30
The Handbook of Nanomedicine

The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

The Handbook of Nanomedicine

Page 2: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

The Handbookof Nanomedicine

Kewal K. Jain MD, FRACS, FFPM

Jain PharmaBiotech, Basel, Switzerland

Page 3: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Kewal K. JainJain PharmaBiotechBasel, [email protected]

ISBN: 978-1-60327-318-3 e-ISBN: 978-1-60327-319-0

Library of Congress Control Number: 2007940762

c©2008 Humana Press, a part of Springer Science+Business Media, LLCAll rights reserved. This work may not be translated or copied in whole or in part without the writtenpermission of the publisher (Humana Press, 999 Riverview Drive, Suite 208, Totowa, NJ 07512 USA),except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with anyform of information storage and retrieval, electronic adaptation, computer software, or by similar ordissimilar methodology now known or hereafter developed is forbidden.The use in this publication of trade names, trademarks, service marks, and similar terms, even if they arenot identified as such, is not to be taken as an expression of opinion as to whether or not they are subjectto proprietary rights.While the advice and information in this book are believed to be true and accurate at the date of goingto press, neither the authors nor the editors nor the publisher can accept any legal responsibility for anyerrors or omissions that may be made. The publisher makes no warranty, express or implied, with respectto the material contained herein.

Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Page 4: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Preface

Nanomedicine is the application of nanobiotechnology to clinical medicine.However, new technologies do not always enter medical practice directly. Nano-biotechnologies are being used to research the pathomechanism of disease, refinemolecular diagnostics, and help in the discovery, development, and delivery ofdrugs. In some cases, nanoparticles are the nanomedicines. The role is not confinedto drugs before devices, and surgical procedures are refined by nanobiotechnology,referred to as nanosurgery.

The Handbook of Nanomedicine covers the broad scope of this field. Startingwith the basics, the subject is developed to potential clinical applications, manyof which are still at an experimental stage. The prefix nano is used liberally andindicates the nanodimension of existing scientific disciples and medical special-ties. Two important components of nanomedicine are nanodiagnostics and nano-pharmaceuticals, which constitute the largest chapters.

Keeping in mind that the readers of the book will include nonmedical scientists,pharmaceutical personnel, as well as physicians, technology descriptions and medi-cal terminology are kept as simple as possible. As a single-author book, duplicationis avoided. I hope that readers at all levels will find it a concise, comprehensive, anduseful source of information.

There is voluminous literature relevant to nanomedicine. Selected references arequoted in the text.

Kewal K. Jain, MDBasel, Switzerland

v

Page 5: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

List of Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .xxiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1Basics of Nanobiotechnology in Relation to Nanomedicine . . . . . . . . . . 2Relation of Nanobiotechnology to Nanomedicine . . . . . . . . . . . . . . . . . 4Landmarks in the Evolution of Nanomedicine . . . . . . . . . . . . . . . . . . . 4

2 Nanotechnologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7Classification of Nanobiotechnologies . . . . . . . . . . . . . . . . . . . . . . . . 7Micro- and Nanoelectromechanical Systems . . . . . . . . . . . . . . . . . . . . 7

BioMEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9Microarrays and Nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Protein Nanoarrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10Microfluidics and Nanofluidics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Nanotechnology on a Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11Use of Nanotechnology in Microfluidics . . . . . . . . . . . . . . . . . . . . . 12

Visualization and Manipulation on Nanoscale . . . . . . . . . . . . . . . . . . . 14Atomic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14Magnetic Resonance Force Microscopy . . . . . . . . . . . . . . . . . . . . . 15Scanning Probe Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16Near-Field Scanning Optical Microscopy . . . . . . . . . . . . . . . . . . . . 16Multiple Single-Molecule Fluorescence Microscopy . . . . . . . . . . . . . 17Nanoparticle Characterization by HaloTM LM10 Technology . . . . . . . 17Nanoscale Scanning Electron Microscopy . . . . . . . . . . . . . . . . . . . . 18Optical Imaging with a Silver Superlens . . . . . . . . . . . . . . . . . . . . . 20

vii

Page 6: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

viii Contents

Fluorescence Resonance Energy Transfer . . . . . . . . . . . . . . . . . . . . 214Pi Microscope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21Principle and Applications of Cantilevers . . . . . . . . . . . . . . . . . . . . 22Surface Plasmon Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Quantum Dots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24Gold Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Silica Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26Lipoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27Assembly of Nanoparticles into Micelles . . . . . . . . . . . . . . . . . . . . . 27Biomedical Applications of Self-Assembly of Nanoparticles . . . . . . . 28Paramagnetic and Superparamagnetic Nanoparticles . . . . . . . . . . . . . 29Fluorescent Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30Bacterial Structures Relevant to Nanobiotechnology . . . . . . . . . . . . . 30Cubosomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31Dendrimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32DNA–Nanoparticle Conjugates . . . . . . . . . . . . . . . . . . . . . . . . . . . 34DNA Octahedron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Fullerenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35Nanoshells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37Nanopores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38Nanostructured Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39Networks of Gold Nanoparticles and Bacteriophage . . . . . . . . . . . . . 39

Nanotechnologies for Basic Research Relevant to Medicine . . . . . . . . . . 40NanoSystems Biology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40Molecular Motors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41Disguising Quantum Dots as Proteins for Cell Entry . . . . . . . . . . . . . 45

Application of Nanolasers in Life Sciences . . . . . . . . . . . . . . . . . . . . . 46Nanogenomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

DNA Nanotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47RNA Nanotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48Role of Nanobiotechnology in Identifying

