12202 63621103 - 12202 62610002 - 01101 62811102 - 02201 62620003 - 11102 62811102 - 02201 63610002 - 01101 63820003 - 11102 62710002 - 01101 62720002 - 11101 63610012 - 01111 62610002 - 01101 63720003 - 11102 63620003 - 11102 62610002 - 01101 63610002 - 01101 62621103 - 20003 63611102 - 10002 63621103 - 20003 62601111 - 00011 63613302 - 12202 63611102 - 10002 62801101 - 00001 63802201 - 01101 63811102 - 10002 62701101 - 00001 63702201 - 01101 63711102 - 10002 62612202 - 11102 62801101 - 00001 636

Frequencymin - max

444 - 502479 - 481494 - 496474 - 548489 - 536493 - 5685 12 - 563514 - 571493 - 600546 - 558560 - 562563 - 565530 - 606573 - 574537 - 614543 - 613578 - 579555 - 607529 - 631551 - 619554 - 618541 - 641582 - 597551 - 642542 - 647532 - 658598 - 599551 - 6485 67 - 637590 - 627559 - 655577 - 639576 - 642584 - 637571 - 655561 - 674560 - 678546 - 686591 - 651578 - 685584 - 683607 - 670612 - 669599 - 691595 - 697606 - 687606 - 687602 - 694616 - 682583 - 716617 - 684582 - 721

Intensity(Xl0 2 2 )

0.007400.000410.000210.046810.003100.032120.009160. 006152.533680.000880.001520.001600.066140.000390.157180.034600.000180.008031.808600.031230.039850.856120.001620.241874.89982

49.144970.000950.662450.051360.003681.107590.010150.016260.009020.096486.54097

19.479821364.29129

0.007702.483210.620140.011260.011660.746673.419270.286680.143190.614760.05126

212.882260.05625

824.74876

5-73numberlines

562517135

42739953

104223427

13624

3001301689189124240

9731

16421322920179144

7419161669882

109115136

57104

9563

101188209320161182247128259134

continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4065

BandCenters

471.511479.898494.586508.167510.320526.475535.893542.220544.286557.608561.121564.909568.906573.451576.596578.631579.141581 .361581 .776585.328586.852594.288595.601596.441597.052597.338599.023599.274601 .571607.554607.558607.968608.830609.586610.989615.897617.350618.029619.753630.710633.097636.751637.531642.311643.329643.653644.408645.744646.083647.062647.712648.478

Page 9: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 4

636 590 -

636 599 -

636 609 -

636 625 -

627 633 -

626 597 -

626 607 -626 619 -626 611 -

828 615 -626 625 -828 629 -

728 626 -

636 661 -628 603 -

628 611 -

636 626 -628 620 -

628 633 -

627 608 -

627 617 -

627 628 -

636 617 -626 593 -

626 599 -

626 608 -

626 624 -

626 615 -

626 624 -

626 634 -

628 648 -

626 651 -

627 681 -

626 638 -

628 638 -

626 630 -

627 647 -

626 625 -

626 668 -

638 663 -

628 650 -

626 658 -628 678 -

637 684 -626 675 -

627 662 -628 685 -

627 712 -

636 674 -

626 668 -

626 649 -

636 658 -

628 682 -

627 721 -

627 699 -

636 731 -626 679 -

718707697682673717707696708703697691697685730724707713700729721709721752750740718732722712715715700731731746727755730734758749740734745759739714752779789777764725764734788

70.504684.511430.255690.012800.00850

15. 866380.849570.072510.952970.329230.042040.025860.060420.00378

317.3986025.235590.101611.445630.07391

59.857064.701330.273891.52147

79451.725866257.19909

368.838230.30043

19.335900.944720.074080.056590.023450.005100.444730.742828.752000. 12500

144.013640.018100.055427.929370.238060.022490.008060. 01923

1.219060.'011620.001410.045224.63994

1395.6126017.05190

0.304060 .001090.044450.000932.93417

4066 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

648.786649.087649.408649.435649.953652.552654.869655.26165 5601657.33163.7 04657.753659.706661.136662.374662.768663.171663.187663.603664.729665.114665.509667.031667.380667.752668.115668.213668.471669.002669.350678.998680.053681. 386681.491683.495683.869686.071688.671696.689698.949703.470703.536707.839709.373710.771711.299712.511713.496713.503720.280720.805721.584724.198724.545732.256733.508738.673

0220103301044010550112202122020111102211133020 1 1 0 1144020220101101133010110102201122010330104401011010220103301111010 1 1 0 1022010330121102044010550106601122011440112201133011110112201111011110122201100011 0 0 0 121101200011 00011001110001200022000120001200011 0 0 0 1100011110120002111012110120002

- 01101- 02201- 03301- 04401- 11102- 11102- 00011- 01111- 12202- 00001- 13302- 01101- 0001- 12201- 0001- 01101- 11101- 02201- 03301- 00001- 01101- 02201- 10001- 00001- 01101- 02201- 20002- 03301- 04401- 05501- 11101- 13301- 11101- 12201- 10001- 11101- 10001- 10001- 21101- 01101- 01101- 20001- 11101- 01101- 01111- 01101- 11102- 11101- 11101- 11101- 01101- 01101- 02201- 11102- 02201- 12201- 11102

235200159

94134217

97145180

9612812915056

259442151364254238396308101153276247

9121417413225911311417018821115812511414721988

1279568

192107

2576

107136115320

37242

35105

continued

Page 10: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 5

739.829 11101 - 02201 636 689 - 785 0.67911 179739.948 21101 - 12201 626 696 - 783 0.17040 159740.009 12201 - 03301 628 715 - 762 0.01313 170741.724 11101 - 02201 626 673 - 803 76.72998 235748.133 12201 - 03301 627 747 - 749 0.00096 54748.524 20002 - 11102 636 709 - 784 0.03646 74754.334 21102 - 12202 626 708 - 794 0.15602 157757.479 12201 - 03301 626 702 - 807 3.19758 195765.641 13301 - 04401 636 764 - 766 0.00071 31770.498 13301 - 04401 626 727 - 809 0.13085 149771.266 11101 - 10002 636 726 - 812 0.13458 84

781.550 14401 - 05501 626 758 - 782 0.00358 51789.812 11101 - 10002 627 765 - 817 0.00876 97789.913 11101 - 10002 628 756 - 828 0.05430 147790.989 21102 - 20003 626 749 - 829 0.05338 78791.447 11101 - 10002 626 735 - 849 8.66292 110803.727 12201 - 11102 636 788 - 825 0.00351 57828.255 12201 - 11102 626 788 - 873 0.14810 156829.529 21101 - 20002 626 801 - 863 0.01093 61857.193 13301 - 12202 626 833 - 886 0.00988 93864.666 20001 - 11102 626 827 - 904 0.04107 75883.145 01111 - 11101 636 853 - 909 0.00533 64898.548 02211 - 12201 626 861 - 927 0.01380 84913.425 00011 - 10001 636 864 - 950 0.07587 56915.650 21101 - 12202 626 913 - 916 0.00087 34917.647 10011 - 20001 626 878 - 946 0.00965 44927.156 01111 - 11101 626 868 - 965 0.41439 139941.698 10012 - 20002 626 901 - 974 0.01356 47952.306 21101 - 20003 626 952 - 954 0.00027 15960.959 00011 - 10001 626 886 -1002 6.80082 75963.986 00011 - 10001 627 937 - 986 0.00366 56966.269 00011 - 10001 628 927 - 994 0.01732 88

1017.659 00011 - 10002 636 965 -1050 0.05342 551023.701 01111 - 11102 636 988 -1049 0.00847 731043.640 10011 - 20002 626 1002 -1075 0.01568 471063.735 00011 - 10002 626 986 -1105 9.68632 771064.475 10012 - 20003 626 1016 -1095 0.03197 511066.242 11112 - 21103 626 1042 -1086 0.00217 431067.727 00011 - 10002 627 1037 -1092 0.00567 661071.542 01111 - 11102 626 1010 -1109 0.76264 1491072.687 00011 - 10002 628 1030 -1103 0.03537 991074.250 02211 - 12202 626 1031 -1105 0.03038 98

1239.363 11102 - 01101 628 1209 -1271 0.02088 1561244.900 10002 - 00001 638 1228 -1266 0.00152 341259.426 10002 - 00001 628 1214 -1305 0.31915 1231272.287 10002 - 00001 627 1239 -1305 0.01462 841342.278 10001 - 00001 638 1316 -1370 0.00553 661365.844 10001 - 00001 628 1322 -1414 0.35848 1241376.027 10001 - 00001 627 1342 -1412 0.02164 911386.965 11101 - 01101 628 1354 -1421 0.03300 176

1846.332 21103 - 02201 626 1807 -1882 0.00731 691859.049 20003 - 01101 636 1832 -1847 0.00046 101880.987 20003 - 01101 626 1830 -1934 0.11931 861883.201 12202 - 01101 636 1856 -1873 0.00120 231889.514 22203 - 11102 626 1860 -1879 0.00149 26

continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4067

Page 11: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 6

2110311102111021330211102122021110221102200020330120002211022110211101111011220121102111012110113301122012220211101122012000120001133012000121101144012220120001300022110130001100122110121101111122001220013222011001221101100120551113312211132111204411122111221220013200112001202211

- 10002- 00001- 00001- 02201- 00001- 01101- 00001- 1 0001- 01101- 00001- 01101- 02201- 10002- 00001- 00001- 01101- 10002- 00001- 10001- 02201- 01101- 11102- 00001- 01101- 01101- 01101- 02201- 01101- 1 0001- 03301- 11101- 01101- 11102- 02201- 11101- 10001- 02201- 10002- 11101- 20001- 20002- 03301- 10001- 10002- 1 0001- 05501- 13302- 21103- 21102- 04401- 12201- 12202- 20003- 20001- 20002- 02201

10011 - 10001

626636628626627626626626636626626626636636628636626627636636628626626626628636626627626626626626626636626636626636626626626626628626626636636636636636636636636636636638

18521852186018661884186718711910195719551954197919941980200320062002202120322031203320372010203620612053205720862060207920822069209121092108212121102140212621612154215421762165215822042202220122142189219421922192220021962196

-1941-1944-1937-1946- 1918-1975-1999-1959-1997-2074-2042-2005-2015-2089-2086-2091-2096-2074-2065-2072-2074-2085-2145-2154-2095-2140-2156-2102-2161-2131- 2128-2189-2132-2137-2149-2188-2212-2157- 2203-2197-2208-2195-2228-2237-2265-2244-2251-2253-2246-2270-2270-2274-2274-2270- 2275- 2275

638 2200 -2277

4068 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

1896.0551896.5381901.7371905.4911916.6951917.6421932.4701951.1711996.5832003.2462003.7632004.2242023.8702037.0932049.3392051 .7862053.9472062.0992063.7092064.1362065.8642075.4432076.8562093.3452094.8042102.1182107.0842110.8662112.4882119.0222120.5062129.7562131.8052136.5082148.2402157.6752165.5412167.9442170.8502180.6992182.4802194.1152205.2972215.2642224.6572225.3612228.0432229.7242230.2262236.6792238.5702239.2972240.5362240.7532242.3232242.8082245. 273

0.020520.039020.030600.018050.004340.379326.229040.010760.004130.002260. 031100.001390.000720.629520.175400.063230.113060.033330.002760.005640.017580.01176

54.055564.920590.010380.034250.338180.000990.230210.019750.015483.104500.006780.001560.011600.007630.165770.000520.041980.000550.002480.008020.004880 .116911.229510.001340.003050.004110.000710.062560.037700.070910.042310.011960.025620.147590.05508

6978

124113

59186117

503887713113

10015213884

1143372

17190

127214

8371

17221929894

11143344742

16211

10013326964746931515818

118103115

534551

236104

continued

Page 12: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 7

2245.4962248.3572248.3622250.6062250.6932250.7982253.0462253.4422254.3802260.0512260.0612261 .9092262.4532262.8492265.9722271 .7602273.9072274.0882275.8042277.1692277.9862278.3222280.5792281.7002282.6902283.2792283.4882283.5782284.2792285.4272286.5352286.8002287.1112288.3902289.5692289.9042290.2542290.5012290.6142290.6812290.9722293.4092293.6112294.8792295.0272295.0422296.8482299.2142299.2402299.4152301.0542301.8002301.9092302.3722302.5252302.9642305.257

100120331101121111111111202211100121001101111022110002110012011111001100011011110661100011144112221130011144122221222213044113001400011300121221130013055110332112212133110221121111111222001320012133121001121112211131001203311011211111104411022211111212211011111002110022200111221220013

- 10002- 03301- 01111- 11101- 11102- 02201- 10002- 10001- 01101- 02201- 00011- 10002- 01101- 10001- 0001- 01101- 06601- 0001- 14401- 22201- 30001- 14402- 22202- 22203- 04401

3 30004

- 0001- 30002- 12201

3 30003- 05501- 03311- 12202- 13301- 02201- 21101- 11112- 20003- 20002- 13302- 10001- 21102- 21103- 10002- 03301- 01111- 11101- 04401- 02211- 11102- 12201- 01101- 10011- 10012- 20001- 12202- 20003

638636636636636637637637638636636636637636638636626637626626626626626626628626636626628626626626628626828626626628628626828626626828628628628626626628626828626626626626626

219821842209218821852215221622192190218122022183220621862188218022412203225022582264224322502243225022452182225722552253223322652257223822542242226422522256223522582240223722592242227222452230225122442234224822562253223522312234

-2278-2288-2278-2289-2291-2279-2281-2279-2293-2304-2297-2306-2298-2305-2308-2318-2297-2315-2297-2295-2294-2306-2305-2310-2308-2312-2331-2306-2308-2311-2322-2306-2312-2322-2315-2323-2312-2318-2317-2327-2315-2328-2331-2321-2330-2315-2331-2339-2332-2335-2341-2335-2333-2336-2342-2345-2347

0.081231.518710.018090.959161.908920.024940.014060.009173.47747

34.588970.22775

20.293650.62664

12.2944838.78106

817.847940.005367.147220.002470.001140.000230.009770.005240.014490.013950.00846

9598.150280.001860.009820.003760.161340.001630.011240.096110 .011910.071010.003000.017450.010170.260380.004560.156300.344300.007690.404630.004650.323564.208550.067840.684442.678560.309270.025380.042331.109606.367183.77753

10916787

15216316683753332056279

27277

16323767

14846276

796385

14642

9828

12635

13435

132124

8410851

8780

14139

122136

44280

9025018011527617414050

5469

18573

continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4069

Page 13: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 8

2.029180.11470

10.495120.078734.46815

109.939351.668967.28664

75.179413.598151.90775

152.953920.804611.28913

257.878891.34887

2838.8570820.29292

1079.329271789.32579

49.683393518.85157

73666.25799647.57535

955357.116150.012910.004200.002290.662460.000830.015250.010080.138690.004280.001130.230690.014880.010880.032600.00062

0 .010000.032680.111550.019570.008231.000260.080990.045460.002840.016660.040280.167880.341400.449720.001880.01281

4070 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

2306.6922306.7392307.3832307.3912309.2902311.6682311.7012311.7152313.7732314 .0492315.1472315.2352317.3192318.9642319.7382322.4362324.1412324.1832326.5982327.4332327.5812332.1132336.6322340.0142349. 1432367.0832391.1612415.7082429.3742429.4682458.1 %r92464.9992500.7602524.2482588.1822614.2482618.6412641.2402757.1782775.595

3125.3223154 .6043181.4643275.1123289.6983339.3563340.5333396.8953398.2183450.9023460.4663465.4393473.7123482.2353482.6933482.831

2001211112022110002110011033110112110012111110 0 0 1 102211111121001110012011110 0 1 102211000211001110012011110 0 1 1

011110001100011100111111110011100112001211111211032000320003200022000221102200022000120001

30004222032110330003211022110222202300022111313312211132001312212200131002221112

- 20002- 11102- 02201- 00011- 10001- 03301- 01111- 10002- 11101- 00001- 02201- 11102- 10001- 10002- 01101- 00001- 02201- 00011- 10001- 10002- 01101- 00001- 01101- 00001- 00001- 10002- 11102- 10002- 10002- 20003- 11102- 01101- 00001- 00001- 00001- 00001- 01101- 00001- 0001- 00001

- 01101- 01101- 00001- 01101- 00001- 00001- 01101- 01101- 11101- 03301- 11102- 10001- 02201- 10002- 00011- 11101

