19
The high resolution spectrum of the ArC 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles, B-1050, Bruxelles, Belgium b LISA, CNRS/Universités Paris Est et Denis Diderot, Créteil, France

The high resolution spectrum of the Ar C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Embed Size (px)

Citation preview

Page 1: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

The high resolution spectrumof the ArC2H2 complex

C. Lauzin,a K. Didriche,a M. Herman,a

and L. H. Coudertb

aUniversité Libre de Brxuxelles, B-1050, Bruxelles, BelgiumbLISA, CNRS/Universités Paris Est et Denis Diderot, Créteil, France

Page 2: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Outline

• Previous experimental investigations

• The new measurements

• Preliminary line position analysis

• Refining the IPES of the ground vibrational state

• Refining the IPES of the excited vibrational state

Page 3: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Previous microwave measurements

The 110 111 is the first measured transition.1

8 a-type transitions measured by Oshima et al.2

16 a-type transition with Ka and measured by Liu and Jäger.3

1. DeLeon and Muenter, JCP 72 (1980) 6020.

2. Oshima, Iida, and Endo, CPL 161 (1989) 202.

3. Liu and Jäger, JMS 205 (2001) 177.

Page 4: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Previous infrared measurements

band region. 72 b-type transitions

K'a and K"a measured.1

5 band region. 121 a- and c-type transitions

K'a and K"a measured.2

bendbend band.

21 a-type transitions with Ka measured.3

1. Hu, Prichard, Sun, Muenter, and Howard, JMS 153 (1992) 486.

2. Oshima, Matsumoto, Takami, and Kuchitsu, JCP 99 (1993) 8385.

3. Bemish, Block, Pedersen, Yang, and Miller, JCP 99 (1993) 8585.

Page 5: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Present infrared measurements

band region recorded from 6544 to 6568 cm using the FANTASIO+ experimental setup.1-3

207 b-type transitions with K'a and K"a = measured.

The energy of the upper vibrational state is much higher than the binding energy.

1. Lauzin, Didriche, Macko, Demaison, Liévin, and Herman, JPC A. 113 (2009) 2359.

2. Didriche, Lauzin, Foldès, Vaernewijck, and Herman, MP 108 (2010) 2155.

3. Paper TI02 on Tuesday.

Page 6: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Ka = 1 2

Ka

Ka = 0 1

Page 7: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Ka=1 0

Ka = 3 2

Ka = 2 1

Page 8: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Preliminary analysis of the new data

Wavenumbers were analyzed calculating the energy with a JJ expansion:1

1. Moruzzi, Xu, Lees, Winnewisser, and Winnewisser, JMS 167 (1994) 156.

Fit I. Ka a and subbands

Fit II. Ka Ka0 and 2

subbands

Page 9: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

A portion of the OC tableM

icro

wav

e

207 lines fitted. Unitless standard deviation is 2.0

Infr

arae

d Infr

aredRotational assignment of the subbands

Page 10: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Comparison between Obs. and Cal. spectraO

bser

ved

Cal

cula

ted

Van der Waals mode ?

Ka=1 0 Ka = 2 1

Page 11: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

What can we do with the new data?

A Watson-type Hamiltonian cannot be used.

ArC2H2 is a very floppy molecule1 with a bending frequency of 6 cm.

Ab initio calculations show that its IPES is very shallow.2,3

1. Bemish, Block, Pedersen, Yang, and Miller, JCP 99 (1993) 8585.

2. Munteanu and Fernández, JCP 123 (2005) 014309.

3. Tao, Drucker, and Klemperer, JCP 102 (1995) 7289.

Page 12: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

The Munteanu and Fernandez IPES

Aug-cc-pVQZ-33211

Global Minima MR = 3.99 Å, at cm

Local Minima mR = 4.63 Å, 0at cm

Saddle point SR = 3.89 Å, 90at cm

MM

m

S

Can we refine the IPES of the complex?

Page 13: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Refining the IPES of the GS

The IPES was expanded using the analytical expression of Bukowski et al.1

Energies were calculated with the approach developed for the ArCO complex. 2

The coefficients of the IPES and B(HCCH) were fitted to GS combination differences.

1. Bukowsky, Sadlej, Jeziorski, Jankowski, Szalewicz, Kucharski, Williams, and Rice, JCP 110 (1999) 3785.

2. Coudert, Pak, and Surin, JCP 121 (2004) 4691.

Page 14: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Refining the IPES of the GS

The Schrödinger equation for the stretching is solved for each t-value belonging to the DVR grid.1

1. Bacic and Light, JCP 87 (1997) 4008.

Page 15: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Analysis results: GS

The difference between the refined IPES and the ab initio one1 are no larger than 5.3 cm

B(HCCH) = 1.175 32(6) cm

RMS for the 17 microwave transitions is 5.5 MHz.

RMS for the 210 IR data is 1.2×10 cm.

bendcm

1. Munteanu and Fernández, JCP 123 (2005) 014309.

2. Herman, MP 105 (2007) 2217.

3. Bemish, Block, Pedersen, Yang, and Miller, JCP 99 (1993) 8585.

Page 16: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

A portion of the OC table for the IR data

Ground vibrational state under control.

Page 17: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Refining the IPES of the excited vibrational state

The IPES of the excited vibrational state was refined using the new data.

Rotational levels of the excited vibrational states were computed using the results of the previous analysis.

Page 18: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

Analysis results: excited vibrational state

The maximum difference between the refined IPES and the ab initio one1 is 69 cm

B(HCCH) = 1.160 9(5) cm

RMS for the 29 levels is 6.6×10 cm.

1. Munteanu and Fernández, JCP 123 (2005) 014309.

2. Kou, Guelachvili, Abbouti Temsamani, and Herman, Can. J. Phys. 72 (1994) 1241.

Page 19: The high resolution spectrum of the Ar  C 2 H 2 complex C. Lauzin, a K. Didriche, a M. Herman, a and L. H. Coudert b a Université Libre de Brxuxelles,

The OC table for the excited vibrational state

The IPES of the excited vibrational state is probably quite different from that of the GS.

Perturbations due to neighbouring vibrational states of the monomer.