Single-Nucleotide Polymorphisms . . . . . . . . . . . . . . . . . . . . . . . . 49Clinical Nanoproteomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Multiphoton Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50Nanoflow Liquid Chromatography . . . . . . . . . . . . . . . . . . . . . . . . . 50High-Field Asymmetric Waveform Ion Mobility Mass Spectrometry . . 50Nanoproteomics for Study of Misfolded Proteins . . . . . . . . . . . . . . . 51Use of Nanotube Electronic Biosensor in Proteomics . . . . . . . . . . . . 51Study of Protein Synthesis and Single-Molecule Processes . . . . . . . . . 52Nanofilter Array Chip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53Study of Single-Membrane Proteins at Subnanometer Resolution . . . . 54Nanoparticle–Protein Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . 54Self-Assembling Peptide Scaffold Technology for 3D Cell Culture . . . 54

Page 7: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents ix

Nanobiotechnology for Study of Mitochondria . . . . . . . . . . . . . . . . . . 55Nanomaterials for the Study of Mitochondria . . . . . . . . . . . . . . . . . . 56Study of Mitochondria with Nanolaser Spectroscopy . . . . . . . . . . . . . 56

Nanobiotechnology and Ion Channels . . . . . . . . . . . . . . . . . . . . . . . . 57Aquaporin Water Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Nanotechnology and Bioinformatics . . . . . . . . . . . . . . . . . . . . . . . . . 583D Nanomap of Synapse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Nanomanipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59Nanomanipulation by Combination of AFM and Other Devices . . . . . 60Surgery on Living Cells Using AFM with Nanoneedles . . . . . . . . . . . 60Optoelectronic Tweezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Nanomolecular Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63Nanodiagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Rationale of Nanotechnology for Molecular Diagnostics . . . . . . . . . . 64Nanoarrays for Molecular Diagnostics . . . . . . . . . . . . . . . . . . . . . . . . 64

NanoProTM System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65Nanofluidic/Nanoarray Devices to Detect

a Single Molecule of DNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66Self-Assembling Protein Nanoarrays . . . . . . . . . . . . . . . . . . . . . . . 67Fullerene Photodetectors for Chemiluminescence Detection

on Microfluidic Chips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68Protein Microarray for Detection of Molecules with Nanoparticles . . . 68Protein Nanobiochip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Nanoparticles for Molecular Diagnostics . . . . . . . . . . . . . . . . . . . . . . 69Gold Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69Quantum Dots for Molecular Diagnostics . . . . . . . . . . . . . . . . . . . . 70Magnetic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73Use of Nanocrystals in Immunohistochemistry . . . . . . . . . . . . . . . . . 76Imaging Applications of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . 76

Study of Chromosomes by Atomic Force Microscopy . . . . . . . . . . . . . . 81Applications of Nanopore Technology for Molecular Diagnostics . . . . . . 81DNA–Protein and DNA–Nanoparticle Conjugates . . . . . . . . . . . . . . . . 82Resonance Light Scattering Technology . . . . . . . . . . . . . . . . . . . . . . . 83DNA Nanomachines for Molecular Diagnostics . . . . . . . . . . . . . . . . . . 84Nanobarcodes Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Nanobarcode Particle Technology for SNP Genotyping . . . . . . . . . . . 85Qdot Nanobarcode for Multiplexed Gene Expression Profiling . . . . . . 85Biobarcode Assay for Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86Single-Molecule Barcoding System for DNA Analysis . . . . . . . . . . . 87

Nanoparticle-Based Colorimetric DNA Detection Method . . . . . . . . . . . 88SNP Genotyping with Gold Nanoparticle Probes . . . . . . . . . . . . . . . 88

Nanoparticle-Based Up-Converting Phosphor Technology . . . . . . . . . . . 89Surface-Enhanced Resonant Raman Spectroscopy . . . . . . . . . . . . . . . . 89

Page 8: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

x Contents

Near-Infrared (NIR)-Emissive Polymersomes . . . . . . . . . . . . . . . . . . . 90Nanobiotechnology for Detection of Proteins . . . . . . . . . . . . . . . . . . . 91

Captamers with Proximity Extension Assay for Proteins . . . . . . . . . . 91Nanobiosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Cantilevers as Biosensors for Molecular Diagnostics . . . . . . . . . . . . . 92Carbon Nanotube Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95FRET-Based DNA Nanosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Ion Channel Switch Biosensor Technology . . . . . . . . . . . . . . . . . . . 97Electronic Nanobiosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97Electrochemical Nanobiosensors . . . . . . . . . . . . . . . . . . . . . . . . . . 98Quartz Nanobalance Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . 99Viral Nanosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99PEBBLE Nanosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Microneedle-Mounted Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . 100Optical Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100Nanowire (NW) Biosensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105Nanoscale Erasable Biodetectors . . . . . . . . . . . . . . . . . . . . . . . . . . 107Future Issues in the Development of Nanobiosensors . . . . . . . . . . . . 108

Applications of Nanodiagnostics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109Nanotechnology for Detection of Biomarkers . . . . . . . . . . . . . . . . . . 109Perfluorocarbon Nanoparticles to Track Therapeutic Cells In Vivo . . . 110Monitoring of Implanted Neural Stem Cells Labeled with Nanoparticles 110Nanobiotechnologies for Single-Molecule Detection . . . . . . . . . . . . . 111Protease-Activated Quantum Dot Probes . . . . . . . . . . . . . . . . . . . . . 111Nanotechnology for Point-of-Care Diagnostics . . . . . . . . . . . . . . . . . 112Nanodiagnostics for the Battle Field . . . . . . . . . . . . . . . . . . . . . . . . 114Nanodiagnostics for Integrating Diagnostics with Therapeutics . . . . . . 114