626627628628628626626628626828627626627627628728626626626626627628626627626636636628626626626628628627638628628627628627

626626626626636626626626626636636626636636636636

2237226022382259224122272246224222312245225322302256225622362261222722442231223122502236222722492230232223622393236424082418243924592499257125692590261027232762

3086311331333232325032803294334633733412341834123419342334563445

-2347-2339-2347-2339-2348-2356-2350-2351-2357-2351-2353-2360-2354-2357-2362-2359-2371-2366-2372-2374-2369-2376-2384-2384-2397-2395-2414-2436-2467-2448-2485-2493-2544-2551-2607-2657-2648-2673-2797-2793

-3172-3206-3239-3317-3332-3398-3394-3444-3421-3481-3495-3505-3513-3524-3506-3511

71212374109146218162150211

77322219130134446138250809193

400192278179110

475845661884

1301155927

119146809816

47101

7 56744

104145

7050909960

143652882

continued

Page 14: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 9

1001223313300011111221101211131441231114100122111212212200122221331113100123001410012222121331220013111221111220012211134000220013300121221221112300131111220012100222001310012111121001110021200121001210011100122001120012211122111110011100111111112211133112001221112022112001210021

- 0001- 13302- 01101- 01101- 0001- 11102- 04401- 21103- 0001- 11101- 02201- 10001- 12202- 21102- 0001- 20003- 0001- 12201- 03301- 10002- 01111- 01101- 10001- 11102- 11102- 10002- 20001- 02201- 11101- 20002- 01101- 10001- 00011- 10002- 0001- 01101- 0001- 00011- 10001- 0001- 0001- 0001- 10001- 10002- 11102- 11101- 0001- 0001- 01101- 02201- 03301- 10002- 11102- 0001- 10002- 00011

10011 - 00001

638 3434626 3466636 3453636 3431626 3445628 3476626 3461626 3473637 3461628 3492628 3465636 3460626 3469626 3498828 3477626 3476636 3446626 3484626 3465628 3481626 3496628 3473628 3489626 3476626 3502627 3510626 3506626 3476626 3492626 3506627 3502627 3525626 3509626 3490628 3491626 3490638 3527636 3555626 3506627 3519637 3557626 3509636 3562636 3555636 3576636 3581636 3543828 3594636 3561636 3580636 3599628 3592628 3625626 3584627 3622626 3606628 3599

-3528-3518-3540-3544-3561-3528-3538- 3534-3543-3526-3547-3554-3555-3546-3556-3565-3577-3559-3568-3567-3564-3578-3569-3584-3583-3579-3579-3598-3593-3591-3595-3589-3604-3615-3612-3628-3624-3614-3628-3631-3642-3661-3659-3655-3653-36 56-3675-3670-3680-3678-3671-3678-3681-3714-3696-3704-3719

0.462600.004080.526287.270940.682330.009430. 041150.008420.076720.001930.179600.176830.121370.003000.058600.09161

94.171390.032001.109400.180610.016524.447590.075661.471840.098240.021950.01686

29.392720.993250.055110.666580.013000.20784

31.8031552.18823

779.872450.702660.00380

16.592928.405310.12564

10397.264850.282760.434850.042670.03177

159.960190.0389514.996250.577540.023290.186570. 013401.006960.032890.36867

47.78956

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4071

3490.3973496.1653497.4953498.7533500.6723504.3293504.9323506.7133508.3763509.2163511 .4193517.3223518.6623524.2033525.2043527.6153527.7373527.7673528.0573531.8353533.9473538.7783539.0173542.6043543.0953549.2133550.7173552.8543555.9093556.7753558.7053563.3243566.0703568.2153571.1413580.3263587.5503589.0643589.6503591.2513608.5593612.8423621.2873621.5573623.3863625.1653632.9113638.0653639.2203641 .5703641.6763645.4363656.8193659.2733667.0643667.5483675.134

1275863

131100124110

73107

48244

61125

51585785

10016311786

34110885589147

203154

552728362

81

165

23513136

79149112

996365

1009586

5519115197

117138

799764

164continued

Page 15: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 10

0.030180.077820.163620.011940.084200.006863.878160.005270.14164

38.377140.02749

10.197573.098510.769600.002460.126390.004300.04601

31.187290.002402.418940.09128

15796.077611270.12882

0.002000.007560.07858

50.589092.009350.002550.001870.661530.015480.020670.014380.050190.001970.000490.001040.014930.008840.123570.012150.001440.005830.001400.029190 .000190.012070.001130.032330.468810 .010990.041400.313380 .001000 .00991

4072 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

3675.6943676.7093676.7403677.7083679.5523682.0953683.8143684.3213687.4753692.4263692.9033693.3463700.2953702.0833703.1523703.4703704.2443705.9463711.4763712.5343713.7203713.8053714.7833723.2493723.8003725.5223726.3553726.6473727.3593783.1583799.4873814 .2513856.6583858.1053987.6094005.9464416.1504529.8694578.0894591 .1184614.7804639.5044655.2034685.7754687.7974692.1804708.5264722.6294733.5424735. 6144743.6934748.0634753.4504755.7074768.5534784.6764786.703

111213001220011211113001331113111113111212211200122001110011211121111131111222122331230011200112331121111222111001111111155112001114411122111331120011300122001130003211113000200021311044000432203311030112100021000213001430014200132111332214233134001521113200133110231114222132002331113

- 01111- 20002- 10001- 11101- 20003- 21103- 01101- 21102- 02201- 10002- 1 0001- 00001- 11102- 01101- 21101- 12202- 13302- 20001- 10001- 13301- 11101- 12201- 00001- 01101- 05501- 10002- 04401- 02201- 03301- 10002- 20003- 10002- 00001- 11102- 0001- 01101- 00001- 01101- 01101- 00001-. 01101

- 00001- 00001- 10002- 10001- 00001- 01101- 12202- 03301- 20003- 01101- 00001- 00001- 11102- 02201- 00011- 11101

626626628628626626628626628626627627626627626626626626626626626626626626626636626626626628626626628626628626626626626626628628627636626638636626626626628636626626626626626

363236233627364736223648361936543640360636513620362936443679365036743658363336883648366436103629369936853677364636613760377237513823381839563934438945434591454845834580461446624654467346694733469447144706469147144712471447644751

- 3706- 3712-3712-3702-3710-3706- 3723-3709-3720- 3731- 3724- 3734- 3738- 3739-3724- 3737-3727-3740-3758- 3734- 3755-3748- 3763-3770-3744-3752-3760-3770-3767- 3804-3821-3855-3889-3888-4021-4029- 4454-4558-4608-4635-4634- 4663-4677-4709-4718-4711- 4743-4737-4760-4757- 4773- 4792-4795-4791-4807-4805-4813

955711613557

7033664

2368195

151170278

46127

59538144167120

99241

4142

122209170

47286786888578241021

611221138125403294

584221766558

1001412075

continued

Page 16: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 11

626628626626638627626626636636626628628626626626626638627626626627626626626626626626626636636626636628626626628627626626626626626626626636626626626626626626626

47354739473647644777477447824774481548134827485148414872487948934889489848964879492048834898487248994890489248844881492049595000500649924999500250295023504850175058505050865080511251425175520852505248531655605652

628 5830636 5922628 5935

-4833-4826- 4854-4851- 4840-4856-4873-4902-4907-4926-4937-4927- 4940-4938-4936- 4942- 4946- 4947- 4954- 4964- 4954- 4972-4972-4978-4979-4991-4996-5007-5018-5030-5048- 5052-5048- 5080- 5109-5097- 5093- 5103-5120-5148-5156-5168-5159-5177-5180-5188-5251-5269-5315-5342-5368-5599-5703

-5876-5980-5977

0.381740.213646.642940.220480. 012850.074050.15378

77.800960.237332.975230.045860.087951.119400.007560.003480.003220.003390.003670.013470. 103320.000490.230580.032821.319660.052260.897220.82769

24.49150351.92470

2.119430.170290.002380.001950.226560.052110.253750.024630. 062840.02311

108.996840.30176

10.298720.026800.436420.017180.003140.021790.009750.026820.397420.004600. 000830.00197

0.002820.003290.00240

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4073

4790.5734791.2614807.6954808.1854814.5704821.5004839.7344853.6234871 .4464887.3854887.9864896.1824904.8614910.5994912.1634920.1974922.5474925.0134928.9164931.0894937.3124939.3504941.6214942.5104946.8214953.3614959.6684965.3854977.8354991.3505013.7805028.5365028.7875042.5845061.7795062.4445064.6745068.9305091.2075099.6605114 .8985123.1955126 .9685139.3995151.5045168.6005217.6735247.8345291.1335315.7145349.3125584.3945687.170

5858.0245951 .6045959.956

3001420013211134000220012200133001320013211122001212212211122001220022400143221340013200112111231113400122001223312300133111222212300122111220012200112111120021222112001112211300122111120011311122001130011211113111122211233110112130011100220222101121100210003100031

100223001410021

- 10002- 0001- 01101- 01101- 0001- 0001- 10001- 0001- 01101- 00001- 0001- 01101- 0001- 00011- 20003- 12202- 20002- 0001- 01101- 11102- 20001- 0001- 03301- 10002- 11101- 02201- 10001- 01101- 0001- 0001- 01101- 00011- 02201- 0001- 0001- 10002- 01101- 0001- 11102- 0001- 10001- 01101- 11101- 02201- 03301- 0001- 10002- 01101- 01101- 0001- 01101- 10001- 10002

- 0001- 0001- 0001

63119183

6583

1075983

1307361

204135

4235523557

138115

12118104

69103158

67198

8971

1233140

1196162

162105

918563

18793

14891424961

12592501829

503546

continued

Page 17: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 12

5972.520 32214 - 02201 626 5953 -5991 0.00131 305998.572 40015 - 10002 626 5970 -6025 0.00285 326020.797 31114 - 01101 626 5977 -6058 0.05285 1036072.345 40014 - 10001 626 6059 -6088 0.00023 66075.981 30014 - 00001 626 6019 -6120 0.52309 656088.220 31113 - 01101 636 6069 -6106 0.00113 276119.623 30013 - 00001 636 6073 -6152 0.02880 516127.781 30013 - 00001 628 6086 -6154 0.02334 936148.416 41114 - 11102 626 6158 -6163 0.00023 66170.088 32213 - 02201 626 6133 -6198 0.01191 826175.121 40014 - 10002 626 6130 -6206 0.02218 496175.954 30013 - 00001 627 6152 -6195 0.00224 446196.179 31113 - 01101 626 6137 -6233 0.33332 1356205.505 40013 - 10001 626 6160 -6232 0.01420 476227.919 30013 - 00001 626 6153 -6265 4.60947 736241.972 30012 - 00001 636 6190 -6271 0.04589 536243.580 31112 - 01101 636 6217 -6265 0.00323 526254.594 30012 - 00001 628 6218 -6282 0.01357 846298.114 30012 - 00001 627 6277 -6317 0.00165 366308.281 40013 - 10002 626 6260 -6335 0.02050 496346.263 40012 - 10001 626 6303 -6376 0.01282 476347.853 30012 - 00001 626 6273 -6386 4.57936 736356.297 31112 - 01101 626 6297 -6393 0.34437 1376359.285 32212 - 02201 626 6321 -6387 0.01239 826363.616 30011 - 00001 636 6323 -6394 0.01249 466388.085 41101 - 00001 626 6355 -6424 0.00213 306466.439 20023 - 01101 626 6464 -6466 0.00012 36503.082 30011 - 00001 626 6445 -6546 0.59279 656532.655 40011 - 10001 626 6507 -6556 0.00169 276536.444 31111 - 01101 626 6489 -6571 0.06199 1066537.959 11122 - 00001 626 6493 -6562 0.02197 696562.442 32211 - 02201 626 6547 -6577 0.00059 156679.707 11121 - 00001 626 6631 -6704 0.02800 72

6745.114 01131 - 01101 636 6698 -6763 0.01282 826780.212 00031 - 00001 636 6705 -6797 0.16370 606870.799 11132 - 11102 626 6852 -6884 0.00071 186885.166 01131 - 01101 628 6894 -6896 0.00037 106897.754 02231 - 02201 626 6838 -6915 0.04153 1066905.769 10031 - 10001 626 6850 -6922 0.01479 476907.144 10032 - 10002 626 6846 -6924 0.02522 516922.210 00031 - 00001 628 6862 -6938 0.05165 1036935.135 01131 - 01101 626 6846 -6952 1.10889 1556945.608 00031 - 00001 627 6901 -6962 0.01064 796972.579 00031 - 00001 626 6860 -6989 14.59010 787283.981 40015 - 00001 626 7258 -7309 0.00197 297413.506 41114 - 01101 626 7389 -7435 0.00247 467460.530 40014 - 00001 626 7411 -7494 0.03781 537481.570 40013 - 00001 636 7464 -7497 0.00048 127583.251 41113 - 01101 626 7550 -7608 0.00688 707593.690 40013 - 00001 626 7536 -7624 0.10180 577734.448 40012 - 00001 626 7687 -7766 0.02791 517757.620 41112 - 01101 626 7740 -7773 0.00075 197901.479 21122 - 00001 626 7898 -7917 0.00069 157920.840 40011 - 00001 626 7896 -7944 0.00166 277981.180 10032 - 00001 636 7948 -7998 0.00196 298089.028 10031 - 00001 636 8043 -8105 0.00680 41

continued

4074 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 18: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 13

8103.5818120.1068135.8898192.5528220.3638231.5618243.1658254.7988276.7668293.953

626628626626628626626626626626

8087812980828107822982028219823782148206

626 9350626 9457626 9583

o Molecule: number of3

Isotope Vibrational Bandlowerupper

lines = 50080

Frequencymin max

number Sum oflines Intensity

666

698.3443 666700.9314 666

1007.6501007.9961015.8081025.5961028.0961042.08431095.3291103. 1403

1726.52771796.2606

666686666666668666666666

666666

000 -

020-0 1 0 -

1 0 1 -001 -002 -0 1 1 -001 -001 -1 1 0 -1 0 0 -

011 -1 1 0 -

000

010000

100000001010000000010000

000000

0- 191 3982 4.387E-19 N

573- 865 4591 4.164E-20560- 895 6340 6.283E-19

948-956-958-969-971-9 1 9 -

979-942-

10361037104810681059124411741271

11859931534154411496992

9016671

6 .152E

2. 495E1. 743E4. 503E5. 073E1. 354E1. 104E5. 255E

-20-20-19-19-20-17-20-19

N

N

1657- 1910 1709 5.373E-201681- 1927 2137 2.266E-20

1. 107E-193. 743E-201 .134E-18

3. 000E-20

2785.2446 666

3041.200 666

1 11 -

003-

000

fundamental at 667 cm-1 and the two hot bands at 618and 721 cm-1 , have been appended. These come fromthe room temperature studies of Hoke et al.19 Thecorresponding modification to the line shape form fac-tor, f(v,vif), yields

f(vv) =1 Yif +Yjf(v - Vif) ()7r ( - Vf)2 + y2f

where yif is the coupling coefficient, vif is the frequencyof the transition, and yif is the air-broadened half-

2735- 2807 1449 3.140E-20 N

2962- 3056 1575 1.105E-19continued

width. Equation (5) is the result of a perturbationcalculation to first order.20 The Yif coefficients havebeen introduced at this time in the field of the pressureshift on the compilation. Note that when the couplingcoefficient is zero, f(v,vif) reduces to the Lorentz formfactor.

The Yif values on the current edition apply only to atemperature of 296 K; atmospheric calculationsthrough layers with different temperatures are certainto yield invalid results. A scheme for temperature

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4075

20033100321113210032100312003220031122311113110031

200332003220031

- 10002- 00001- 01101- 00001- 00001- 10002- 10001- 02201- 01101- 00001

- 00001- 00001- 00001

938895169631

-8117-8131-8154-8210-8232-8246-8257-8267-8293-8310

-9408-9533-9649

. 9 9 0

.970

.350

0.000320 .000190.026980.430710 .000190.001230.000780.000500.053920.61321

0.003850.023070.00904

8

5

93655

231713

10365

36

4943

BandCenters

2057.2084.2110.2201.

