41
The HERMES experiment Gerard van der Steenhoven, 19 September 2004

The HERMES experiment

Embed Size (px)

DESCRIPTION

The HERMES experiment. Gerard van der Steenhoven, 19 September 2004. Search the carriers of proton spin. Three possible sources: quarks: valence quarks sea quarks gluons orbital momentum Mathematically:. ½ = ½ S q + D G + L q. EMC (85):  q ~ 10%. ~ 10%. ?. ?. - PowerPoint PPT Presentation

Citation preview

Page 1: The HERMES experiment

The HERMES experiment

Gerard van der Steenhoven, 19 September 2004

Page 2: The HERMES experiment

Search the carriers of proton spin

½ = ½ q + G + Lq

• Three possible sources:– quarks:

valence quarks

sea quarks

– gluons– orbital momentum

• Mathematically:

~ 10% ? ?

EMC (85): q ~ 10%

)( qq

Page 3: The HERMES experiment

The experimental strategy

• Polarization of the sea quarks

• Polarization of the gluons

• Orbital angular

momentum

• Transversity:

“switch off

the gluons”

Page 4: The HERMES experiment

Outline of the lecture

1. The origin of proton spin?– Polarization of quarks– Gluon contributions

2. New developments– Generalized parton distributions → DVCS → Lq,g

– Transverse spin → switch off the gluons

3. Other surprises– The HERMES pentaquark signal– Parton energy loss in nuclei

4. Outlook

Page 5: The HERMES experiment

How to probe the quark polarization?

Measure yield asymmetry:

Polarizeddeep inelasticelectronscattering

1

1

NN

NN

PDPA

BT

Parallel electron & quark spins

Spin-dependent Structure Function

Anti-parallel electron & quark spins

In the Quark-Parton Model:

)()(

1

)(

)( 2

11

11

fff xqe

xFxF

xgA

Page 6: The HERMES experiment

Why HERMES?• Original purpose (~1990):

– Measure inclusive spin structure

functions g1(x) for proton & neutron

– Measure polarization of u-, d- and

sea-quarks separately: qu,d,sea(x)

• What came out sofar (~2004)?

– Precise data on g1n,p(x), qu,d,sea(x)

– First measurements of G(x), DVCS,

transversity, parton energy loss,…

→ design a reliable multi-purpose detector system !

gluon

Quark-antiquark pair

Page 7: The HERMES experiment

The HERMES experiment

e+ BEAM

Target area

~1.5

m

Magnet

TRDRICH

Lambda Wheels

Beam Loss Monitor

EM Calorimeter

Page 8: The HERMES experiment

The HERMES spectrometer

27.6 GeV e+/e-

0.02 < x < 0.6, 1.0 < Q2 < 15 GeV2

p/p ~ 1-2%, < 0.6 mrad

Page 9: The HERMES experiment

Data taking since 1996

2002 - 20041996-2000

Page 10: The HERMES experiment

Spin-dependent structure functions• The function g1(x):

• Evaluate the integrals:

• 1999 result:

)( 91

181

61

11 qpp DFdxxg

From hyperon decays

Total spin carried by quarks

0.1 0.2 q

Page 11: The HERMES experiment

Q2 dependence of F2(x) and g1(x)

),( 2

2

x

QxF++

2 2

→ Gluons contribute to the nucleon spin !

Page 12: The HERMES experiment

QCD analysis of world data (’03)• Next-to-Leading-Order analysis of -data)(1 xg

Excellent data for x > 0.01

Page 13: The HERMES experiment

Polarized Parton Densities• First moments:

– input scale

– pol. singlet density:

– pol. gluon density:

(th) 0.070 (exp) 0.133

(stat) 0.169 0.167

q

There must be other sources of angular momentum in the proton

220 GeV 0.4Q

(th) 0.424 (exp) 0.175

(stat) 0.388 0.616

G

Page 14: The HERMES experiment

Flavour decomposition of spin

• Semi-inclusive deep

inelastic scattering

• Hadron tags flavour of

struck quark

• Derive purity of tag from

unpolarized data

Key issue: role of sea quarks in nucleon spin

Page 15: The HERMES experiment

24.08.2004

Particle identification• Dual radiator RICH:

C4F10

Aerogel

P

K

K

Detection efficiencies

Page 16: The HERMES experiment

f

hfff

f

hfffh

z,QdzDx,Qqe

z,QdzDx,Qqex,QA

)()(

)()()(

222

222

21

Hadron asymmetries (measured)

Known quantities(from other data)

Polarized Parton Distribution Functions !