Concluding Remarks About Nanodiagnostics . . . . . . . . . . . . . . . . . . . 115Future Prospects of Nanodiagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 116

4 Nanopharmaceuticals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119Nanobiotechnology for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . 119

Gold Nanoparticles for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . 120Use of Quantum Dots for Drug Discovery . . . . . . . . . . . . . . . . . . . . 120Nanolasers for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 120Cells Targeting by Nanoparticles with Attached Small Molecules . . . . 121Role of AFM for Study of Biomolecular Interactions

for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121Nanoscale Devices for Drug Discovery . . . . . . . . . . . . . . . . . . . . . . 122Nanotechnology Enables Drug Design at Cellular Level . . . . . . . . . . 123

Nanobiotechnology-Based Drug Development . . . . . . . . . . . . . . . . . . . 123Dendrimers as Drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123Fullerenes as Drug Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124Nanobodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

Role of Nanobiotechnology in the Future of Drug Discovery . . . . . . . . . 126

Page 9: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents xi

Nanobiotechnology in Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . 127Nanoscale Delivery of Therapeutics . . . . . . . . . . . . . . . . . . . . . . . . 127Nanobiotechnology Solutions to the Problems of Drug Delivery . . . . . 127Nanosuspension Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128Nanotechnology for Solubilization of Water-Insoluble Drugs . . . . . . . 129Improved Absorption of Drugs in Nanoparticulate Form . . . . . . . . . . 129Ideal Properties of Material for Drug Delivery . . . . . . . . . . . . . . . . . 129Nanomaterials and Nanobiotechnologies Used for Drug Delivery . . . . 130

Viruses as Nanomaterials for Drug Delivery . . . . . . . . . . . . . . . . . . . . 131Nanoparticle-Based Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Gold Nanoparticles as Drug Carriers . . . . . . . . . . . . . . . . . . . . . . . . 132Calcium Phosphate Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . 133Cyclodextrin Nanoparticles for Drug Delivery . . . . . . . . . . . . . . . . . 133Dendrimers for Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134Fullerene Conjugate for Intracellular Delivery of Peptides . . . . . . . . . 135Polymer Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135Ceramic Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136Nanocrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137Nanoparticles Bound Together in Spherical Shapes . . . . . . . . . . . . . . 138Encapsulating Water-Insoluble Drugs in Nanoparticles . . . . . . . . . . . 139Trojan Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140Self-Assembling Nanoparticles for Intracellular Drug Delivery . . . . . . 141Particle Replication in Nonwetting Templates . . . . . . . . . . . . . . . . . 141Flash NanoPrecipitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142Nanoparticle Combinations for Drug Delivery . . . . . . . . . . . . . . . . . 143

Liposomes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145Liposomes Incorporating Fullerenes . . . . . . . . . . . . . . . . . . . . . . . . 146Polymerized Liposomal Nanoparticle . . . . . . . . . . . . . . . . . . . . . . . 146Stabilization of Phospholipid Liposomes Using Nanoparticles . . . . . . 146Applications of Lipid Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 147Liposome–Nanoparticle Hybrids . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Nanospheres . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149Nanosphere Protein Cages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Nanovesicle Technology for Delivery of Peptides . . . . . . . . . . . . . . . . . 149Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

Lipid–protein Nanotubes for Drug Delivery . . . . . . . . . . . . . . . . . . . 151Single Wall Carbon Nanotubes for Drug Delivery . . . . . . . . . . . . . . . 151Halloysite Nanotubes for Drug Delivery . . . . . . . . . . . . . . . . . . . . . 152

Nanocochleates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153Nanobiotechnology-Based Transdermal Drug Delivery . . . . . . . . . . . . . 154

Delivery of Nanostructured Drugs from Transdermal Patches . . . . . . . 154NanoCyte Transdermal Drug Delivery System . . . . . . . . . . . . . . . . . 155Ethosomes for Transdermal Drug Delivery . . . . . . . . . . . . . . . . . . . 155

Nanoparticle-Based Drug Delivery to the Inner Ear . . . . . . . . . . . . . . . 156Pulmonary Drug Delivery by Nanoparticles . . . . . . . . . . . . . . . . . . . . 157Nasal Drug Delivery Using Nanoparticles . . . . . . . . . . . . . . . . . . . . . . 157

Page 10: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

xii Contents

Mucosal Drug Delivery with Nanoparticles . . . . . . . . . . . . . . . . . . . . . 158Future Prospects of Nanotechnology-Based Drug Delivery . . . . . . . . . . 158

Nanomolecular Valves for Controlled Drug Release . . . . . . . . . . . . . 159Nanomotors for Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5 Role of Nanotechnology in Biological Therapies . . . . . . . . . . . . . . . . 161Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Nanobiotechnology for Vaccine Delivery . . . . . . . . . . . . . . . . . . . . . 161Cell Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Nanobiotechnology and Cell Transplantation . . . . . . . . . . . . . . . . . . 163Nanobiotechnology in Stem Cell-Based Therapies . . . . . . . . . . . . . . 164

Gene Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165Nanoparticle-Mediated Gene Therapy . . . . . . . . . . . . . . . . . . . . . . . 165Nanorod Gene Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174Nanomachines for Gene Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . 174Application of Pulsed Magnetic Field

and Superparamagnetic Nanoparticles . . . . . . . . . . . . . . . . . . . . . 174Nanocomposites for Gene Therapy . . . . . . . . . . . . . . . . . . . . . . . . . 175Nonionic Polymeric Micelles for Oral Gene Delivery . . . . . . . . . . . . 175Nanocarriers for Simultaneous Delivery of Anticancer Drugs and DNA 176