8923132785157

666666666666

002-1 1 1 -

1 0 1 -200-

000010000000

1945-2029-1968-2058-

2140210721642270

2164146921651530

N

Page 19: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 14

N 0 Molecule: number of lines = 241252

Band Isotope Vibrational BandCenters upper

446456546446446446446

0000 -0000 -0000 -0 1 1 0 -0200 -0220 -1 0 0 0 -

lower

0000000000000110020002201 0 0 0

Frequency number Sum ofmin max lines Intensity

0- 46 545- 46 49

1 -~ ~ ~ 5-1 4 6 5 12- 46 1045- 46 495- 46 976- 45 47

8. 292E- 213. 077E- 232. 985E- 239. 509E - 222 .835E-235.454E- 231.590E-23

N

N

N

NNN

N

571.320575.5579.364580.934584.1585.320586.3588.768588.978589.168595.361696.140938.8534

1055.6245

1144.33341153.37681154.44081155.13991159.97171160.29731168.13231177.09311177.74461246.88461255.71141264.70471269.89201277.45491278. 43611280.35411284.75731284.90331285.58791291.49791293.86421297.05401297.14771301 .80841395.20711620.54791630.16031634.9889

446456446446448546447446446446446446446446

456446446448546446446446446448448447546546446456456446446446446446446446446446446446

0310 -0 1 1 0 -0200 -0310 -0 1 1 0 -0 1 1 0 -0 1 1 0 -0110 -0220 -0330 -1110 -1 0 0 0 -0001 -0001 -

0200 -0420 -0400 -0200 -0200 -0310 -020 -1200 -0220 -1 0 0 0 -1110 -1000 -1000 -1 1 1 0 -

2000 -1 0 0 0 -1110 -1000 -2110 -1110 -1200 -1220 -1310 -1330 -2000 -0 1 1 1 -0 1 1 1 -

0001 -

02200000011002000000000000000000011002201000011010000200

00000220020000000000011000001 0 0 000000000011000000000011010000000011000001110011002000220031003300200022002000110

527-541-527-538-555-552-586-523-535-546-564-659-881-999-

1 0 9 9 -1104-1104-1109 -1114-1103-1105-1131-1123-1184-1205-1207-1203-1223-1211-1211-1228-1208-1231-1215-1226-1231-1241-1248-1345-1580-1585-1581-

6176126376236166226026586506356307289841089

1195120812081207121212261239122912481297129913101321132313301331133013411331134913451349134213471427165216621673

29412819515011612932240384297118123123107

11329412312312035615911613614226412714528214314328215927941814136027729297

260143172

2. 484E-21

3. 504E- 215. 561E- 206. 567E- 211 .890E-21

3. 499E- 21

1.820E-229.857E-191. 112E- 199. 328E-21

2. 103E- 21

2.856E-219. 780E- 222. 893E- 22

NN

4.780E-22 N3.545E-21 N2.483E-21 N1.335E-21 N1.200E-21 N5.182E-20 N2.877E-19 N9.659E-22 N1.251E-21 N1.673E-20 N1.968E-21 N3.300E-21 N2.859E-20 N3.297E-21 N3.115E-20 N3.221E-20 N3.940E-21 N8.248E-18 N3.805E- 21 N9.440E-19 N2.793E-20 N5.363E-20 N3.887E- 21 N3.564E-21 N1.375E-22 N2.625E-22 N1.457E-22 N2.778E- 21 N

continued

4076 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 20: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 15

1733.80511742.35361749.06511839.93611860.19131862.76701868.46821873.22861878.08061880.26571880.95031886.03071890.97601974.57152079.07462164.16442177.65682181.37242181.71372182.18232187.39062193.62102195.39662195.84572195.91582201.60532202.79222206.00632209.52472216.71122220.07352223.7568

2181.69672189.54662309.04552322.57312331.12152411.50682431.32262435.72732439.62472452.81062453.84522457.44492461.99652463.34842474.79872491.18712524.67272534.53212551.46782552.40832563.3394

446446446448456546446446446446446446446446446456456446446446546446446446446546448447446448447446

446446446446446448456447546446446446446446446448447546446456446

0400-0420-0310-1110 -1110 -1 1 1 0 -1310-1200-1310-1110 -2110-1220-1330-2000-0201-0111 -0001 -0331-1 1 1 1 -0311-0111 -0002-0221-0201-1001 -0001 -0 1 1 1 -0 1 1 1 -0 1 1 1 -

0001 -0001 -0001 -

0600-0620-0510-0400-0420-1200-1200-1200-1200-1400-1420-1310-1200-2200-1220-2000-2000-2000-3000-2000-2000-

0 1 1 00110000000000000000002200110020000001 0 0 00110022001101 0 0 001100000033011100310011000010220020010000000011001100110000000000000

1 0 0 01 0 0 00110000000000000000000000000020002200110000010000000000000000000100000000000

1694 -1706 -1701 -1807 -1819 -1824 -1826 -1819 -1838 -1813 -1844 -1832 -1853 -1918 -2048 -2093 -2094 -2111 -2113 -2111 -2117 -2134 -2112 -2111 -2114 -2118 -2135 -2146 -2122 -2137 -2147 -2121 -

2148 -2168 -2259 -2269 -2284 -2360 -2380 -2392 -2387 -2397 -2400 -2391 -2388 -2409 -2415 -2431 -2471 -2470 -2483 -2486 -2477 -

17751779179618631889188818941910190319251904192319182006210822062223222322222224222822312240224122392245224222432255225922612271

222822172369238723992456247524752486249925012513252125112536253225612575259425912609

147252172105125117226161116200107312224156

66332155338318332338117404155151157326269432155142180

2 2

292140116121112101122122286352159122130127111129132126159

1 .727E-22

2. 508E- 22

2. 177E-214. 080E- 23

7. 959E-23

7. 300E- 231. 387E- 22

7. 733E-22

6. 981E- 23

2. 118E-20

4. 642E- 232. 282E-211. 296E-22

4. 204E- 22

1. 923E- 23

2. 220E- 20

1. 824E- 191 .815E-20

1. 211E-20

2. 048E-20

2.220E-201 .138E-21

3.233E-191. 708E- 19

1. 053E- 19

1 .824E-19

1. 287E- 20

2. 329E-215. 701E- 18

1.049E-192.098E-205.005E-17

9.409E-23 N3.529E-23 N5.392E-21 N2.113E-20 N2.404E-22 N1.489E-21 N7.204E-22 N1.640E-22 N1.202E-21 N2.073E-21 N2.960E-21 N4.404E-20 N2.747E-19 N2.042E-21 N1.065E-21 N2.911E-21 N5.235E-22 N3.975E-21 N6.596E-21 N4.121E-21 N1.194E-18 N

continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4077

Page 21: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 16

2509.13032550.27002561.54442577.08572580.11952586.73492588.30782763.11542770.53992775.21012784.37332798.2926

3342.4913363.9743430.953439.13443.6593445.9213462.0303464.7133466.543473.2123480.821

3620.9413747.0313748.2523836.3733857.6124061 .9794388.9284417.379

4335.7984630.1644730.4084730.8284977.695

448546456446446446446446446446446446

446446456448546446446446446446446

446446446446446446446446

446446446446446

2110 -2110 -2110 -2110 -2200 -2310 -2220 -0311 -0331 -0201 -0221 -0111 -

0311 -0201 -1 0 0 1 -1 0 0 1 -1 0 0 1 -2001 -1201 -1221 -3110 -1111 -1 001 -

1400 -2310 -2200 -3000 -3110 -1111 -0112 -0002 -

2310 -1201 -2111 -2001 -0112 -

0110011001100110020003100220020002200 1 1 001100000

011000000000000000001 0 0 00200022011100 1 1 00000

00000110000000000 1 1 0000001100000

00000000011000000000

2464 -2501 -2509 -2498 -2513 -2537 -2524 -2762 -2768 -2735 -2743 -2739 -

3293 -3303 -3377 -3391 -3391 -3393 -3410 -3413 -2514 -3402 -3392 -

3580 -3703 -3691 -3768 -3810 -4032 -4337 -4342 -

4308 -4578 -4683 -4659 -4951 -

254425862596262326192621262927632789280628182837

33803406346034663472347534913494260435063514

36613780378838703888408444134443

43594661475547564997

20021021237612620230814

86130257177

210124

9995

1019997210222296147

96178116123186

90184121

869916811776

2.407E-223.384E-224.027E-221. 238E-193.246E-213. 072E-226.386E-216. 341E-23

4.756E-223. 931E- 21

8. 963E- 21

8. 065E-20

1. 555E-20

8. 829E-20

6. 236E-21

3.442E-216 .241E-21

6.515E-215. 582E-21

1. 040E-205. 673E-22

1 .919E-19

1. 732E-18

4 .886E-21

4 .991E-21

3. 521E-207. 286E- 206. 838E-21

8. 157E-22

6. 711E-21

6. 074E-20

7. 212E-22

5. 943E-21

3. 959E-21

3. 900E-205. 716E-22

4980- 50555057- 5132

89 2.511E-2189 2.511E-21

continued

scaling of the coupling coefficients will be included in afuture edition of HITRAN.

C. 03The line parameters compilation for the ozone mole-

cule has been expanded and improved considerablysince the last edition. This includes updates of severalbands as well as several new bands. The followingdiscussion summarizes the new results in the currentedition and also reports on several more recent studieswhich further improve the 03 line parameters.

The v and 3 1603 line parameters have been updat-ed according to the recent analysis by Pickett et al.2 ofhigh resolution laboratory microwave and 10-,gm infra-

red measurements (0.005-cm-1 resolution). The anal-ysis includes an expanded consideration of the Corioliscoupling coefficients for line positions and intensities.While the previous 3 total band intensity has beenretained, the v total band intensity has been revisedfrom 6.711 X 10-19 to 5.255 X 10-19 cm-'/(molec cm-2). The new line positions are accurate to 0.0006cm-' and the intensities to 10%. This study2l alsoprovided the new pure rotation 03 lines on the currentedition which are based on a considerably improveddipole moment expansion.

It should be noted that in the 10-,um region, only thev1 and 3 lines of the principal isotope 1603 have beenrevised, while the isotopic and hot band lines have

4078 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

N

NN

NNNN

5026.345105.65

446446

3200-4000-

00000000

Page 22: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 17

Co olecule: number of lines =

Isotope Vibrational Bandupper lower

5 74

Frequency number Sum ofmin max lines Intensity

2 6

3 6

2 8

2 092 .1 23 1

2096.06742 11 6 .2 957211 6 .7 9 122 143 .2 7 16

41 59 .0 27 24 166 .8 19 84206.77924260.0627

6350.4396

0 -

0 -

0 -

1 -

1 -

1 -

2 -

1 -

2 8

3 6

2 7

2 6

2 6

2 8

3 6

2 7

2 6

2 6

2 -

2 -

2 -

2 -

3 -

0

0

0

3 - 13 4

1 4- 9 6

2 5- 7 4

0 19 6 8-

0 19 5 8-

0 20 0 8-

1 2 02 5-

0 1 96 8-

0 40 8 8-

0 4 06 5-

0 4 2 24 -

0 41 09 -

2 1 89

2 2 01

2 20 5

2 19 5

2 26 7

4 2 17

4 23 6

4 24 4

4 34 7

0 6 2 53- 6 41 0

35 1.828E-2023 1.922E-221 4 2 .97 5E -2 3

6 1l. 9 09 E-2 06 7 .0 52E -195 3 3.5 4 1E -2 1

45 5.698E-227 9 9 .8 13E -1 8

36 1.357E-224 7 7 .8 13E- 2 27 8.0 3 4 E-2 4

64 7.522E-20

43 4.827E-22continued

been retained from previous editions. These isotopiclines are based on crude approximations and, whilesatisfactory for low resolution spectra, cannot repro-duce high resolution spectra. Fortunately, more re-cent studies by Flaud et al.22 and Camy-Peyret et al.23

provide line positions and intensities for the v, and v3bands of 160180160 and 160160180, as well as a revisedset for the principal isotope.24 These studies are basedon new high resolution (0.005-cm-') laboratory spectraof natural and oxygen-18 enriched ozone, and includehigh-order calculations for positions and intensities.These studies allowed the identification of individualisotopic 03 lines in the atmospheric spectrum as re-ported by Rinsland et al.25 Unfortunately, these pa-rameters were not available in time for the presentedition of the HITRAN database; they will be includedin the next update and can be obtained from the au-thors if necessary before that release.

In the 2800-cm-' region, new line parameters for theimportant v + V2 + 3 combination band have beenupdated on the compilation. These are a slightly re-vised set of an earlier work, as described by Barbe etal.,2 6 with line positions accurate to 0.004 cm-'. Theline intensities are based on a set of measured lineintensities near 2776 cm' by Meunier et al., 27 withrigid rotor intensity calculations. The estimated ac-curacy is between 5% and 25%.

In the 3000-cm-' region, it should be noted that theline parameters originate from very early approximatecalculations and do not agree with high resolutionspectra. Further work on the analysis of the interact-ing states 2v', + P3, V1 + 2v3, 3V3, and 3pi is needed.

The hot band V1 + V2 + V3 - V2, which also contributesto the atmospheric spectrum in the -,um region inaddition to the 2V3 , 1 + 1)3, and 2v, bands, has beenadded to the compilation, as described by Goldman

and Barbe.28 The hot band line parameters have beenderived from 0.03-cm-' resolution laboratory spectraand provide line positions accurate to 0.004 cm-'. Theline intensities were derived as rigid rotor intensities,normalized to the vi + 1)3 total band intensity multi-plied by a 2 population factor. Some limitations,depending on the quantum numbers, should be not-ed. 2 6 '2 8 It is estimated that the individual line intensi-ties are accurate to 10-30%.

The line parameters for the 2 and 22 - 2 bandshave not been updated for this edition. However,these will soon be superseded by the newly derived lineparameters by Pickett et al.29 This study, based onhigh resolution laboratory spectra in the microwaveand infrared, involves a detailed theoretical analysiswhich provides line positions accurate to 0.0006 cm'and absolute intensities accurate to 5% in the range ofthe fitted data.

The 21)2 03 lines in the 1400-cm'1 region are observ-able in atmospheric spectra, as reported by Goldmanet al., 3 0 '3 ' but parameters are not included in the cur-rent compilation. Based on the available spectroscop-ic constants of the (000) and (020) levels, line parame-ters have been generated and compared withatmospheric spectra.3 ' It is found that while the cal-culated line positions are accurate to 0.004 cm-', thereare considerable disagreements in the individual in-tensities. Thus a more refined intensity analysis isneeded. In addition, new analyses of the v1 + V2 and V2+1)3 bands of 1603 have been completed,32 and updatedline parameters are expected to be available soon.

Air-broadened halfwidths were revised for all ozonetransitions present on the database. The values up to

J = 35 were from the calculations of Gamache andRothman33 scaled to air by the recommended factor,0.95.34 Average values were obtained for J" > 35 by

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4079

BandCenters

Page 23: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 18

CH Molecule: number of lines = 177744

Band Isotope Vibrational Bandupper lower

212 Ground- Ground

Frequency number Sum ofmin max lines Intensity

7- 101 80 4.241E- 26

1161.08801302.77191306.8361310.76061472.1533.33671533.526

212311212211212211311

V6- Ground00000111-00000000

V3- Ground00000111-00000000

V5- Ground01100001-0000000001100001-00000000

1042 -1183 -1173-1071 -1343 -1378 -1417 -

1254138414181544160017351645

487353318

1420216810

69

1. 525 E - 215. 544E- 201 .268E- 215. 041E- 182. 647E- 225. 503E- 203. 153E- 22

211 00011001-00000111 1530- 1932 462 1.537E-21 N

2596.2596.2612.2822.2830.2917.3000.3000.3000.3000.3009.0493010.3010.3018.92053062.(unassigned

lines)

4223.4974340.4540.(unassigned

lines)

212311211211311211211212212212311311211211211211211311

211211211211

2V60000022200000202

- Ground-00000000-00000000

00000222-0000000001100112-0000000001100112-0000000010000000-00000000

2V5- GroundV4- GroundV1- Ground

00011112-0000011100011001 -0000000001111002-0110000100011112-0000011100011001-0000000002200002-00000000

100001110001111201111002

-00000000-00000000-00000000

2088 -2461 -2458 -2255 -2659 -2573 -2764 -2902 -2902 -2902 -3034 -2832 -2898 -2880 -2809 -2906 -2511 -3157 -

4136 -4147 -4409 -3900 -

243427282682284829993168306831303147307130913168310631363210325431763175

4279449046674667

6123641

1266208

23005241

2723112

355264712

1903755847

4

151958388

2116

1 .148E- 221. 771E- 225. 420E- 225. 500E- 202. 805E- 213 .768E- 191. 159E- 214 .894E-22

8. 867E -215. 391E- 225. 906E- 238. 549E-20

6. 8 01E- 21

4.445E-201. 080E-173. 435E-201 .701E-20

1. 302E-22

2. 129E -194 .077E-19

6. 246E- 201. 196E- 19

5987.32556004.991

311 00022002-00000000211 00022002-00000000

5897- 60785891- 6107

93 4.622E-22 N142 5.172E-20 N

continued

extrapolation of the calculated values. Transitions forthe less abundant species were assumed to have thesame halfwidths as the corresponding transitions forthe principal isotopic species, 1603. The uncertainty isestimated at 7-10% (Ref. 33) for the principal isotopicspecies.