Flavour decomposition: results• The method:

• Conclusion: qsea 0

Page 17: The HERMES experiment

Strong breaking of flavour symmetry

No significant breaking of flavour symmetry.

Flavour symmetry breaking Unpolarized data: Polarized data:

Page 18: The HERMES experiment

0AVMD||

q

ΔqADIS

|| q

ΔqAQCDC

|| G

ΔGAPGF

||

Gluon polarization• Photoproduction of high

pT –hadron pairs →

• Contributing diagrams:

• Corresponding asymmetries:

Page 19: The HERMES experiment

Data and plans for G/G• Asymmetry for high-pT hadron pairs production:

• New high-precision data →

±0.18±0.03

0.100.280.20Δ :SMC G/G

Page 20: The HERMES experiment

Generalized Parton Distributions• Consider exclusive processes:

– Deeply virtual Compton scatt.– Exclusive vector meson prod.

• Collins et al. proved factorization theorem (1997):

Distribution amplitude(meson) final state

finalquark

initialquark

2

2*.. ),,( ),,( ),(

f

pf

mfmprodexcl dtxHQxcz

Hard scatteringcoefficient (QCD)

Generalized PartonDistribution (GPD)

(NASTY: x = xBj for quarks and x = -xBj for antiquarks → x [-1,1])

x+ x-

t L,

Page 21: The HERMES experiment

The remarkable properties of GPDs

• Integration over x gives Proton Form Factors:

)(),,(~

);(),,( 0,0, xqtxHxqtxH tq

tq

• The forward limit:

• Second moment (X. Ji, PRL 1997):

)(),,(~

)(),,(

)(),,(~

),(),,(

1

1-

2

1

1

1

1-

1

1

1

tGtxEdxtFtxEdx

tGtxHdxtFtxHdx

P

A

qqqt

qq LJdxtxEtxHx ),,(),,( 210

1

121

Dirac

Pauli

Axial vector

Pseudoscalar

GPDs give access to Orbital Angular Momentum of Quarks

Page 22: The HERMES experiment

Applying the GPD framework• GPDs enter description of different processes:

• Take Fourier transform of leading GPD:

dtetxHbxq tibff ),,(),( 22

1

As Jq = ½q + Lq

information on Jq gives data on Lq.

Spatial distribution of quarks in the perpendicular direction Spatial distribution of quarks in the perpendicular direction

Page 23: The HERMES experiment

A 3D-view of partons in the proton

A.V. Belitsky, D. Muller, NP A711 (2002) 118c

Form Factor Parton Density Gen. Parton Distribution

Page 24: The HERMES experiment

Experimental access to GPDs• Exclusive meson electroproduction:

– Vector mesons (0):

– Pseudoscalar mesons ():

• Deeply virtual Compton scattering (DVCS):

),,( and ),,( txEtxH

),,(~

and ),,(~

txEtxH

DVCS Bethe-Heitler

Page 25: The HERMES experiment

Experimental access to DVCS

• DVCS observables:

– Cross section:

– Beam charge asymmetry:

– Beam spin asymmetry:

– Longitudinal target spin asymmetry:

)(22BH

*DVCSDVCS

*BHDVCSBH ττττ||τ||τdσ

Keydifferences

Page 26: The HERMES experiment

First DVCS results Beam spin asymmetryB

eam

cha

rge

asym

met

ry

Page 27: The HERMES experiment

• Three leading order quark distributions:

momentum carried by quarks

longitudinal quark spin,

What is transversity?

transverse quark spin,

• Gluons don’t contribute to h1(x), while dominant in g1(x):

Study nucleon spin while switching off the gluons

• New QCD tests: Q2 evolution h1(x) & (lattice)

Page 28: The HERMES experiment

• The relevant diagram:– helicity flip of quark & target

– chirally odd process

• Consequences:

– no gluon contributions….