Antisense Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176Antisense Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177Dendrimers for Antisense Drug Delivery . . . . . . . . . . . . . . . . . . . . . 177Polymethacrylate Nanoparticles for Antisense Delivery System . . . . . 178

RNAInterference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Nanoparticle siRNA Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178Intravenous Targeted Nanoparticles Containing siRNA . . . . . . . . . . . 179Delivery of siRNA by Nanosize Liposomes . . . . . . . . . . . . . . . . . . . 180Quantum Dots to Monitor RNAi Delivery . . . . . . . . . . . . . . . . . . . . 180

6 Nanodevices for Medicine and Surgery . . . . . . . . . . . . . . . . . . . . . . 183Nanodevices for Clinical Nanodiagnostics . . . . . . . . . . . . . . . . . . . . . 183

Nanoendoscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183Application of Nanotechnology in Radiology . . . . . . . . . . . . . . . . . . 184High-Resolution Ultrasound Imaging Using Nanoparticles . . . . . . . . . 185

Nanobiotechnology and Drug Delivery Devices . . . . . . . . . . . . . . . . . . 185Coating of Implants by Ultrafine Layers of Polymers . . . . . . . . . . . . 185Nanoencapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186Microcontainer Delivery Systems for Cell Therapy . . . . . . . . . . . . . . 187Nanopore Membrane in Implantable Titanium Drug Delivery Device . . 188Nanovalves for Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189Nanochips for Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

Tools for Nanosurgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190Nanotechnology for Hemostasis During Surgery . . . . . . . . . . . . . . . 190

Page 11: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents xiii

Catheters with Biosensors for Minimally Invasive Surgery . . . . . . . . . 191Nanoscale Laser Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192Nanorobotics for Surgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

7 Nano-Oncology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195Nanotechnology for Detection of Cancer . . . . . . . . . . . . . . . . . . . . . . 195

QDs for Cancer Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196Dendrimers for Sensing Cancer Cell Apoptosis . . . . . . . . . . . . . . . . 196Gold Nanoparticles for Cancer Diagnosis . . . . . . . . . . . . . . . . . . . . 197Nanotubes for Detection of Cancer Proteins . . . . . . . . . . . . . . . . . . . 198Nanoparticles for the Optical Imaging of Tumors . . . . . . . . . . . . . . . 198Nanolaser Spectroscopy for Detection of Cancer in Single Cells . . . . . 199Nanotechnology-Based Single-Molecule Assays for Cancer . . . . . . . . 199Implanted Magnetic Sensing for Cancer . . . . . . . . . . . . . . . . . . . . . 200Nanowire Biochips for Early Detection of Cancer Biomarkers . . . . . . 200

Nanotechnology-Based Imaging for Management of Cancer . . . . . . . . . 201Nanoparticle-MRI for Tracking Dendritic Cells in Cancer Therapy . . . 201Nanoparticle-CT scan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201QDs Aid Lymph Node Mapping in Cancer . . . . . . . . . . . . . . . . . . . 202Nanoparticles Designed for Dual-Mode Imaging of Cancer . . . . . . . . 203Role of Nanoparticle-Based Imaging in Oncology Clinical Trials . . . . 203

Nanotechnology for Cancer Therapy . . . . . . . . . . . . . . . . . . . . . . . . . 204Nanoparticles for Targeting Tumors . . . . . . . . . . . . . . . . . . . . . . . . 204Nanoshell-Based Cancer Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . 205Nanobody-Based Cancer Therapy . . . . . . . . . . . . . . . . . . . . . . . . . 207Nanobomb for Cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

Nanobiotechnology-Based Drug Delivery in Cancer . . . . . . . . . . . . . . . 208Nanoparticle Formulations for Drug Delivery in Cancer . . . . . . . . . . . 208Nanoparticles for Targeted Delivery of Drugs into the Cancer Cells . . . 220Nanoparticle-Based Anticancer Drug Delivery to Overcome MDR . . . 231Devices for Nanotechnology-Based Cancer Therapy . . . . . . . . . . . . . 232Nanoparticles Combined with Physical Agents for Tumor Ablation . . . 233RNA Nanotechnology for Delivery of Cancer Therapeutics . . . . . . . . 238Nanocarriers for Simultaneous Delivery of Multiple Anticancer Agents 239

Combination of Diagnostics and Therapeutics for Cancer . . . . . . . . . . . 239Biomimetic Nanoparticles Targeted to Tumors . . . . . . . . . . . . . . . . . 239Dendrimer Nanoparticles for Targeting and Imaging Tumors . . . . . . . 240Gold Nanorods for Diagnosis plus Photothermal Therapy of Cancer . . 240Magnetic Nanoparticles for Imaging as Well as Therapy of Cancer . . . 241pHLIP Nanotechnology for Detection and Targeted Therapy of Cancer 241Targeted Therapy with Magnetic Nanomaterials Guided by Antibodies 242Ultrasonic Tumor Imaging and Targeted Chemotherapy

by Nanobubbles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242Nanoparticles for Chemoradioprotection . . . . . . . . . . . . . . . . . . . . . . . 243

Page 12: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

xiv Contents

Nanosensor Device as an Aid to Cancer Surgery . . . . . . . . . . . . . . . . . 244A Cancer-Killing Device Based on Nanotechnology . . . . . . . . . . . . . . . 244

8 Nanoneurology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245Nanobiotechnology for Study of the Nervous System . . . . . . . . . . . . . . 245

Nanowires for Monitoring Brain Activity . . . . . . . . . . . . . . . . . . . . 245Nanoparticles and MRI for Macrophage Tracking in the CNS . . . . . . . 246