Recently Smith et al. 3 5 made measurements of half-widths of ozone for N2-, 02-, and air-broadening. In acomparison, they noted that the calculated values33 arelow by a fairly constant 6% for v, lines. For several V3lines they found the calculations to be only --3% low.

The better agreement for the V3 lines is attributed tothe calculations for V3 explicitly including the vibra-tional dependence of the halfwidth (see Ref. 34 fordetails).

D. N2 0

The line positions and intensities of nitrous oxide inthe 894-2630-cm-1 region are those of Toth10'36-39; theremainder above that region (which date back to stud-ies in the early 1970s) have not changed on the compi-lation. Below 894 cm-1 the 2 region has been previ-

4080 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Centers

1 7 20.

N

N

N

N

N

NN

NNN

NN

NNNNNNNNN

NNNN

I-

Page 24: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 19

o Molecule: number of2

Isotope Vibrational Bandupper lower

lines = 2254

Frequency number Sum ofmin max lines Intensity

0- 2761- 214

1- 132

1- 207

7 .231E-24

3. 033E-264. 537E-27

3. 764E-27

1556.385

6326788278839365

115641296913120131221448814506145251582815902

.0326

.4248

.7375

.8772

.516

.269.909.972.826.26.661.247.418

66

66666866

666666686867666866

X1 -

aO -aO -

al -

bO -bl -bO -bO -bl -bl -bl -b2 -b2 -

ously updated.40 The majority of the new parameterswere derived from laboratory measurements of whichthe uncertainties associated with positions are 0.0001cm-' or better and the intensities are 2-5%.

Table V lists the N20 band centers, isotopic species,upper and lower state vibrational states, frequencyrange of the band, number of lines, and sum of the lineintensities. The updated bands (in terms of line posi-tions and intensities) for this edition are indicated by aletter N after the sum of line intensities. The linepositions and intensities for a number of transitions inthe 1001-10°0 band of the '4N2

160 species centered at2195.9158 cm-1 are perturbed and measured values ofpositions and intensities were inserted in place of thenonperturbed, computed values for those lines. Theinteracting states are 1001, 0600, and 0620, and only thetransitions of the enhanced lines of the 0600-1000 and0620-1000 bands were included in the listing. Theseinteractions are very apparent in the ground statebands of these states located in the 3450-cm-' region.However, the positions and intensities of the per-turbed transitions given in the present compilation donot consider these interactions and caution should beused for application of those lines. Further work' isin progress from which a listing of line positions andintensities covering the 2700-5300-cm'1 region will beobtained and, where necessary, measured values willreplace computed ones for the perturbed lines.

Updated halfwidths have been added to all the N20lines on the database. The values are from the work of

XO 1407- 1706

Xl 6284-

XO 7664-XO 7809-XO 9264-

Xl 11483-

Xl 12847-

XO 12899-XO 12981-XO 14373-X0 14453-XO 14317-XO 15846-XO 15719-

6410806579849469

116171301113166131651452014537145581584915928

146 6.152E-27

4715714788

475991

13610845793

67

1 .129E-28

1 816E-24

6 .745E-27

8 .626E-27

7. 798E- 279. 418E-26

1. 946E -227 .921E-25

4 .960E-26

1 .831E-26

1 .218E-23

8. 884E- 293. 782E-25

continued

Lacome et al. 4 ' which consist of experimental valuesfor N2 - and 02-broadening from Iml = 1 to 49 andtheoretical values out to Iml = 61. The air-broadenedvalues are given by the formula

-Yair = 0.79 lYN2 + 0.21 7h2- (6)

Use of the theoretical values beyond Iml = 49 withthe experimental values below 49 gives a discontinuityin the halfwidths as a function of ml. The differencesbetween the theoretical and experimental values werecalculated and fitted to the formula dif = a + bml,giving a = -1.603, b = 0.2684 with the correlationcoefficient of the fit being 0.9988. From this linearexpression the halfwidths were smoothly continued toIml = 61. Beyond Iml = 61 the default value of 0.0686cm'1/atm was used. The uncertainty in the measuredhalfwidths is estimated at 5-10% and between 10 and20% for the scaled theoretical values.

E. H4

In the compilation, there are 32 individual bands ofmethane between 0 and 6107 cm-' with a total inte-grated absorption of 1.74 X 10-17 cm-'/(moleccm- 2 ).Three isotopes are cataloged: 2CH4, 13CH4, and12CH3D. The bands fall in five spectral regions.

In the dyad region (1000-1950 cm-'), no changeshave been made to the line positions of the two funda-mentals of '2CH4 and 3CH4. However, the line inten-sities of v2 and V4 of 13CH4 have been lowered by 3% andmultiplied by an empirical Herman-Wallis factor pre-

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4081

BandCenters

66686766

X -X -X -X -

X0XO

X0X1

251218465100

Page 25: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 20

NO Molecule: number of lines = 7385Band Isotope Vibrational Band Frequency

lower min max

0 0-

0 0-

4 1626-

4 1629-

4 1792-

4 1463-

3 1652-

3 1820-

3 1656-

3 1488-

2 1679-

2 1514-

2 1847-

2 1682-

0 1733-

0 1705-

0 1692-

0 1566-0 1609-

0 1601-

0 1903-

0 1892-

0 1880-

0 1736-

0 1708-

0 1695-

1 1706-

1 1540-

1 1875-1 1709-

4 3339-

4 3505-

4 3177-

4 3344-

3 3394-

3 3561-

3 3231-

3 3398-

2 3449-

2 3617-

2 3285-

2 3453-

1 3504-

1 3673-

1 3339-

1 3508-

0 3559-

0 3729-

0 3392-

0 3563-

9899

185618552020169218862051188517201915174820811914197419381921180517691751214220612039197219361919194417772112194335693733341635693626379134723626368338493528368337413908358437413798396736413798

number Sum oflines Intensity

301298103106104103103104106103103103104106205199197206142132210156150212202200205206208212103104103106103104103106103104103106103104103106206208206212

1. 218E-202. 222E-202.685E-334. 988E-331 .739E-36

7. 974E-37

1. 324E-29

8. 734E-33

2. 466E-29

4. 003E-33

7. 034E-26

2. 164E-29

4. 720E-29

1 .312E-25

1. 743E-18

6. 683E-21

3. 674E-21

5. 530E-22

1. 972E-24

1. 045E-24

1. 205E-21

4. 307E-24

2. 289E-243. 258E-18

1. 248E-20

6. 861E-21

3.767E-221.175E-252. 562E-25

7. 034E-22

1 .155E-34

7. 217E-38

3. 555E-38

2. 147E- 34

4. 5 1E -31

2. 868E -341. 411E- 34

8. 394E- 31

1 .896E-27

1. 228E- 306. 036E- 313. 537E-27

4 .848E-24

3. 194E-27

1. 570E-27

9. 054E-242. 814E-20

1. 879E- 239. 235E- 245. 262E- 20

continued

4082 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Centers upper

46 X3/246 X1/246 X3/246 X1/246 X3/246 X1/246 X3/246 X3/246 X1/246 X1/246 X3/246 X1/246 X3/246 X1,X2

46 X3/256 X3/248 X3/246 X1/256 X1/248 X1/246 X3/256 X3/248 X3/246 X1/256 X1/248 X1/246 X3/246 X1/246 X3/246 X1/246 X3/246 X3/246 X1/246 X1/246 X3/246 X3/246 X1/246 Xl/246 X3/246 X3/246 X1/246 X1/246 X3/246 X3/246 X1/246 X1/246 X3/246 X3/246 X1/246 X1/2

0-X3/20-X1/25-X3/25-Xl/25-X1/25-X3/24 -X3 3/24 -Xl/2

4 -X1/2

4 -X3/2

3-X3/23 -X3/2

3 -X1/2

3-X1/21 -X3/21 -X3/21-X3/21 -X3/21 -X3/2

1 -X3/2

1 -Xl/2

1 -Xl/2

1 -Xl/2

1 -Xl/2

1 -Xl/2

1 -Xl/2

2-X3/22-X3/22-X1/22-X1/26-X3/26-X1/26-X3/26-X1/25-X3/25-X1/25-X3/25-Xl/24 -X3/2

4 -X1/2

4 -X3/2

4 -X1/2

3-X3/23-X1/23 -X3/2

3 -X1/2

2-X3/22 -X1/2

2 -X3/2

2-X1/2

Page 26: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 21

SO Molecule: number of lines = 236592

Band Isotope Vibrational BandCenters upper lower

Frequencymin max

number Sum oflines Intensity

517.751151.71351362247524922499

.0295

.8300

.4438

.8701

626626626626646626626

000 -010 -1 0 0 -001 -1 0 1 -I 1 1 -1 0 1 -

000000000000000010000

0-

433-1047-1316-2463-2463-2463-

25761712621394249/25162527

96223326581220752876541883

2. 583E-18

3. 899E- 183. 519E- 183. 080E- 176. 027E- 21

2. 110E- 203. 954E- 19

NO Molecule: number of lines = 200672

Band Isotope Vibrational Bandupper

646646646646646646

000 -0 1 0 -001 -120-1 1 1 -1 0 1 -

lower

000000000000010000

Frequency number Sum ofmin max lines Intensity

-609-1550-2860-2832-2828-

1009871657292629182939

636047563276

5718293789

2. 165E- 19

5. 380E-19

6. 113E- 173. 327E- 221. 056E- 192.882E-18

NN

NNN

NH Molecule: number of lines = 58173

Isotope Vibrational Bandupper lower

Frequency number Sum ofmin max lines Intensity

1. 773E- 176. 563E-209. 081E- 254. 516E- 272. 172E- 197. 341E-201. 468E- 193.981E-201.079E-17 8.784E-203. 987E- 201.123E-17 2. 097E-202.053E-18 r2.047E-18 r2. 071E- 20

continued

viously applied to the bands of the main isotope.3 Theaccuracies of the positions range from 0.0005 to 0.005cm- and intensities from 4% to 15%. The best accura-cies are associated with the allowed lines of the v4 bandof the main isotope. While several hot bands (such asV2 + 4 - 2 and 24 - 4) are needed to complete thecompilation, only the prediction of the V3- 4 hot bandof 12CH 4 has been included.4 2 However, the V3, V5, andV6 fundamentals of CH3D (Refs. 43-45) from theGEISA compilation5 have been added; intensities havebeen scaled by the isotopic abundance ratio of 6.0 X

10-4. Accuracies of the CH3D positions are between0.002 and 0.01 cm-'. Because the CH3D bands areperturbed, some predicted relative intensities may bein error by substantial amounts. The 2 fundamentalof CH3D at 2200 cm-' has not been added, but a nearbyovertone band, 26 (Ref. 46), has been taken from theGEISA compilation.5

In the pentad region, the compilation has been ex-tended to cover an additional 180 cm-', from 2255 to3255 cm-', by combining the recent pentad predictionof the five bands (V3, vl, 2v4, 2V2, and 2 + 4) of the main

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4083

N

Centers

749.1616.2805.2898.2906.

65378520512219300697

BandCenters

4111511141115111411141114111511141114111511141114111411141114111

0000 -0000 -OOOOa -OOOOa -OlOOa -OlOOs -0200s -01 OOs -0 1 00 0200a -OlOOa -0100 -0200s-0001 -0001 -0200a -

629. 418927.685931.642949.656962.879968.1221596.6751629.9911630.3391882.175

00000000OOOOsOOOOsOlOOsOlOOaOlOOaOOOOaOGOOaOlOOsOOOOsOGOOsOOOOaOOOOsOOOOaOOOOs

1 9 -1 9 -

0-0-

12-4-

309-637-560-630-676-612-

1239-1204-1229-1564-

415408

11

4773681054123512931244124413011967199820562154

441362

4915

394199343293459312291460308793793305

N

N

N

Page 27: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 22

HNO Molecule: number of lines = 359883

Isotope Vibrational Bandupper lower

Frequencymin max

number Sum oflines Intensity

146879.1082 146896.4187 146

146146

1/09.5676 146

Ground- GroundV5- Ground

2V9 -V5+V9 -

3V9 -

GroundV9

V2- Ground

0- 43840- 918852- 920847- 905845- 9091670- 1750

418283137250397147807492

5. 819E- 191 .261E-179. 843E- 181 .216E-18

2. 030E- 182.014E- 17

OH Molecule: number ofBand Isotope Vibrational Band

lower

lines =Frequmin

0 0-

0 0-

0 0-

0 31-0 0-

0 0-

0 0-

8 1709-8 1287-8 2082-8 1667-7 1873-7 1429-

7 2268-

7 1832-

6 2027-6 1560-6 2443-6 1985-

5 2175-

5 1687-5 2611-5 2132-4 2320-

4 1810-

4 2776-

4 2276-

3 2463-

3 1931-

3 2937-

3 2417-

2 2605-

2 2052-2 3098-2 2557-

1 2747-

1 2172-

1 3259-

1 2698-

0 2890-0 2293-

8676ency

max

33172

311327

3

1

2418213928122417262523193048262528232492326828233014266134823016320028263690320433842990389533893567315440993573375033194303375739343486

number Sum oflines Intensity

944060

11689253086888692868886928688869286888692868886928688869286888692868886928688

2.896E-17 N8.635E-268.24 5E-281.044E-18 N1.420E-17 N6 .290E-272.467E-284. 448E- 681. 335E- 702 .297E-702. 001E- 682. 577E-638. 217E- 661 .262E-651 .164E-632 .660E-588. 362E- 611. 024E- 601 .222E- 584. 485E- 539.619E- 569 .424E-562. 157E- 533. 803E- 476. 344E- 503. 718E- 491. 754E- 471 .737E-40

6 .2 15E-432 .293E- 427. 449E- 411. 737E- 337 .634E- 362 .288E- 357.339E- 342 .815E-26

1. 375E-283. 708E- 281 .184E-26

6 .744E-19

3. 560E- 21continued

4084 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

BandCenters

Centers upper

NNNN

61 X3/281 X3,/262 X3/261 X1/261 X1/281 X1/262 X1/261 X3/26 1 X3/2

61 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/26 1 X3/2

61 X1/261 X1/261 X3/26 1 X3/2

61 X1/26 1 X1/2

61 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 Xl,/261 X3/261 X3/261 Xl/261 X1,/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/2

0-X3/20-X3/20-X3/20-X3/20-X1/20-X1/20-Xl/29-X3/29-Xl/29-X3/29-X1/28-X3/28-X1/28-X3 /28-X1,/27 -X3/27-X1/27-X3/27-X1/26-X3/26-X1/26-X3/26-X1/25-X3/25-X1/25-X3/25-X1/24 -X3/2

4 -X1/24 -X3/24 -X1/23-X3/23 - Xl /23-X3/23- X / 2

2-X3/22-X1/22-X3/22-X1/21 -X3/21 -X1/2

Page 28: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 23

0 3422-

0 2839-7 3947-7 3503-7 4320-

7 3883-

6 4287-6 3821-6 4682-

6 4224-5 4611-

5 4123-

5 5027-

5 4547-

4 4926-

4 4416-

4 * 5361-4 4861-

3 5234-3 4703-3 5689-

3 5168-

2 5538-

2 4986-

2 6013-2 5472-

1 5842-1 5268-

1 6336-1 5774-

0 6148-

0 5552-

0 6661-

0 6078-6 6361-

6 5895-6 6734-6 6275-5 6871-

5 6384-

5 7266-

5 6787-

4 7361-

4 6852-

4 7777-

4 7277-

3 7839-

3 7308-

3 8275-

3 7754-2 8309-2 7757-2 8764-2 8223-1 8776-

1 8202-1 9250-

4509394347614538508047595126488954845125547952295874547858245560625358236165588866246165650662 1 5