Measuring transversity

+

+ -

-quark flip

target flip

2

1

… & measure single-spin asymmetries:

),(),(

),(),(1),(

shsh

shsh

Ts

hUT

NN

NN

PA

Page 29: The HERMES experiment

Single – Spin Asymmetries• Sivers effect: AUT driven by

orbital motion

struck quark:

measure L

• Collins effect: AUT driven by

fragmentation

process: measure

transversity

Page 30: The HERMES experiment

First data on transversity

)()(~)sin( )1(11 zHxh

zM

Ps

‘Sivers’:‘Collins’: )()(~)sin( 1)1(

1 zDxfzM

PTs

p

First evidence for non-zero Collins (h1) and Sivers effects (Lq)

HERMES, hep-ex/0408013

Page 31: The HERMES experiment

Parton Energy Loss

• Energy loss mechanisms:– hadron-nucleon rescattering

– quark-gluon propagation

(QCD: LPM effect)

• Relevance:– Verification novel QCD effect– Study of Quark-Gluon Plasma

in relativ. heavy-ion collisions.

3/1 AEhadron

3/22 AEparton

Page 32: The HERMES experiment

DIS on heavy nuclei• Hadron attenuation in 14N, 84Kr:

Search for quark-gluon plasmaData: EPJC 21 (2001) 599

Dashed: X. Wang et al. (2002)[QCD + LPM effect + tune g(x)]

Solid: Accardi et al. (2003)[N incl. Q2 rescaling effects]

Page 33: The HERMES experiment

Energy loss in hot matter 0 production in Au + Au

collisions at Phenix:

• Adjust energy loss to fit data (cf. cold matter)

x

z

y

mattercoldmatterhot gg

Page 34: The HERMES experiment

New data on hadron attenuation• Cronin effect:

– enhancement at

high pT2 (rescatt.)

• Attenuation for 0:

Search for quark-gluon plasma

Page 35: The HERMES experiment

Two-hadron attenuation• Evaluate:

• Partonic energy loss:

R2h →1

• Hadronic energy loss:

R2h ~ (R1h)2 0.5(Kr) - 0.8(N)

DzdNzzNd

AzdNzzNd

h zR)(

),(

)(),(

22

1

212

1

212

)(

Both partonic and hadronic energy loss processes are relevant

Page 36: The HERMES experiment

The HERMES pentaquark signal

• Quasi-real photoproduction: e+D X

• Decay mode: ps p

27.6 GeV e-beam

deuteron gas target

Invariant mass from identified

decay particles

Page 37: The HERMES experiment

+ Invariant mass peak

• Background: 3rd order polynomial

• M =1528 2.6 MeV

= 8 2 MeV (dominated by exp. resolution)

• Significance:– naïve:

– realistic:

Gauss + 3rd order

polynom.

7.3/ sigsig NN

7.4/ 22 bcksig NN

Page 38: The HERMES experiment

Background below the +

• Background: MC sim-ulation + resonances

• M = 1527 2.3 MeV

= 9.2 2 MeV

• Significance:– naïve: 6.1 – Realistic: 4.3

Gaussian + resonances + background fit

Pythia6 background

Mixed event background

additional *+ resonances (not in Pythia6)

Page 39: The HERMES experiment

Comparison of pentaquark data

• Mean: 1532.52.4 MeV

nK+

0spK

Average of all data:M = 1532.5 2.4 MeVIncludes latest from - JINR (hep-ex/0403044) - LPI (hep-ex/0404003)

Page 40: The HERMES experiment

Latest HERMES results on +

• Require additional in + mass spectrum

• Impose veto on K* and(1116)

Signal/background improves from 1:3 2 :1

Page 41: The HERMES experiment

Summary• HERMES results:

– Quark sea → unpolarized– Gluons → polarized // proton– First data on transversity:

Quarks carry orbital momentum?

– First exploration of GPDs– Partonic energy loss seen – Co-discovery pentaquarks

• The future:– End of HERA operations:

summer of 2007