Nanotechnology-Based Drug Delivery to the CNS . . . . . . . . . . . . . . . . 247Nanoencapsulation for Delivery of Vitamin E for CNS Disorders . . . . 247Nanoparticle Technology for Drug Delivery Across BBB . . . . . . . . . . 247Delivery Across BBB Using NanoDelTM Technology . . . . . . . . . . . . 248NanoMed Technology to Mask BBB-Limiting Characteristics

of Drugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249Nanotechnology-Based Devices and Implants for CNS . . . . . . . . . . . 249

Nanoparticles and MRI for Tracking Stem Cell Therapy of CNS . . . . . . 250Application of Nanotechnology for Neuroprotection . . . . . . . . . . . . . . . 250

Fullerene-Based Neuroprotective Antioxidants . . . . . . . . . . . . . . . . . 251Ceria Nanoparticles as Neuroprotective Antioxidants . . . . . . . . . . . . 251

Application of Nanotechnology for Neuroregeneration . . . . . . . . . . . . . 252Nanotube–Neuron Electronic Interface . . . . . . . . . . . . . . . . . . . . . . . . 252

Photochemical Activation of Nanoparticle-Film Neuronal Interface . . . 253Nanoneurosurgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254

Femtolaser Neurosurgery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254Nanofibers as an Aid to CNS Regeneration by Neural Progenitor Cells 254Nanofiber Brain Implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255Nanoparticles as an Aid to Neurosurgery . . . . . . . . . . . . . . . . . . . . . 255Nanoscaffold for CNS Repair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256Nanoparticles for Repair of Spinal Cord Injury . . . . . . . . . . . . . . . . . 257Nanobiotechnology for Brain Tumor Management . . . . . . . . . . . . . . 258

9 Nanocardiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261Nanotechnology-Based Diagnosis and Treatment . . . . . . . . . . . . . . . . . 261

Use of Perfluorocarbon Nanoparticles in Cardiovascular Disorders . . . 261Cardiac Monitoring in Sleep Apnea . . . . . . . . . . . . . . . . . . . . . . . . 262Detection and Treatment of Atherosclerotic Plaques in the Arteries . . . 262

Nanotechnology-Based Therapeutics for Cardiovascular Diseases . . . . . 263Nanolipoblockers for Atherosclerotic Arterial Plaques . . . . . . . . . . . . 263

Nanotechnology-Based Drug Delivery in Cardiovascular Diseases . . . . . 263Liposomal Nanodevices for Targeted Cardiovascular Drug Delivery . . 263Antirestenosis Drugs Encapsulated in Biodegradable Nanoparticles . . . 264Nanocoated Drug-Eluting Stents . . . . . . . . . . . . . . . . . . . . . . . . . . 264Nanopores to Enhance Compatibility of Drug-Eluting Stents . . . . . . . 265Low Molecular Weight Heparin-Loaded Polymeric Nanoparticles . . . . 265

Page 13: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents xv

Injectable Peptide Nanofibers for Myocardial Ischemia . . . . . . . . . . . 266Nanotechnology Approach to the Vulnerable Plaque as Cause

of Cardiac Arrest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266IGF-1 Delivery by Nanofibers to Improve Cell Therapy for Myocardial

Infarction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267Tissue Engineering and Regeneration of the Cardiovascular System . . . . 267Nanobiotechnology in Cardiovascular Surgery . . . . . . . . . . . . . . . . . . . 268

Restenosis After Percutaneous Coronary Angioplasty . . . . . . . . . . . . 268Nanotechnology-Based Personalized Cardiology . . . . . . . . . . . . . . . . . 269

Monitoring for Disorders of Blood Coagulation . . . . . . . . . . . . . . . . 270

10 Nano-Orthopedics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Reducing Reaction to Orthopedic Implants . . . . . . . . . . . . . . . . . . . 271Enhancing the Activity of Bone Cells on the Surface

of Orthopedic Implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Nanobone Implants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272Synthetic Nanomaterials as Bone Implants . . . . . . . . . . . . . . . . . . . 273Carbon Nanotubes as Scaffolds for Bone Growth . . . . . . . . . . . . . . . 273Aligning Nanotubes to Improve Artificial Joints . . . . . . . . . . . . . . . . 274Cartilage Disorders of Knee Joint . . . . . . . . . . . . . . . . . . . . . . . . . . 275

11 Nanomicrobiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277Nanobiotechnology and Virology . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Study of Interaction of Nanoparticles with Viruses . . . . . . . . . . . . . . 277Study of Pathomechanism of Viral Diseases . . . . . . . . . . . . . . . . . . . 278Nanofiltration to Remove Viruses from Plasma Transfusion Products . . 278

Role of Nanobacteria in Human Diseases . . . . . . . . . . . . . . . . . . . . . . 279Nanobacteria and Kidney Stone Formation . . . . . . . . . . . . . . . . . . . 280Nanobacteria in Cardiovascular Disease . . . . . . . . . . . . . . . . . . . . . 280

Nanobiotechnology for Detection of Infectious Agents . . . . . . . . . . . . . 281Sensing of Phage-Triggered Ion Cascade for Detection of Bacteria . . . 281Viral Detection by Surface-Enhanced Raman Scattering . . . . . . . . . . 282Detection of Single Virus Particles . . . . . . . . . . . . . . . . . . . . . . . . . 282Fluorescent QD Probes for Detection of Respiratory Viral Infections . . 283