69916505684665427358684571896872772671897319711675827316784576338136784283568 1 36

8674835488598630920488579358912097309356985796109985

86 8 993E-2192 2.830E-1986 2.544E-6388 9.079E-6686 2.080E-6592 1.109E-6386 6.896E-5888 2.640E-6086 5.851E-6092 2.990E-5886 3.684E-5288 1.504E-5486 3.260E-5492 1.590E-5286 3.879E-4688 1.691E-4886 3.592E-4892 1.663E-4686 8.053E-4088 3.741E-4286 7.826E-4292 3.448E-4086 3.229E-3388 1.590E-3586 3.286E-3592 1.376E-3386 2.376E-2688 1.242E-2886 2.528E-2892 1.009E-2686 2.513E-1988 1.388E-2186 2.800E-2192 1.063E-1986 1.873E-5888 7.081E-6186 1.477E-6092 8.151E-5986 6.739E-5388 2.731E-5586 5.603E-5592 2.918E-5386 4.949E-4788 2.141E-4986 4.338E-4992 2.040E-4786 7.477E-4188 3.443E-4386 6.896E-4392 3.207E-4186 2.255E-3488 1.100E-3686 2.186E-3692 9.624E-3586 1.218E-2788 6.292E-3060 1.228E-29

continued

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4085

61 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/261 X1/261 X3/261 X3/261 X1/2

1 -X3/21 -Xl/29 -X3/29 -X1/29-X3/29-X1/28 -X3/28 -X1/28-X3/28-X1/27-X3/27 -X1/2

7-X3/27-X1/26-X3/26-X1/26-X3/26-X1/25-X3/25-X1/25-X3/25-X1/24 -X3/2

4 -X1/24 -X3/2

4 -X1/2

3-X3/23 -X1/23-X3/23-X1/22-X3/22-X1/22-X3/22-X1/29-X3/29-X1/29-X3/29-X1/28-X3/28 -X1/28 -X3/28-X1/27 -X3/2

7 -X1/2

7-X3/27 -X1/2

6-X3/26-X1/26-X3/26-X1/25-X3/25-X1/25-X3/25-X1/24-X3/24 -X1/24-X3/2

Page 29: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 24

1 8688-0 9244-

0 8648-0 9737-0 9154-

98569989999799819998

92 5.178E-2834 3.952E-2270 1. 659E-2310 1.243E-2838 2.522E-22

HF Molecule: number ofBand Isotope Vibrational Band

Centers upper lower

3961.44297750.7949

191919

0 -1 -2-

lines = 62Frequencymin max

0 41-0 3381-0 7143-

HC1 Molecule: number ofBand Isotope Vibrational Band

Centers upper lower

589* 43397993

lines = 200Frequencymin max

number Sum oflines Intensity

15 5.704E-1725 1.547E-1722 4.962E-19

number Sum oflines Intensity

0 20-0 20-0 2486-

0 2459-

0 5303-0 5271-0 8124-0 8058-

383383

313631395824583084498455

19 8.068E-1819 2.620E-1833 1.472E-1834 4.528E-1827 3.480E-2029 1.071E-1918 2.279E-2221 7.068E-22

HBr Molecule:Band Isotope Vibrati

Centers upper

number ofonal Band

lower

lines =Frequenmin

256cy number Sum ofmax lines Intensity

0 16-0 16-1 64-1 64-0 2195-

0 2195-0 4712-0 4713-

0 7204-

0 7205-

0 9506-

0 9507-

339339130130

27732773516051617495749697589759

21 2.398E-1821 2.346E-185 6.849E-24

5 6.713E-24

36 7.232E-1936 7.392E-1928 7.549E -2128 7.715E-2120 1.929E-2220 1.971E-2218 9.473E-2318 9.682E-23

HI Molecule: number ofIsotope Vibrational Band

upper lower

lines = 145Frequencymin max

number Sum oflines Intensity

2229.58174379.22616448.03488434.7076

1 71 71 71 7

1 7

1 7

0-1 -1 -2-3-4-

0 12-1 49-

0 2117-

0 4117-0 6176-0 8190-

286137

2398448965218488

23 1.067E-188 1.798E-23

26 1.758E-2032 6.330E-2130 3.430E-2126 5.932E-22

continued

4086 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

61 X1/261 X3/261 X3/261 X1/261 X1/2

4 -X1/23-X3/23-Xl/23-X3/23 -X1/2

288328855663566783408346

1517171517151715

.8850

.9765

.9276

.9832

.9407

.7771

0-0-1 -1 -2-2-3 -3 -

191119111119111911191119

25582558502650277404740596909692

.5308

.9105

.6005

.3408

.1928

.2610

.9914

.3579

0-0-1 -1 -1 -1 -2-2-3-3-4-

4-

BandCenters

Page 30: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 25

Clo Molecule: number ofBand Isotope Vibrational Band

Centers upper lower

lines = 6020Frequencymin max

number Sum oflines Intensity

56 X3/276 X3/256 X1/276 X1,/2

835.4800 76 X3,/2842.5540 56 X3X,'2

56 X1 ,2

76 X1/2

0 -X3/20 - X3,20 -X1,/20-XI,21 - X3'./21-X3 '2

l-X1 '2

1 -Xl ,2

0

0

0

0

0

0

0

0

3 -3 -0 -

763-769-769-770-

100100100

99883891887877

1215123213601375218224212184

4.815E-191. 542E- 191 .15E-193 .251E- 209.825E-203.062E-196. 363E-202. 036E- 20

OCS Molecule: number ofBand Isotope Vibrational Band

Centers

858.96692062.2

622624632822622622

upper

0000 -0000 -0000 -0000 -1 000 -0001 -

lower

000000000000000000000000

lines = 737Frequencymin max

0- 400- 400- 380- 32

817- 8912016- 2089

number Sum oflines Intensity

99999384

181181

8. 034E- 203. 647E- 219. 407E-221. 596E-221. 098E-187. 881E- 17

H CO Molecule: number of lines = 27022Isotope Vibrational Band

upper lowerFrequency number Sum ofmin max lines Intensity

2500.2655.2719 .1562782.4572843.3262905.3000.066

BandCenters

1238.12081238.62423609.48013609.4851

126136128126126126126126126126

000000-000000-000000-000002-001100 -

0 1 0 0 1 -100000-000010-010100 -0 1 0 0 0 1 -

000000000000000000000000000000000000000000000000000000000000

0-0-0-

2743-2734-2700-2723-2703-2734-2896-

1007348

2812273528792843298229992957

HOC1 Molecule: number of lines = 15565Isotope Vibrational Band Frequency

165167167165165167

upper

000 -000 -0 1 0 -0 1 0 -1 0 0 -100 -

lower

000000000000000000

min max

333334

1303131138003800

0-0-

1179-1174-3400-3400-

611563367

5

1

10542459528

3

3.26 5E- 185. 633E- 206. 941E- 214. 548E-205. 890E- 211. 386E- 188. 288E- 189. 742E- 183. 813E -198. 550E-20

N

number Sum oflines Intensity

391939231240146326752345

1.502E-17 N4.801E-18 N2. 917E- 188. 962E- 183. 044E-189. 769E-19

continued

isotope47'48 with old49 and new50 measurements. Inthis revision, all the positions of Refs. 47 and 48 havebeen multiplied by 0.999999765 to conform with the P7line calibration standard (2947.91206 cm-', Ref. 51).In addition, detailed comparisons with laboratory

spectra from the Fourier transform spectrometer atthe National Solar Observatory on Kitt Peak50 havebeen used to guide the modification of some of thepositions and intensities in the compilation. Calculat-ed intensities of the pentad region have been used if

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4087

BandCenters

Page 31: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 26

N Molecule: number of2

Isotope Vibrational Bandupper lower

lines = 117

Frequencymin max

number Sum oflines Intensity

2329.9168 44 1 -

HCN Molecule: numberBand Isotope Vibrational B

Centers upper lowe

0 2001- 2620

of lines = 772and Frequencyr min max

117 6.392E-27

number Sum oflines Intensity

697.957713.076713.459126.5357 7331.47729

124134125124124124124124

0000 -0000 -0000 -0200-0220-0 1 1 0 -0200-0001 -

00000000000001100110000000000000

2-2-2-

587-595-579-

1298-3158-

132* 98101823851844

15373422

473435

119232134

8190

1. 026E- 171. 223E- 194. 036E-202. 498E-191 .033E-188. 230E- 181 .399E-189. 516E-18

CH C Molecule: number of lines = 66873

Isotope Vibrational Bandupper lower

Frequencymin max

number Sum oflines Intensity

2967.7452967.7773039.17613039.28643041.80053042.8736

217215217215217215

Vl-Vl-V4 -V4-

3V6 -3V6 -

GroundGroundGroundGroundGroundGround

2965-2965-2986-2978-2916-2907-

296929693162317331283157

229255

1260184412211878

4. 919E- 201. 543E-192. 016E- 195.878E-191. 928E- 196. 658E- 19

H 0 Molecule: number of2 2

Isotope Vibrational Bandupper lower

1661 000000- 0000001661 000001- 000000

lines = 3272

Frequencymin max

0- 1001186- 1350

number Sum oflines Intensity

883 2.886E-182389 1.284E-17

C H Molecule: number of2 2

Isotope Vibrational Bandupper lower

lines = 1139

Frequencymin max

number Sum oflines Intensity

-00000111- 00011001-00000111-00000000- 00011001-00000000-00000000-00000000

640 -638 -655 -646 -650 -

3151 -3178 -3162 -

805811820811822

338733753398

93198187182191101

86101

9.430E-19 N1.439E-18 Nl.119E-18 N2.383E-17 N1.355E-18 N5.004E-18 N1.835E-19 N4.420E-18 N

continued

BandCenters

BandCenters

BandCenters

1269.136

BandCenters

N

719728729729731

328132843294

.9658

.8574

.1365

.1553

.1074

.9020

.1904

.8406

12211221122112211221122112311221

0000020000011110000002220000011100011112010111100010000000100000

4088 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 32: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Table V, continuation 27

C H Molecule: number of lines = 4328

2 6

Isotope Vibrational Band Frequencyupper lower min max

number Sum oflines Intensity

821.7234 1221 V9- Ground 720- 933 4328 1.456E-18

PH Molecule: number of lines = 28863

Band Isotope Vibrational Bandupper lower

Frequency numbermin max lines

Sum ofIntensity

992.1301 1111 0100 - 0000 708- 1211 972 3.306E-18

Notes: Sum of Intensities reflect sum of lines on compilation

"N" denotes totally updated or new bands for this edition

Units for band centers and range are cm-';intensity sum in cm- /(molec cm-2 ) @296K.

Table VI. Species Included in Cross-Sectional File

Species # cross Frequency cmsections Minimum Maximum

ClON02 5020 765.002 819.998HN04 5476 770.007 829.999CHC12F (CFC21) 5020 785.000 839.995CC14 1826 786.001 805.998CFC1 3 (CFC11) 2738 830.009 859.999

CF2 C12 (CFC12) 7301 860.008 939.996

C2 C12 F4 (CFC114) 12320 1025.009 1159.992

CHC1 2F (CFC21) 4563 1050.004 1099.992

CFC13 (CFC11) 3651 1060.004 1099.998

CF2C12 (CFC12) 10039 1070.005 1179.994C2C1 3 F3 (CFC113) 12777 1090.008 1229.998

C2C1 2 F4 (CFC114) 11771 1160.025 1288.992

N205 4647 1225.001 1265.000HN03 7301 1270.004 1349.993ClON02 3650 1270.007 1309.991CF4 1095 1275.003 1286.990N205 11616 1680.003 1780.000

0 0 H120

02 - O-- 2

02 S - -02- - - -

NIO - 00

$0C.2 - C22

0022 2002

CIO -10

0-2 302 02

C, C1 C0C1

01202 2 5 -0225

0202~ (a) C2 2O

CF.0 30 - CF.o230000 -0 000 .. ob 100 0 0 20 4 60

COCI2F - - COCI2F~~~~~~~~~C T~ 1c r-

0010i. .Setrlrgos oeeOfrecColclLn IR N a)0100 m 1 b 1,0-0,0 m'

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4089

BandCenters

Centers

(b)

Page 33: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

they differ from the measured intensities by no morethan 10%. New experimental line intensities 5 0 havebeen used in most of the 2250-2385-cm-' region andthe 3200-3250-cm'1 region. Finally, the CH3D pa-rameters appearing in this region on the 1982 compila-tion3 have been replaced with the CH3D list taken fromthe 1984 GEISA compilation.5 The rotational quan-tum numbers follow two different conventions. Thepentad calculation uses three quantum numbers, J, C,and N (see Refs. 47 and 48) while the older portions ofthe compilation use four quantum numbers, J, R, C,and N (see Refs. 3 and 49).

The parameters in the pentad region are, for themost part, still based on an experimental line list towhich assignments of the three isotopes have beenascribed. The intensities4 9 between 2385 and 3200cm'1 were generally measured at 0.02-cm'1 resolutionusing a grating spectrometer, with gas samples whosetemperatures differed by as much as 4 from scan toscan. However, the intensities were never normalizedto 296 K because most lines were unassigned at thetime of the original work.3 49 Later analysis indicatedtentative assignments for many of the absorptions, butsome lines may be wrongly assigned, or some isotopiclines (and bands) may be missing, or the observedabsorption may actually arise from more transitionsthan are currently ascribed. Thus the sums of intensi-ties given in Table V in many cases do not reflect theintegrated band intensities. These parameters do re-produce laboratory spectra recorded at room tempera-ture50 and at 0.01-cm-' resolution, but extrapolation ofweak lines to much different temperatures may pro-duce large errors. While some of the line intensitiesare good to 2% or better (allowed P-branch lines of theV3 band of the main isotope), lines weaker than 10-23cm-l/(molec.cm-2 ) are often good to only 15% and veryweak lines may be in error by as much as 50%. Similar-ly, accuracies of positions range from 0.0006 to 0.005cm'1. Much work is needed to model the measure-ments and provide a complete and accurate predictionof the region.

The octad region from 3500 to 5000 cm-' is alsobased on measurements with tentative assignmentsgiven up to J = 12 of the main isotope.5 0 52 53 However,only three bands (2 + 4, 3 + 4, and 2 + V3) of apossible eight are indicated at present and, for the4166-4666-cm-' region, no lines weaker than 2 X 10-23cm'/(moleccm- 2) are given. For the 1986 edition,experimental positions and intensities5053 in the re-gion of 34 and 24 + 2 between 3750 and 4136 cm-1have been added without assignments. This changeincreases the total CH4 absorption in this region of thecompilation by-5%. Because of new calibration stan-dards,5 4 all positions appearing in the 1982 version 3

between 4136 and 4666 cm-' have been lowered by0.0006 cm-'.

The region between 5000 and 6500 cm-' contains upto 40 states, a dozen of which probably give rise tosignificant absorption in atmospheric spectra. Atpresent, however, only an older prediction of one band,21V3, is included and only to modest values of J. For the

1986 update, an error in band intensity (that has exist-ed since the first edition') has been corrected by multi-plying intensities by 2.5 to conform to existing mea-surements. 5 5 The parameters of the 13CH4 2v3 band5 6

have also been added using isotopically scaled intensi-ties of the 2CH4 prediction. The accuracies of theparameters are thought to be 0.005-0.020 cm-' forpositions and 5-20% for intensities.

As in previous editions of the compilation, air-broadened halfwidths were determined from the cal-culated 02- and N2-broadened halfwidths of Tejwaniand Fox57 corrected to 296 K. In the future this pa-rameter will be reevaluated in light of the measure-ments of Varanasi et al.

5 8 5 9 and Devi et al.60'6 '

F. 02

The only update for oxygen on this edition has beenthe introduction of the zero frequency lines. Theseparameters have the frequency set to a synthetic fre-quency of g J (where g is the degeneracy of the level)and come directly from Ref. 6. The transitions play animportant role in the millimeter-wavelength sound-ings of the atmosphere. The halfwidths used for theselines are the same as previously employed for the 60-GHz transitions.

G. SO 2

The pure rotation lines of sulfur dioxide have beenupdated with the data of Poynter and Pickett.6 Thedata are a refit of the pure rotational spectrum for alllines of J up to 74 and K up to 28. The Hamiltonianconstants were obtained by fitting to the experimentalmeasurements of Lovas62 with additional selectedlines taken from Carlotti et al.

6 3 The dipole momentwas taken from the work of Patel et al.

6 4 The lineintensities are accurate to a few percent and the linepositions are accurate to +0.001 cm-' or better. Theerror estimate is given in IER. As before, a constantvalue of 0.11 cm'1/atm has been adopted for the air-broadened halfwidth.

H. NO 2

The positions and intensities of the nitrogen dioxidelines absorbing in the 6.2-, 3.4-, and 13.3-,m regionshave been calculated using a theoretical model takinginto account when necessary the Coriolis interactionaffecting the rovibrational levels.

In the 6 .2-,um region, the main absorbing band is 3

and the Ka = 4, 5, 6 subbands were correctly repro-duced only because the strong Coriolis interaction be-tween the rotational levels of (020) and (001) was takeninto account.6 5 The line intensities of the V3 band werecalculated using a pure transition moment operator forthis band; in fact the rotational corrections which ap-pear in the transformed transition moment operatorand which represent the effect of the vibration-rota-tion interactions on line intensities were not deter-mined from the set of experimental intensities.66

These corrections seem to be negligible for medium Nand Ka values but they could have an influence for highN and Ka values. Together with the V3 band, the hot

4090 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 34: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

band V2 + V3 - 2 absorbing in the same spectral regionwas calculated. The accuracy of the line positions isbelieved to be on the average 0.003 cm-'. The lineintensities are known with a relative precision varyingfrom 5% for low N and Ka values to 20% for high N andKa values. The 3 band was not updated on thepresent compilation, but the improvements indicatedin this paragraph can be obtained from the authorsprior to the next edition of HITRAN.

In the 3.4-Itm region, the NO2 absorption is about 20times weaker than the absorption in the 6.2-,um region,but the former region is of atmospheric interest be-cause it corresponds to a relatively clear transmissionwindow usable for atmospheric measurements fromthe ground. The main band of nitrogen dioxide ab-sorbing around 3.4 Atm is the v + 3 band and, as for the13 band, the line positions of this combination bandhave been calculated taking into account the strongCoriolis interaction affecting the rotational levels ofthe (120) and (101) vibrational states.6 7 Since a largeset of precise individual line intensities was availablefor the Pi + 3 band,68 it has been possible to determinethrough a least-squares fit the rotational expansion ofthe transformed transition moment operator of thiscombination band. Finally, this transition momentoperator together with the rotational and spin-rota-tion constants has been used to generate the absorp-tion lines of the + 3 and Pi + 22 bands of NO2.Moreover, the hot band PI + 2 + 3 - 2 absorbing inthe same spectral region has been computed.67 Theaccuracy of line positions is believed to be on theaverage 0.0015 cm-', the relative accuracy of line in-tensities varying from 3 to 12%.

The main band absorbing in the 13.3-gm region isthe 2 band. Diode laser spectra covering selectedportions of this band were used to determine the rota-tional and spin-rotation constants.69 Line intensitieswere also measured leading to the determination of therotational expansion of the transformed transition mo-ment operator of this band.70 Finally, the spectrum ofthe 2 band of NO2 was computed; the accuracy of linepositions is believed to be 0.002 cm-' for low andmedium Ka values, deteriorating for Ka > 8. Therelative accuracy of the line intensities varies from 5 to15%.

For all calculations which have been performed, thespin-rotation interaction has been treated using a per-turbation method and it should be emphasized that fora few spin-rotation resonating levels the calculation isless precise, leading to positions whose accuracy isworse than the average values quoted here.

In this edition, parameters for the pure rotationband of nitrogen dioxide were added from Ref. 6. Thespectrum was determined by a full diagonalization ofthe Hamiltonian. The data used in the fit were fromBowman and DeLucia.71 The line intensities have anuncertainty of 2-3%. The accuracy of the line posi-tions is J dependent and generally better than 0.00005cm-' with a few of the lines having an uncertainty of0.0003 cm-'. The accuracy of the line positions isgiven for each line in IER. A constant air-broadenedhalfwidth of 0.062 cm-'/atm has been assumed for the

pure rotation band.

1. NH3

Two updates of ammonia parameters have beenmade for this edition. The 2 lines of the principalisotope have improved positions, taken from the workof Poynter and Margolis.72 The 4 band has beenreplaced with the latest parameters from GEISA.5 Aneffort was also made to standardize the vibrationalnotation for all ammonia transitions on this edition.

J. HNO3

For this edition, the 11-,um bands have been signifi-cantly updated. Whereas on previous issues of thedatabase this region was represented by a narrow spec-tral extent taken from diode laser measurements with-out lower state energy values, the new database has abroader coverage from 840 to 920 cm-'. The calcula-tions of the parameters are based on studies of labora-tory data.73 The bands now represented are the V5 and21) bands, with approximated hot bands, V5 + 1) - )

and 31) - Pg. A few lines belonging to multiplets thatcannot be resolved have been coalesced in the samemanner as on previous editions, i.e., pairs with thesame frequency and intensity have had their intensi-ties added. The coalesced lines are indicated on thedatabase by the omission of the Ka quantum numberwhich allows an unambiguous regeneration of the mul-tiplet if desired for theoretical purposes. Syntheticspectra using these new parameters have been calcu-lated and show very good agreement with recentstratospheric balloon observations.7 4 Discrepanciesstill exist in the region between the band centers of V5and 2v9; these features will be improved in the future asthe resonances of these two bands are adequately rep-resented.

For this edition, the artificial set of lines represent-ing the Q and R branches of the V3 band at 1326 cm'ihas been removed from the main body of the database,and this band is now included in the cross-sectionalfile. It is expected that a discrete line parameter for-mulation for this region will be available for the nextupdate.7 5

The V2 band has not been updated for this edition,but much improved parameters exist76 and will beincorporated in the future. It should be noted that,although the relative intensities of the lines of thisband are reasonable, the absolute intensities are toolow by approximately a factor of 2.

K. OH

The microwave data for the hydroxyl radical for theground 27r3/2 and 27r1/2 states have been updated. Thedata are from the JPL catalog6 and were determined inthe same manner as the previous data for this band4

except that the calculations were extended up to 300cm-'. As in previous editions, a constant halfwidth of0.083 cm'1/atm was assumed for the lines. The re-ported intensities are accurate to a few percent. Theaccuracy of the line positions is generally better than0.005 cm'i and shows a dependence on the rotationalquantum number.

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4091

Page 35: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

L. HF

The halfwidths of hydrogen fluoride were updatedusing the values of Thompson et al.7 7 The measure-ments include values for the P3 through the R3 lines.The uncertainty of the measurements is estimated at15%. Beyond the observations the previously as-sumed values were used. More recent measure-ments78 of intensities and air- and self-broadened half-widths will be incorporated in the next edition.

M. HCI

The air-broadened halfwidths for hydrogen chloridehave been updated with the measurements of Ballardet al.7 9 These measurements yield values for the P(1)through P(8) lines, and for the R(0) through R(7) linesand have an estimated uncertainty of 5-15%. The newhalfwidths78 have been applied to all bands and iso-topes of HCl on the compilation; beyond the measure-ments the previous values have been retained. Simi-lar to HF, the intensities and air- and self-broadenedhalfwidths will be updated79 80 in the next edition.

N. H2CO

The pure rotation band of the principal isotopicspecies of formaldehyde has been updated with datafrom the JPL catalog.6 The Hamiltonian formulationof Kirchhoff8l was used to evaluate the rotational andcentrifugal distortion constants. An expanded dataset was used in the fit and is given in Ref. 6. The linepositions are accurate to 0.003 cm-' for the high wa-venumber lines and improves to 0.00002 cm-' or betterfor low (<1-cm-1) wavenumber transitions (see IER).The dipole moment value was taken from Kondo andOka82 and the resulting line intensities are accurate to-2-5%. A constant air-broadened halfwidth of 0.107cm'1/atm was assigned to the data, unchanged fromprevious editions of the database.

0. HOCIThe pure rotational bands of the two isotopic species

of hydrogen hypochlorite, H 35C and H 37CI, wereadded to the database. The data and calculationalmethod are given in Singbeil et al.8 3 The chlorinehyperfine structure has been omitted in the compila-tion since the splittings are generally smaller than thewidth of lower stratospheric lines. The calculationsconsidered values of K up to 20. An arbitrary air-broadened halfwidth of 0.06 cm-1/atm was assumedfor the data. The line position accuracy is transitiondependent and reported in IER. In general the uncer-tainty is better than 0.005 cm-'. The line intensitiesare accurate to 5%.

P. HCN

The hydrogen cyanide air-broadened halfwidthswere updated from the constant value used on previouseditions of the database. The air-broadened valuesare based on the N2-broadening measurements ofSmith et al.8 4 The measurements give values of thehalfwidths as a function of Iml and range from Iml = 1to 26. The relative uncertainty of the air-broadened

halfwidths is estimated at 10-20% and the values are ingood agreement with the results of Varghese and Han-son.85 Beyond the range of measurements, a constantvalue of 0.099 cm-1/atm was assumed.

Q. H202

The pure rotation band of hydrogen peroxide wasadded to this edition of the database. The spectrallines and method of calculation are from Helminger etal.

8 6 and additional lines and the dipole moment weremeasured by Cohen and Pickett.87 Data are given forthe T = 1, 2, 3, and 4 torsional states. The line posi-tions have a transition-dependent uncertainty withthe worst case being -0.03 cm-' improving to 0.000001cm-' for many of the lines. The error is given by thefirst number of the IER parameter. The line intensi-ties are accurate to -2-5%. Updated line parametersfor the 6 fundamental are now available88 but notincluded in the compilation. A value of 0.10 cm-1/atmwas assumed for the air-broadened halfwidth, close torecent experimental measurements.89

R. C 2 H2

A total of eight bands of acetylene are representedon HITRAN as shown in Table V. The band centerfrequencies for the first four bands are from Varanasiet al.90 ; the band center frequencies for the remainingbands are from Rinsland et al.9 1

The sources for the line positions and intensities areas follows. In the 12-14-gm (V5 fundamental) region,the results are from Varanasi et al.90 These parame-ters are the same as those in the 1984 GEISA compila-tion.5 In the 3-gm (V3 fundamental) region, the pa-rameters are from the work of Rinsland et al.91 The V3fundamental of H12C' 3CH has been added since the1982 trace gas compilation. 4

The air-broadened halfwidths are the experimentalvalues measured by Devi et al.9 2 P- and R-branchwidths corresponding to the same value of Iml havebeen averaged, except for Iml = 1 (RO and P1) whereexperimental results indicate significant differencesbetween the widths. Beyond the range of measure-ments (Iml 32), the halfwidths have been arbitrarilyextrapolated to an asymptotic value of 0.04 cm'1/atmat 296 K.

The self-broadened halfwidths have been computedusing a polynomial in Iml expansion derived from ex-perimental data by Varanasi et al.9 3 Above ml = 25, aconstant value of 0.11 cm-1/atm at 296 K has beenassumed. For Q-branch lines, both the air-broadenedand self-broadened widths have been calculated usingthe expressions for the P- and R-branch transitions.S. Temperature Dependence of Halfwidths

The temperature dependence of the halfwidth, n, isa new parameter in this edition of the database thathas applications in infrared remote sensing and accu-rate transmission studies.

This parameter is now being measured for many ofthe gases in the atmosphere. The form of the tem-perature dependence can be understood in terms of aspecific model. Here the halfwidth in cm'1/atm is

4092 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 36: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

written as the product of density, velocity, and theoptical cross section,

'y(T) = p(T) v(T) a(T). (7)

The temperature dependence of the density (no -273/T) and velocity (8kTrg)" 2 are known. The opti-cal cross section is assumed to vary in the form v(T) =Tm ao, where ao is independent of temperature. Tak-ing the ratio of the halfwidth at two temperatures gives

Y(T1) = Y(T2)* (-) . () )m* (8)

Setting -n = -1/2 + m produces the usual formula

-y(Tl) = y(T2) - )- * (9)T2

On the database the ratio of temperatures is invert-ed to remove the minus sign [Eq. (4)]. The tempera-ture dependence is contained in the value of the expo-nent n. This model also gives the temperaturedependence, m, of the optical cross section which canbe useful to other studies. For molecules where thereare no measured values of n available, the optical crosssection is assumed temperature independent (m = 0)giving a temperature dependence of n = 1/2; this issometimes called the classical value. The values of nused on the database are given in Table II and de-scribed below.

For water vapor, in the theoretical work of Daviesand Oli,'12 three pure rotation lines and one V2 line werestudied. The average exponent for N2-broadening ofthe pure rotation lines was 0.64 and the V2 value was n= 0.45. These results have been discussed13 and thevalue n = 0.64 was adopted for all water lines. In thefuture, the results of Gamache and Rothman,94 theo-retical calculations of n for some fifty water vaportransitions for both pure rotation and V2 bands, will beadded to the H20 lines on the database.

The temperature exponents used for carbon dioxidetake into account the observed vibrational dependenceof n. A value of n = 0.75 from the measurements ofPlanet et al.95 is used for all bands except lines in the V3band and the overtone band, P2 + V3- 2. The data forthese latter bands are from Devi et al.9 6 and have thevalues n = 0.76 and n = 0.79, respectively.

The temperature exponent for all ozone transitionswas taken from the calculations of Gamache.97 Thesecalculations considered 126 rotational-vibrationaltransitions and yield n as a function of J and Ka. Theresults compared well to the few experimental mea-surements available. From this work an average tem-perature exponent of n = 0.76 was adopted.

The values of the temperature exponents of the air-broadened halfwidth for N20 are transition dependentand were taken from the work of Lacome et al.4 'Transitions that do not have a value reported in Ref. 41use an average value of n = 0.75 from Varanasi.9 8

For carbon monoxide the temperature exponent hasbeen determined in several studies. Varanasi et al.99

determined a value of n = 0.75. More recently Hart-mann et al.100 experimentally determined a value of n= 0.69 ± 0.02 which agrees well with the calculations of

Bonamy et al.101 The value adopted for the CO lineson the database was n = 0.69.

Several different temperature exponents are beingused for methane, reflecting the dependence of n onthe symmetry species of the transition. The valuesfrom Varanasi et al.

58 are n = 0.63 for the A-species, n

= 0.75 for the E-species, and n = 1.0 for all F-species.For monodeuterated methane (CH3D) a value of n =0.75 from Varanasi et al.

5 9 has been adopted. Thenext edition of the database will incorporate the recentwork of Devi et al.102 in the evaluation of the exponent.

In future versions of the database, a value of 0.968will be adopted for the temperature exponent of NO2,based on N2 -broadened measurements of Devi et al.1

0 3

The temperature exponents for the halfwidths ofhydrogen chloride were taken from the work of Ballardet al.

7 9 and vary from a maximum of 0.88 to a minimumof 0.20. For lines that do not have a measured tem-perature exponent the classical value was used, n = 0.5.

A value of n = 0.75 has been assumed for the tem-perature dependence of the halfwidths for all lines ofacetylene based on the N2-broadened measurementsof Varanasi et al.,9 3 which were obtained at 153 and 200K.

All other molecules on the database presently usethe classical value of n = 0.5. As data become avail-able for the temperature exponent they will be re-viewed for addition to the HITRAN database.

Ill. Cross Sections: Description and Application

There are several important atmospheric moleculeswith significant infrared features in specific spectralregions for which no line parameters are presentlyavailable. This category includes molecules such asthe chlorofluorocarbons (CFCs), for which no line pa-rameters are available in any spectral region, and alsomolecules such as HNO3, for which good line parame-ters are available for only some of the important spec-tral regions.

For such cases the current edition of the HITRANdatabase provides a separate file of high resolutioncross sections for a first approximation simulation oftheir spectra. These are approximate cross sections,derived by the Lambert-Beer law from 0.02-cm-1 reso-lution room temperature laboratory absorption spec-tra acquired at the University of Denver,104 as de-scribed by Massie et al.1

0 5 In general, the accuracy ofthe data is of the order of 10-25%, but one should notethat they are pressure independent and applicable forsmall absorptions only.