Nanotechnology-Based Microbicidal Agents . . . . . . . . . . . . . . . . . . . . 285Nanoscale Bactericidal Powders . . . . . . . . . . . . . . . . . . . . . . . . . . . 285Nanotubes for Detection and Destruction of Bacteria . . . . . . . . . . . . . 286Carbon Nanotubes for Protection Against Anthrax Attack . . . . . . . . . 287Nanoemulsions as Microbicidal Agents . . . . . . . . . . . . . . . . . . . . . . 287Silver Nanoparticle Coating as Prophylaxis Against Infection . . . . . . . 288

Nanotechnology-Based Antiviral Agents . . . . . . . . . . . . . . . . . . . . . . 289Nanocoating for Antiviral Effect . . . . . . . . . . . . . . . . . . . . . . . . . . 289Fullerenes as Antiviral Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

Page 14: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

xvi Contents

Nanoviricides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290Nanotechnology-Based Vaccines . . . . . . . . . . . . . . . . . . . . . . . . . . 292Nanofiltration of Blood in Viral Diseases . . . . . . . . . . . . . . . . . . . . . 293

Nanoparticles to Combat Biological Warfare Agents . . . . . . . . . . . . . . 293

12 Nano-Ophthalmology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295Nanocarriers for Ocular Drug Delivery . . . . . . . . . . . . . . . . . . . . . . . . 295

Nanoparticle-Based Topical Drug Application to the Eye . . . . . . . . . . 295DNA Nanoparticles for Nonviral Gene Transfer to the Eye . . . . . . . . . 298

Nanotechnology-Based Therapeutics for Eye Diseases . . . . . . . . . . . . . 298Use of Dendrimers in Ophthalmology . . . . . . . . . . . . . . . . . . . . . . . 298Nanotechnology for Prevention of Neovascularization . . . . . . . . . . . . 299Nanobiotechnology for Regeneration of the Optic Nerve . . . . . . . . . . 300DNA Nanoparticles for Gene Therapy of Retinal

Degenerative Disorders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300Nanobiotechnology for Treatment of Glaucoma . . . . . . . . . . . . . . . . 300

13 Regenerative Medicine and Tissue Engineering . . . . . . . . . . . . . . . . 303Nanobiotechnology in Tissue Engineering . . . . . . . . . . . . . . . . . . . . . 303

Three-Dimensional Nanofilament-Based Scaffolds . . . . . . . . . . . . . . 304Electrospinning Technology for Bionanofabrication . . . . . . . . . . . . . 305Nanomaterials for Combining Tissue Engineering and Drug Delivery . 305

Nanobiotechnology for Organ Replacement and Assisted Function . . . . . 306Exosomes for Drug-Free Organ Transplants . . . . . . . . . . . . . . . . . . . 306Nanobiotechnology and Organ-Assisting Devices . . . . . . . . . . . . . . . 307Nanotechnology-Based Human Nephron Filter for Renal Failure . . . . 308Blood-Compatible Membranes for Renal Dialysis . . . . . . . . . . . . . . . 308

14 Miscellaneous Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311Nanodermatology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Nanotechnology-Based Products for Skin Disorders . . . . . . . . . . . . . 311Nanopulmonology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

Nanoparticles for Drug Delivery to the Lungs . . . . . . . . . . . . . . . . . 313Nanoparticle Drug Formulations for Spray Inhalation . . . . . . . . . . . . 314In Vivo Lung Gene Transfer Using Compacted DNA Nanoparticles . . . 314

Nanomedical Aspects of Oxidative Stress . . . . . . . . . . . . . . . . . . . . . . 315Nanoparticle Antioxidants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315Antioxidant Nanoparticles for Treating Diseases Due

to Oxidative Stress . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315Nanogeriatrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316Nanoimmunology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316Nanotechnology for Wound Healing . . . . . . . . . . . . . . . . . . . . . . . . . 317Nanotechnology-Based Management of Diabetes Mellitus . . . . . . . . . . 318

Nanosensors for Glucose Monitoring . . . . . . . . . . . . . . . . . . . . . . . 318

Page 15: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Contents xvii

Nanotechnology-Based Methods for Delivery of Antidiabetic Agents . 319Nanotechnology-Based Device for Insulin Delivery . . . . . . . . . . . . . 319

Application of Nanotechnology to Pain Therapeutics . . . . . . . . . . . . . . 320Nanodentistry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320

Bonding Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320Dental Caries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321Nanospheres for Dental Hypersensitivity . . . . . . . . . . . . . . . . . . . . . 322Nanomaterials for Dental Filling . . . . . . . . . . . . . . . . . . . . . . . . . . 322

Nanobiotechnology and Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . 323Nanobiotechnology and Food Industry . . . . . . . . . . . . . . . . . . . . . . 323Role of Nanobiotechnology in Personalized Nutrition . . . . . . . . . . . . 324

Nanobiotechnology for Public Health . . . . . . . . . . . . . . . . . . . . . . . . . 324Role of Nanobiotechnology in Biodefense . . . . . . . . . . . . . . . . . . . . . 325

Nanosuspension Formulations for TreatingBioweapon-Mediated Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Use of Antidotes as Nanoparticulate Formulations . . . . . . . . . . . . . . 325Removal of Toxins from Blood . . . . . . . . . . . . . . . . . . . . . . . . . . . 326Blood Substitutes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327

15 Ethical, Safety, and Regulatory Issues of Nanomedicine . . . . . . . . . . 329Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329Ethical, Legal, and Social Implications of Nanomedicine . . . . . . . . . . . 329

Nanoethics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330Safety Concerns About Nanobiotechnology . . . . . . . . . . . . . . . . . . . . 331