It is anticipated that some of these cross-sectionalsets will be replaced by individual line parameters asthey become available. However, for most heavy mol-ecules with complex overlapping line structure (usual-ly also with several hot bands), it will be unrealistic toexpect line parameters for more than a few preselectednarrow intervals. As an example, recent work106 onthe V6 region of CF2 Cl2 shows that the 921-923-cm-1region can be modeled satisfactorily on a line-by-linebasis, but this requires over 50,000 individual lines.Thus, for wider spectral intervals of such molecules,

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4093

Page 37: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

higher resolution (0.005 cm-') and temperature andpressure-dependent semiempirical cross sections willbe required. Indeed, progress is being made towardthese goals, as in the cases of the temperature-depen-dent cross sections of the major CF2Cl2 and CFCl3bands107 and of the ClONO2 bands.10 8

The cross sections , (cm-/molec-cm- 2) can be in-corporated directly into a line-by-line calculation asadditive spectral values to the infinite resolution lineabsorption coefficients (with proper wavenumber in-terpolation), before the instrument function is ap-plied. It is also possible to simulate the spectra bygenerating artificial line parameters such as has beendone for the chlorine nitrate (ClONO 2 ) 4 Q-branch.1 09

In both approaches-until further information be-comes available-the temperature dependence of thecross sections can be approximated by a rigid rotor,harmonic oscillator partition function with an effec-tive rotation-vibration ground state energy.

It should be emphasized that, while the accuracy ofthe cross-sectional method is limited (especially forstrong absorptions), omitting them in spectral regionswhere no line parameters are available leads to muchlarger errors in the interpretation of line-by-line simu-lations of atmospheric spectra.

Table VI summarizes the cross sections contained infile 4 on the HITRAN database. This file provides themolecule, the spectral interval, and the number ofcross-sectional points in a header that appears at thebeginning of data for each of the seventeen bands ofthe eleven heavy molecular species represented at thistime. Each header contains additional informationconcerning the experimental conditions used at theUniversity of Denver. The main body of the data afterthe header gives the cross sections at the discrete wa-venumber steps determined by the spectral intervaland the number of points.IV. Concluding Remarks

This new edition of the HITRAN database repre-sents the first major departure from the format origi-nally established' by the Group on AtmosphericTransmission. This has been made necessary in partby the need and availability of molecular parametersfor diverse applications. In addition, the previouslyseparate compilations for the principal infrared tellu-ric atmospheric absorbers and the species with lesseroptical depth, are now united in one database. Theoverall goal in constructing the new HITRAN data-base has been for the database to be accessible andconsistent; future editions may require additional pa-rameters and information, but the user interfaceshould provide a minimum of problems.

Updating is proceeding on several different aspects.As indicated in Sec. II, new data for several bands thatare quite deficient on the database became availableafter this edition was finalized. These include newhigh resolution analyses" 0 for water vapor in the visi-ble region that would extend the database to -23,000cm'1. There is also the continuing effort to improvethe band intensities of carbon dioxide following themethods previously mentioned. 4"15 The latter effort

is being enhanced by the attainment of better photo-metric accuracy for bands in the 4.3-, 14-, and 15-gimregions.111""2 The first high resolution analysis ofozone isotopic bands2223 will make an immense im-provement on the database. It is expected that withhigh temperature nitrous oxide measurements in pro-gress13 and methods similar to those in progress forC0 2, the parameters for N20 will be substantially im-proved in the near future. As mentioned previously,the V2 band of nitric acid will be updated. The recenthighly accurate measurements of HCl and HF intensi-ties, broadening, and shifts by Pine et al.

7 8 and Chack-erian et al.

8 0 will be incorporated. The quadrupolelines of nitrogen will also be updated.1 4 It is antici-pated that some of the species on the cross-sectionalfile, such as CF2Cl2, will become available for the maindatabase. In addition, many of the new parameterscompiled for the ATMOS experiment"5 will be evalu-ated and be placed on the next HITRAN database.The modifications outlined here represent a smallfraction of the updates planned for a future edition.

A major thrust in future editions of the database willbe to update halfwidths, both air- and self-broadened.The literature abounds with new data, especially forthe latter parameter. Likewise, pressure shifts arenow being observed and will be incorporated into thefield that has been reserved for them. An effort will bemade to acquire more line coupling parameters, suchas for the oxygen 60-GHz lines. To include tempera-ture dependency of the line coupling, a table with aninterpolation scheme may be required. Similarly, weplan to provide the internal partition sum in tabularform for interpolating for different temperatures.Having the partition sum at 296 K will also facilitatethe proper implementation of the transition probabili-ty parameter on the compilation. Hopefully, someimplementation of the scheme for tagging referencesand criteria for the major parameters will be accom-plished (this is a somewhat monumental and hazard-ous task).

The compilation can be obtained on a magnetic tapefrom the National Climatic Data Center, NationalOceanic & Atmospheric Administration, FederalBuilding, Asheville, NC 28801.

This database is the result of cooperation and col-laboration on an international scale; it would be diffi-cult to acknowledge all those who have participatedand contributed to this effort. We are deeply gratefulto the spectroscopists and theoreticians who submit-ted their work, often prior to publication. In additionto contributions from other researchers from the auth-ors' institutions, we would like to acknowledge thecontributions from the following laboratories: Labor-atoire d'Infrarouge, CNRS, France; the College of Wil-liam & Mary; the Ohio State University; the Ruther-ford Appleton Laboratory, U.K.; Stewart RadianceLaboratory, Utah State University; the National Re-search Council of Canada; the National Bureau ofStandards; the National Center for Atmospheric Re-search; and Visidyne, Inc. We would also like to ex-press our deep appreciation to Kenneth F. Kozik of

4094 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 38: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

Digital Equipment Corp. for his assistance in softwaremanagement for this project. This program has beensupported by the Air Force Office of Scientific Re-search through AFGL Task 2310G1.References

1. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R.F. Calfee, K. Fox, L. S. Rothman, and J. S. Garing, "AFCRLAtmospheric Absorption Line Parameters Compilation,"AFCRL-TR-0096 (AFCRL, Bedford, MA, 1973).

2. L. S. Rothman, "AFGL Atmospheric Absorption Line Parame-

ters Compilation: 1980 Version," Appl. Opt. 20,791 (1981); L.S. Rothman et al., "AFGL Trace Gas Compilation: 1980 Ver-sion," Appl. Opt. 20, 1323 (1981).

3. L. S. Rothman et al., "AFGL Atmospheric Absorption LineParameters Compilation: 1982 Edition," Appl. Opt. 22, 2247(1983).

4. L. S. Rothman et al., "AFGL Trace Gas Compilation: 1982Version," Appl. Opt. 22, 1616 (1983).

5. N. Husson et al., "The GEISA Spectroscopic Line ParametersData Bank in 1984," Ann. Geophys. 4, 185 (1986).

6. R. L. Poynter and H. M. Pickett, "Submillimeter, Millimeter,and Microwave Spectral Line Catalog," Appl. Opt. 24, 2235(1985).

7. J. K. Messer, F. C. DeLucia, and P. Helminger, "SubmillimeterSpectroscopy of the Major Isotopes of Water," J. Mol. Spec-trosc. 105, 139 (1984).

8. R. A. Toth and R. L. Poynter, "Line Positions and LineStrengths of the (010-000) and (020-010) Bands of HD160 andthe (010-000) Band of HD180,"' in preparation.

9. J.-M. Flaud, C. Camy-Peyret, and R. A. Toth, Selected Con-stants: Water Vapour Line Parameters from Microwave toMedium Infrared (Pergamon, Oxford, 1981).

10. R. A. Toth, Jet Propulsion Laboratory; unpublished data.11. R. R. Gamache and R. W. Davies, "Theoretical Calculations of

N2 -Broadened Halfwidths of H 2O Using Quantum FourierTransform Theory," Appl. Opt. 22, 4013 (1983).

12. R. W. Davies and B. A. Oli, "Theoretical Calculations of H20

Linewidths and Pressure Shifts: Comparison of the AndersonTheory with Quantum Many-Body Theory for N2 and Air-Broadened Lines," J. Quant. Spectrosc. Radiat. Transfer 20,95(1978).

13. R. W. Davies, GTE Laboratories; private communication(1980).

14. L. S. Rothman, "Infrared Energy Levels and Intensities ofCarbon Dioxide. Part 3," Appl. Opt. 25, 1795 (1986).

15. R. B. Wattson and L. S. Rothman, "Determination of Vibra-tional Energy Levels and Parallel Band Intensities of 12C' 60 2

by Direct Numerical Diagonalization," J. Mol. Spectrosc. 119,83 (1986).

16. L. R. Brown and R. A. Toth, "Comparison of the Frequencies ofNH3 , C0 2, H2 0, N2 0, CO, and CH4 as Infrared CalibrationStandards," J. Opt. Soc. Am. B 2, 842 (1985).

17. E. Ari6, N. Lacome, P. Arcas, and A. Levy, "Oxygen- and Air-Broadened Linewidths of C0 2," Appl. Opt. 25, 2584 (1986).

18. L. L. Strow and B. M. Gentry, "Rotational Collisional Narrow-ing in an Infrared CO2 Q Branch Studied with a Tunable DiodeLaser," J. Chem. Phys. 84, 1149 (1986); J. Johns, NationalResearch Council of Canada; private communication.

19. M. L. Hoke, S. A. Clough, W. Lafferty, and B. W. Olson, "LineCoupling in Carbon Dioxide," presented at the Forty-FirstSymposium on Molecular Spectroscopy (16-20 June 1986),paper TB9 (replacement).

20. E. W. Smith, "Absorption and Dispersion in the 02 MicrowaveSpectrum at Atmospheric Pressures," J. Chem. Phys. 74, 6658(1981).

21. H. M. Pickett, E. A. Cohen, and J. S. Margolis, "The Infraredand Microwave Spectra of Ozone for the (0,0,0), (1,0,0) and(0,0,1) States," J. Mol. Spectrosc. 110, 186 (1985).

22. J.-M. Flaud, C. Camy-Peyret, V. M. Devi, C. P. Rinsland, andM. A. H. Smith, "The and 3 Bands of 160180160: LinePositions and Intensities," J. Mol. Spectrosc. 118, 334 (1986).

23. C. Camy-Peyret, J.-M. Flaud, A. Perrin, V. M. Devi, C. P.Rinsland, and M. A. H. Smith, "The Hybrid-Type Bands v andv3 of 160160180: Line Positions and Intensities," J. Mol. Spec-trosc. 118, 345 (1986).

24. J.-M. Flaud, C. Camy-Peyret, V. M. Devi, C. P. Rinsland, andM. A. H. Smith, "The v1 and v3 Bands of 1603: Line Positionsand Intensities," J. Mol. Spectrosc. (1987), in press.

25. C. P. Rinsland, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, M. A.-H. Smith, and G. M. Stokes, "Identification of 180-Isotopic

Lines of Ozone in Infrared Ground-Based Solar AbsorptionSpectra," J. Geophys. Res. 90, 10719 (1985).

26. A. Barbe, C. Secroun, A. Goldman, and J. R. Gillis, "Analysis ofthe P1 + V2 + v3 Band of 03," J. Mol. Spectrosc. 100, 377 (1983).

27. C. Meunier, P. Marche, and A. Barbe, "Intensities and AirBroadening Coefficients of 03 in the 5- and 3-gum Regions," J.Mol. Spectrosc. 95, 271 (1982).

28. A. Goldman A. Barbe, "Line Parameters for the v1 + 2 + 3

Bands of 03," DU-Reims Collaborative Studies on Atmospher-ic Spectroscopy, Final Report (Oct. 1985).

29. H. M. Pickett et al., "The Vibrational and Rotational Spectraof Ozone for the (0,1,0) and (0,2,0) States," J. Mol. Spectrosc. inpress.

30. A. Goldman, J. R. Gillis, and A. Barbe, "Calculated Line Pa-rameters for the 2 2 1603 Band," Technical Report, PhysicsDepartment, U. Denver (1983).

31. A. Goldman, R. D. Blatherwick, F. J. Murcray, J. W. VanAllen,F. H. Murcray, and D. G. Murcray, "New Atlas of StratosphericIRAbsorption Spectra, Volume I: Line Positions and Identifi-cations. Volume II: The Spectra," U. Denver (Sept. 1986).

32. V. M. Devi, J.-M. Flaud, C. Camy-Peyret, C. P. Rinsland, andM. A. H. Smith, "Line Positions and Intensities for the v1 + v2and v2 + V3 Bands of 1603," J. Mol. Spectrosc. (1987), in press.

33. R. R. Gamache and L. S. Rothman, "Theoretical N2-broadenedHalfwidths of 1603," Appl. Opt. 24, 1651 (1985).

34. R. R. Gamache and R. W. Davies, "Theoretical N2 -, 02-, andAir-Broadened Halfwidths of 1603 Calculated by QuantumFourier Transform Theory with Realistic Collision Dynamics,"J. Mol. Spectrosc. 109, 283 (1985).

35. M. A. H. Smith, K. B. Thakur, C. P. Rinsland, V. M. Devi, andD. C. Benner, "Diode Laser Measurements in the v1 Band of1603," presented at the Forty-First Symposium on MolecularSpectroscopy, paper RF6, (16-20 June 1986); M. A. H. Smith,C. P. Rinsland, V. M. Devi, D. C. Benner, and K. B. Thakur,"Measurements of Air-Broadened and Nitrogen-BroadenedHalfwidths and Shifts of Ozone Lines near 9 Aim," J. Opt. Soc.Am. B (1987), submitted.

36. R. A. Toth, "Line Strengths of N2 0 in the 1120-1440-cm-'Region," Appl. Opt. 23, 1825 (1984).

37. R. A. Toth, "Frequencies of N2 0 in the 1100- to 1440-cm'Region," J. Opt. Soc. Am. B 3, 1263 (1986).

38. R. A. Toth, "N 2 0 Vibration-Rotation Parameters Derivedfrom Measurements in the 900-1090- and 1580-2380-cm-1 Re-gions," J. Opt. Soc. Am. B 4, 357 (1987).

39. R. A. Toth, "Line Strengths (1100-2370 cm-') Self-BroadenedLinewidths and Frequency Shifts (1800-2630 cm-') of N20 andIsotopic Variants," in preparation.

40. W. B. Olson, A. G. Maki, and W. J. Lafferty, "Tables of N20Absorption Lines for the Calibration of Tunable Infrared La-sers from 522 cm-1 to 657 cm-' and from 1115 cm-1 to 1340cm-1 ," J. Chem. Phys. Ref. Data 10, 1065 (1981).

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4095

Page 39: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

41. N. Lacome, A. Levy, and G. Guelachvili, "Fourier TransformMeasurement of Self-, N 2-, and 02-Broadening of N2 0 Lines:Temperature Dependence of Linewidths," Appl. Opt. 23, 425(1984).

42. J. C. Hilico, M. Loete, and L. R. Brown, "Line Strengths of theV3-V4 Band of Methane," J. Mol. Spectrosc. 111, 119 (1985).

43. G. Tarrago, K. N. Rao, and L. W. Pinkley, "Analysis of the v3Band of 12 CH3 D at 7.6,ujm," J. Mol. Spectrosc. 79, 31 (1980).

44. G. Tarrago, Laboratoire d'Infrarouge, France; unpublisheddata (1980).

45. L. W. Pinkley, K. N. Rao, G. Tarrago, G. Poussigue, and M.Dang-Nhu, "Analysis of the 6 Band of 12 CH3 D at 8.6 jm," J.Mol. Spectrosc. 68, 195 (1977).

46. G. Poussigue, G. Tarrago, P. Cardinet, and A. Valentin, "Ab-sorption of Monodeuteromethane 2CH 3 D at 4.5 um. Analysisof the Overtone Band 2v6," J. Mol. Spectrosc. 82, 35 (1980).

47. G. Poussigue, E. Pascaud, J. P. Champion, and G. Pierre,"Rotational Analysis of Vibrational Polyads in TetrahedralMolecules. Stimultaneous Analysis of the Pentad Energy Lev-els of 2CH 4 ," J. Mol. Spectrosc. 93, 351 (1982).

48. G. Pierre, J. P. Champion, G. Guelachvili, E. Pascaud, and G.Poussigue, "Rotational Analysis of Vibrational Polyads in Tet-rahedral Molecules: Line Parameters of the Infrared Spec-trum of 2CH 4 in the Range 2250-3260 cm-': Theory VersusExperiment," J. Mol. Spectrosc. 102, 344 (1983).

49. R. A. Toth, L. R. Brown, R. H. Hunt, and L. S. Rothman, "LineParameters of Methane from 2385 to 3200 cm-1 ," Appl. Opt. 20,932 (1981).

50. L. R. Brown, Jet Propulsion Laboratory; unpublished data.51. D. J. E. Knight, G. J. Edwards, P. R. Pearce, and N. R. Cross,

"Measurement of the Frequency of the 3.39-pm Methane-Sta-bilized Laser to 3 Parts in 10"," IEEE Trans. Instrum. Meas.IM-29, 257 (1980).

52. L. R. Brown and L. S. Rothman, "Methane Line Parameters forthe 2.3-gm Region," Appl. Opt. 21, 2425 (1982).

53. L. R. Brown, "Laboratory Spectroscopy to Support RemoteSensing of Planetary Atmospheres: Experimental Line Pa-rameters of Methane at 2.55 jm," in Abstracts, Ninth Collo-quium on High Resolution Molecular Spectroscopy, Riccione,Italy (Sept. 1985).

54. C. R. Pollock, F. R. Petersen, D. A. Jennings, J. S. Wells, and A.G. Maki, "Absolute Frequency Measurements of the 2-0 Bandof CO at 2.3 ,m; Calibration Standard Frequencies from HighResolution Color Center Laser Spectroscopy," J. Mol. Spec-trosc. 99, 357 (1983).

55. J. S. Margolis, "Line Strength Measurements of the 2 3 Band ofMethane," J. Quant. Spectrosc. Radiat. Transfer 13, 1097(1973).

56. K. Fox, G. W. Halsey, and D. E. Jennings, "High ResolutionSpectrum and Analysis of 2 3 of 1

3 CH 4 at 1.67 um," J. Mol.Spectrosc. 83, 213 (1980).

57. G. D. T. Tejwani and K. Fox, "Calculated Linewidths for CH4Broadened by N 2 and 0 2 ," J. Chem. Phys. 60,2021 (1974); G. D.T. Tejwani and K. Fox, "Calculated Self- and Foreign-GasBroadened Linewidths for CH 3 D," J. Chem. Phys. 61, 759(1974).

58. P. Varanasi, L. P. Giver, and F. P. J. Valero, "Thermal InfraredLines of Methane Broadened by Nitrogen at Low Temperatur-es," J. Quant. Spectrosc. Radiat. Transfer 30, 481 (1983).

59. P. Varanasi, L. P. Giver, and F. P. J. Valero, "A LaboratoryStudy of the 8.65 jm Fundamental of 2CH3D at TemperaturesRelevant to Titan's Atmosphere," J. Quant. Spectrosc. Radiat.Transfer 30, 517 (1983).

60. V. M. Devi, C. P. Rinsland, M. A. H. Smith, and D. C. Benner,"Measurements of 2CH 4 4 Band Halfwidths Using a TunableDiode Laser System and a Fourier Transform Spectrometer,"Appl. Opt. 24, 2788 (1985).

61. V. M. Devi, C. P. Rinsland, M. A. H. Smith, and D. C. Benner,"Tunable Diode Laser Measurements of Widths of Air- andNitrogen-Broadened Lines in the V4 Band of 3CH 4," Appl. Opt.24, 3321 (1985).

62. F. J. Lovas, "Microwave Spectral Tables II. Triatomic Mole-cules," J. Phys. Chem. Ref. Data 7, 1445 (1978).

63. M. Carlotti, G. DiLonardo, L. Fusina, B. Carli, and F. Mencar-aglia, "The Submillimeter-Wave Spectrum and SpectroscopicConstants of SO2 in the Ground State," J. Mol. Spectrosc. 106,235 (1984).

64. D. Patel, D. Margolese, and T. R. Dyke, "Electric Dipole Mo-ment of SO2in Ground and Excited States," J. Chem. Phys. 70,2740 (1979).

65. C. Camy-Peyret, J.-M. Flaud, A. Perrin, and K. N. Rao, "Im-proved Line Parameters for the 3 and 2 + 3 - 2 Bands of14N16 0 2 ," J. Mol. Spectrosc. 95, 72 (1982).

66. V. M. Devi et al., "Tunable Diode Laser Spectroscopy of NO2 at6.2 jum," J. Mol. Spectrosc. 93, 179 (1982).

67. A. Perrin, J.-M. Flaud, and C. Camy-Peyret, "Calculated LinePositions and Intensities for the v + 3 and v + 2 + 3 - V2

Bands of 4NI 60 2," Infrared Phys. 22, 343 (1982).68. R. A. Toth and R. H. Hunt, "Line Strengths, Spin-Splittings,

and Forbidden Transitions in the (101) Band of 4N160 2," J.Mol. Spectrosc. 79, 182 (1980).

69. J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, P. P. Das, andK. Narahari Rao, "Diode Laser Spectra of the 2 Band of14N160 2 : The (010) State of NO 2," J. Mol. Spectrosc. 84, 234(1980).

70. V. M. Devi, P. P. Das, A. Bano, K. N. Rao, J.-M. Flaud, C.Camy-Peyret, and J.-P. Chevillard, "Diode Laser Measure-ments of Intensities, N2-Broadening, and Self-Broadening Co-efficients of Lines of the 2 Band of 4N160 2," J. Mol. Spectrosc.88, 251 (1981).

71. W. C. Bowman and F. C. DeLucia, "The Millimeter and Sub-millimeter Spectrum of NO2: A Study of Electronic Effects ina Nonsinglet Light Asymmetric Rotor," J. Chem. Phys. 77, 92(1982).

72. R. L. Poynter and J. S. Margolis, "The 2 Spectrum of NH 3,"Mol. Phys. 51, 393 (1984).

73. A. G. Maki, W. B. Olson, A. Fayt, J. S. Wells, and A. Goldman,"High Resolution Measurements and Analysis of the 2, 3, 4 ,

v5, and 2v9 Bands of Nitric Acid," presented at Forty-FirstSymposium on Molecular Spectroscopy, Ohio State U. (1986),paper TE8.

74. A. Goldman, J. R. Gillis, C. P. Rinsland, F. J. Murcray, and D.G. Murcray, "Stratospheric HNO3 Quantification from Line-by-Line Nonlinear Least-Squares Analysis of High-ResolutionBalloon-Borne Solar Absorption Spectra in the 870-cm-' Re-gion," Appl. Opt. 23, 3252 (1984); D. G. Murcray, F. H. Mur-cray, F. J. Murcray, and G. Vanasse, "Measurements of Atmo-spheric Emission at High Spectral Resolution," J. Meteorol.Soc. Jpn. 63, 320 (1985).

75. A. Goldman, U. Denver, unpublished data.76. A. Maki, "High Resolution Measurements of the 2 Band of

HNO3 and the 3 Band of Trans-HONO," J. Mol. Spectrosc. 00,000 (198X), in press.

77. R. E. Thompson, J. H. Park, M. A. H. Smith, G. A. Harvey, andJ. M. Russell III, "Nitrogen-Broadened Halfwidths of HFLines in the 1-0 Band," J. Mol. Spectrosc. 106, 251 (1984).

78. A. S. Pine, A. Fried, and J. W. Elkins, "Spectral Intensities inthe Fundamental Bands of HF and HCl," J. Mol. Spectrosc.109, 30 (1985); A. S. Pine and J. P. Looney, "N 2 and AirBroadening in the Fundamental Bands of HF and HCl," J. Mol.Spectrosc. 122,41 (1987); A. S. Pine and A. Fried, "Self-Broad-ening in the Fundamental Bands of HF and HCl," J. Mol.Spectrosc. 114, 148 (1985).

4096 APPLIED OPTICS / Vol. 26, No. 19 / 1 October 1987

Page 40: The HITRAN database: 1986 editioncfa- · 707.21200.76 851.01800.50 2221.36110.50 1982.04700.76 1844.81880.75 851.04100.50 2481.56150.75 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000

79. J. Ballard, W. B. Johnston, P. H. Moffat, and D. T. Llewellyn-Jones, "Experimental Determination of the Temperature De-pendence of Nitrogen Broadened Line Widths in the 1-0 Bandof HCl," J. Quant. Spectrosc. Radiat. Transfer 33, 365 (1985).

80. C. Chackerian, Jr., D. Goorvitch, and L. P. Giver, "HCl Vibra-tional Fundamental Band: Line Intensities and TemperatureDependence of Self-Broadening Coefficients," J. Mol. Spec-trosc. 113, 373 (1985).

81. W. H. Kirchhoff, "On the Calculation and Interpretation ofCentrifugal Distortion Constants: A Statistical Basis for Mod-el Testing: The Calculation of the Force Field," J. Mol. Spec-trosc. 41, 333 (1972).

82. K. Kondo and T. Oka, "Stark-Zeeman Effects on AsymmetricTop Molecules. Formaldehyde H 2CO," J. Phys. Soc. Jpn. 15,307 (1960).

83. H. E. G. Singbeil et al., "The Microwave and Millimeter WaveSpectra of Hypochlorous Acid," J. Mol. Spectrosc. 103, 466(1984).

84. M. A. H. Smith, G. A. Harvey, G. L. Pellett, A. Goldman, and D.J. Richardson, "Measurements of the HCN v3 Band Broadenedby N2 ," J. Mol. Spectrosc. 105, 105 (1984).

85. P. L. Varghese and R. K. Hanson, "Tunable Diode Laser Mea-surements of Spectral Parameters of HCN at Room Tempera-ture," J. Quant. Spectrosc. Radiat. Transfer 31, 545 (1984).

86. P. Helminger, W. C. Bowman, and F. C. DeLucia, "A Study ofthe Rotational-Torsional Spectrum of Hydrogen Peroxide be-tween 80 and 700 GHz," J. Mol. Spectrosc. 85, 120 (1981).

87. E. A. Cohen and H. Pickett, "The Dipole Moment of HydrogenPeroxide," J. Mol. Spectrosc. 87, 582 (1981).

88. J. J. Hillman, D. E. Jennings, W. B. Olson, and A. Goldman,"High-Resolution Infrared Spectrum of Hydrogen Peroxide:The P6 Fundamental Band," J. Mol. Spectrosc. 117, 46 (1986).

89. V. M. Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, andB. Fridovich, "Tunable Diode Laser Measurements of Air-Broadened Linewidths in the V6 Band of H2 0 2," Appl. Opt. 25,1844 (1986).

90. P. Varanasi, L. P. Giver, and F. P. J. Valero, "Infrared Absorp-tion by Acetylene in the 12-14jum Region at Low Temperatur-es," J. Quant. Spectrosc. Radiat. Transfer 30, 497 (1983).

91. C. P. Rinsland, A. Baldacci, and K. N. Rao, "Acetylene BandsObserved in Carbon Stars: A Laboratory Study and an Illus-trative Example of Its Application to IRC+10216," Astrophys.J. Suppl. 49, 487 (1982).

92. V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, andB. D. Sidney, "Tunable Diode Laser Measurements of N 2- andAir-Broadened Halfwidths: Lines in the (4 + 5)0 Band of12 C2 H2 Near 7.4 jim," J. Mol. Spectrosc. 114, 49 (1985).

93. P. Varanasi, L. P. Giver, and F. P. J. Valero, "Measurements ofNitrogen-Broadened Line Widths of Acetylene at Low Tem-peratures," J. Quant. Spectrosc. Radiat. Transfer 30, 505(1983).

94. R. R. Gamache and L. S. Rothman, "Temperature Dependenceof N2-Broadened Halfwidths of Water Vapor: the Pure Rota-tion and v2 Bands," J. Mol. Spectrosc. (1987), submitted.

95. W. G. Planet, G. L. Tettemer, and J. S. Knoll, "TemperatureDependence of Intensities and Widths of N2 -Broadened Linesin the 15,um CO2 Band from Tunable Laser Measurements," J.Quant. Spectrosc. Radiat. Transfer 20,547 (1978); W. G. Planetand G. L. Tettemer, "Temperature Dependent Intensities andWidths of N2 -Broadened CO2 Lines at 15 jm Band from Tun-able Laser Measurements," J. Quant. Spectrosc. Radiat.Transfer 22, 345 (1979); G. L. Tettemer and W. G. Planet,"Intensities and Pressure-Broadened Widths of CO2 R-BranchLines at 15 jim from Tunable Laser Measurements," J. Quant.Spectrosc. Radiat. Transfer 24, 343 (1980).

96. V. M. Devi, B. Fridovich, G. D. Jones, and D. G. S. Snyder,

"Diode Laser Measurements of Strengths, Half-Widths, andTemperature Dependence of Half-Widths for CO2 SpectralLines Near 4.2,um," J. Mol. Spectrosc. 105, 61 (1984).

97. R. R. Gamache, "Temperature Dependence of N 2-BroadenedHalfwidths of Ozone," J. Mol. Spectrosc. 114, 31 (1985).

98. P. Varanasi, SUNY-Stony Brook; private communication.99. P. Varanasi, "Measurement of Line Widths of CO of Planetary

Interest at Low Temperatures," J. Quant. Spectrosc. Radiat.Transfer 15,191 (1975); P. Varanasi and S. Sarangi, "Measure-ments of Intensities and Nitrogen-Broadened Linewidths inthe CO Fundamental at Low Temperatures," J. Quant. Spec-trosc. Radiat. Transfer 15, 473 (1975).

100. J. M. Hartmann, M. Y. Perrin, J. Taine, and L. Rosenmann,"Diode Laser Measurements and Calculations of CO 1-0 P(4)Line-Broadening in the 294-765K Temperature Range," J.Mol. Spectrosc., submitted.

101. J. Bonamy, D. Robert, and C. Boulet, "Simplified Models forthe Temperature Dependence of Linewidths at Elevated Tem-peratures and Applications to CO Broadened by Ar and N2," J.Quant. Spectrosc. Radiat. Transfer 31, 23 (1984).

102. V. M. Devi, B. Fridovich, G. D. Jones, and D. G. S. Snyder,"Strengths and Lorentz Broadening Coefficients for SpectralLines in the V3 and V2 + 4 Bands of 12 CH4 and 3CH4," J. Mol.Spectrosc. 97, 333 (1983).

103. V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, and A. C.Neuendorffer, "Temperature Dependence of the Widths of N2-Broadened Lines of the V3 Band of 14N160 2," Appl. Opt. 21,1537(1982).

104. D. G. Murcray, F. J. Murcray, A. Goldman, F. S. Bonomo, andR. D. Blatherwick, "High Resolution Infrared LaboratorySpectra," U. Denver, Physics Department (Apr. 1984).

105. S. T. Massie, A. Goldman, D. G. Murcray, and J. C. Gille,"Approximate Absorption Cross Sections of F12, F11, ClONO 2 ,N 20 5 , HNO3 , CC14 , CF 4, F21, F113, F114, and HNO 4," Appl.Opt. 24, 3426 (1985).

106. A. Goldman and C. Deroche, "Line Parameters for F12 in the920 cm-' Region," U. Denver, Physics Department (July 1986).

107. J. W. Elkins, R. L. Sams, and J. Wen, "Measurements of theTemperature Dependence on the Infrared Band Strengths andShapes for Halocarbons F-11 and F-12," Natl. Bur. Stand. U.S.Report 553-K-86 (1986).

108. V. G. Kunde et al., "Atmospheric Infrared Emission of ClONO2Observed by a Balloon-Borne Fourier Spectrometer," AGUFall Meeting (1986).

109. C. P. Rinsland et al., "Tentative Identification of the 780-cm- 1

V4 Band Q Branch of Chlorine Nitrate in High-Resolution SolarAbsorption Spectra of the Stratosphere," J. Geophys. Res. 90,7931 (1985).

110. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud,and J. W. Brault, "The High-Resolution Spectrum of WaterVapor between 13200 and 16500 cm-1 ," J. Mol. Spectrosc. 116,167 (1986); C. Camy-Peyret et al., "The High Resolution Spec-trum of Water Vapor Between 16500 and 25250 cm-'," J. Mol.Spectrosc. 113, 208 (1985).

111. J. Johns, National Research Council of Canada; private com-munication.

112. V. Dana, U. Pierre et Marie Curie, France; private communica-tion.

113. M. P. Esplin, Stewart Radiance Laboratory; private communi-cation.

114. D. Reuter, D. E. Jennings, and J. W. Brault, "The v = 1 - 0Quadrupole Spectrum of N 2," J. Mol. Spectrosc. 115, 294(1986).

115. L. R. Brown, C. B. Farmer, C. P. Rinsland, and R. A. Toth,"Molecular Line Parameters for the Atmospheric Trace Mole-cule Spectroscopy (ATMOS) Experiment," submitted to Appl.Opt., 1987.

1 October 1987 / Vol. 26, No. 19 / APPLIED OPTICS 4097