Toxicity of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331Safety of Carbon Nanotubes in the Body . . . . . . . . . . . . . . . . . . . . . 333Fate of Nanoparticles in the Human Body . . . . . . . . . . . . . . . . . . . . 334Pulmonary Effects of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . 335Blood Compatibility of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . 336Transfer of Nanoparticles from Mother to Fetus . . . . . . . . . . . . . . . . 337Cytotoxicity of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338Nanoparticle Deposits in the Brain . . . . . . . . . . . . . . . . . . . . . . . . . 338Measures to Reduce Toxicity of Nanoparticles . . . . . . . . . . . . . . . . . 339Concluding Remarks on Safety Issues of Nanoparticles . . . . . . . . . . . 340

Research into Environmental Effects of Nanoparticles . . . . . . . . . . . . . 340Work at NanoSafety Laboratories Inc, UCLA . . . . . . . . . . . . . . . . . . 340Center for Biological and Environmental Nanotechnology . . . . . . . . . 341Efforts by Nanotechnology Companies to Establish Safety

of Nanoparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342Public Perceptions of the Safety of Nanotechnology . . . . . . . . . . . . . . . 343

Evaluation of Consumer Exposure to Nanoscale Materials . . . . . . . . . 344FDA Regulation of Nanobiotechnology Products . . . . . . . . . . . . . . . . . 345

FDA’s Nanotechnology Task Force . . . . . . . . . . . . . . . . . . . . . . . . . 347FDA Collaboration with Agencies/Organizations Relevant

to Nanotechnology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Page 16: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

xviii Contents

Regulation of Nanotechnology in the European Union . . . . . . . . . . . . . 349UK Government Policy on Safety of Nanoparticles . . . . . . . . . . . . . . 350Safety Recommendations of the Royal Society of UK . . . . . . . . . . . . 350European Commission and Safety of Nanocosmetics . . . . . . . . . . . . . 351

16 Worldwide Development and Commercialization of Nanomedicine . . 353Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353Markets for Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353

Impact of Nanobiotechnology on Markets for Current Pharmaceuticals 353Nanobiotechnology in the European Union . . . . . . . . . . . . . . . . . . . . . 354

Nano2Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355European Technology Platform on Nanomedicine . . . . . . . . . . . . . . . 356

Nanobiotechnology in Australia . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357Nanomedicine in the Developing World . . . . . . . . . . . . . . . . . . . . . . . 357Big Pharma and Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358Drivers for the Development of Nanomedicine . . . . . . . . . . . . . . . . . . 358

Collaboration of Chemical Industry and the Government . . . . . . . . . . 359Companies Using Nanotechnology for Healthcare . . . . . . . . . . . . . . . . 359

17 Research and Education in Nanomedicine . . . . . . . . . . . . . . . . . . . . 363Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Education of Healthcare Professionals . . . . . . . . . . . . . . . . . . . . . . 363Education of the Public . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 363

Nanobiotechnology Research in the Academic Centers . . . . . . . . . . . . . 364

18 Future of Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369Future Potential of Nanomedicine . . . . . . . . . . . . . . . . . . . . . . . . . . . 369US Federal Funding for Nanobiotechnology . . . . . . . . . . . . . . . . . . . . 369

Nanomedicine Initiative of NIH . . . . . . . . . . . . . . . . . . . . . . . . . . . 370NCI Alliance for Nanotechnology in Cancer . . . . . . . . . . . . . . . . . . 371Research in Cancer Nanotechnology Sponsored by the NCI . . . . . . . . 372Global Enterprise for Micro-Mechanics and Molecular Medicine . . . . 375

Role of Nanobiotechnology in Personalized Medicine . . . . . . . . . . . . . 376Nanobiotechnology for Personalized Management of Cancer . . . . . . . 376

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

Page 17: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

List of Figures

1.1 Relationship of nanobiotechnology to nanomedicine . . . . . . . . . . . . . 42.1 The core, branching, and surface molecules of dendrimers . . . . . . . . . 322.2 Concept of nanopore-based sequencing . . . . . . . . . . . . . . . . . . . . . . 393.1 Scheme of biobarcode assay for prostate-specific antigen (PSA). . . . . 873.2 Scheme of a novel optical mRNA biosensor . . . . . . . . . . . . . . . . . . 1034.1 Bacteria plus nanoparticles for drug delivery into cells . . . . . . . . . . . 1457.1 Use of micelles for drug delivery . . . . . . . . . . . . . . . . . . . . . . . . . . 21411.1 Schematic representation of NanoViricide attacking a virus particle.

(A) NanoViricide micelles attach to the virus at multiple points withnanovelcro effect and start engulfing the virus. (B) Flexible micellecoats and engulfs the virus particle, dismantles and neutralizesit, and fuses with viral lipid coat. Reproduced by permission ofNanoViricides Inc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

18.1 Role of nanobiotechnology in personalized management of cancer . . . 376

xix

Page 18: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

List of Tables

1.1 Nanomedicine in the twenty-first century . . . . . . . . . . . . . . . . . . . . 21.2 Dimensions of various objects in nanoscale . . . . . . . . . . . . . . . . . . . 31.3 Historical landmarks in the evolution of nanomedicine . . . . . . . . . . . 52.1 Classification of basic nanobiotechnologies . . . . . . . . . . . . . . . . . . . 82.2 Applications of optical nanoscopy . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 Applications of cantilever technology . . . . . . . . . . . . . . . . . . . . . . . 232.4 Nanobiotechnological applications of S-layers . . . . . . . . . . . . . . . . . 312.5 Potential applications of dendrimers in nanomedicine . . . . . . . . . . . . 342.6 Nanomaterials for the study of mitochondria . . . . . . . . . . . . . . . . . . 563.1 Nanotechnologies with potential applications in molecular diagnostics 653.2 Nanobiotechnologies for single-molecule detection . . . . . . . . . . . . . . 1114.1 Nanomaterials and nanobiotechnologies used for drug delivery . . . . . . 1305.1 Examples of application of nanoparticles for gene therapy . . . . . . . . . 1667.1 Classification of nanobiotechnology approaches to drug delivery in

cancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20914.1 Applications of nanotechnologies in food and nutrition sciences . . . . . 32316.1 Drivers for the development of nanomedicine . . . . . . . . . . . . . . . . . 35916.2 Companies using nanotechnology for healthcare and therapeutics . . . . 36017.1 Noncommercial institutes/laboratories involved in nanobiotechnology . 364

xxi

Page 19: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

List of Abbreviations

AFM atomic force microscopyBBB blood–brain barrierBioMEMS biological micro electromechanical systemsCNS central nervous systemDNA deoxyribonucleic acidDPN dip pen nanolithographyELISA enzyme-linked immunosorbent assayFDA Food and Drug Administration (USA)FRET fluorescence resonance energy transferLNS Lipid nanosphereMEMS micro electromechanical systemsMRI magnetic resonance imagingNCI National Cancer Institute (USA)NIH National Institutes of Health (USA)NIR near-infraredNP nanoparticleODN oligodeoxynucleotidePAMAM polyamidoamine (dendrimers)PCR polymerase chain reactionPEG polyethylene glycolPEI polyethyleniminePOC point-of-careQD quantum dotRLS resonance light scatteringRNA ribonucleic acidSNP single nucleotide polymorphismSPM scanning probe microscopeSPR surface plasmon resonance

xxiii

Page 20: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Chapter 1Introduction

Medicine is constantly evolving and new technologies are incorporated into thediagnosis and treatment of patients. This process is sometimes slow and there canbe a gap of years before new technologies are integrated in medical practice. Thereasons for the delay are as follows:

� Establishing the safety and efficacy of innovative treatments is a long process,particularly with clinical trials and regulatory reviews.

� The current generation of medical practitioners are still not well oriented towardbiotechnology and conservative elements of the profession may be slow in ac-cepting and learning about nanobiotechnology, which is at the cutting edge ofbiotechnology.

� The high cost of new technologies is a concern for healthcare providers. Cost–benefit studies are needed to convince the skeptics that some of the new tech-nologies may actually reduce the overall cost of healthcare.

Molecular medicine is already a recognized term. It should not be considered asubspecialty of medicine as molecular technologies would have an overall impacton the evolution of medicine. Recognition of the usefulness of biotechnology hasenabled progress in the concept of personalized medicine, which again is not abranch of medicine but simply indicates a trend in healthcare and simply meansthe prescription of specific treatments and therapeutics best suited for an individ-ual (Jain 2007b). Various nanomachines and other nano-objects that are currentlyunder investigation in medical research and diagnostics will soon find applica-tions in the practice of medicine. Nanobiotechnologies are being used to createand study models of human disease, particularly immune disorders. Introductionof nanobiotechnologies in medicine will not create a separate branch of medicinebut simply implies improvement in diagnosis as well as therapy and can be referredto as nanomedicine.

Nanomedicine

Nanomedicine is the application of nanotechnology to medicine and is based onthree mutually overlapping and progressively more powerful molecular technolo-gies (Freitas 2002):

K.K. Jain, The Handbook of Nanomedicine, 1C© 2008 Humana Press, Totowa, NJ

Page 21: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

2 1 Introduction

Table 1.1 Nanomedicine in the twenty-first century

NanodiagnosticsMolecular diagnosticsNanoendoscopyNanoimaging

Nanotechnology-based drugsDrugs with improved methods of delivery

Regenerative medicineTissue engineering with nanotechnology

Transplantation medicineExosomes from donor dendritic cells for drug-free organ transplantsNanorobotic treatmentsVascular surgery by nanorobots introduced into the vascular systemNanorobots for detection and destruction of cancer

ImplantsBioimplantable sensors that bridge the gap between electronic and neurological circuitryDurable rejection-resistant artificial tissues and organsImplantations of nanocoated stents in coronary arteries to elute drugs and to prevent reocclusionImplantation of nanopumps for drug delivery

Minimally invasive surgery using cathetersMiniaturized nanosensors implanted in catheters to provide real-time data to surgeonsNanoSurgery by integration of nanoparticles and external energy

Source: Jain PharmaBiotech.

1. Nanoscale-structured materials and devices, which hold great promise foradvanced diagnostics biosensors, targeted drug delivery, and smart drugs

2. Benefits of molecular medicine via genomics, proteomics, and artificially engi-neered microorganisms

3. Molecular machine systems such as nanorobots that will allow instant diagnosiswith destruction of cause of pathology, chromosome replacement and individualcell surgery in vivo, and the efficient augmentation and improvement in naturalphysiological function

Current research is exploring the fabrication of designed nanostructures, nanomo-tors, microscopic energy sources, and nanocomputers at the molecular scale, alongwith the means to assemble them into larger systems, economically and in greatnumbers. Some of the applications of nanobiotechnology in medicine are given inTable 1.1.

Basics of Nanobiotechnology in Relation to Nanomedicine

Nanotechnology (Greek word nano means dwarf) is the creation and utilization ofmaterials, devices, and systems through the control of matter on the nanometer

Page 22: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Basics of Nanobiotechnology in Relation to Nanomedicine 3

length scale, i.e., at the level of atoms, molecules, and supramolecular structures.Nanotechnology, as defined by the National Nanotechnology Initiative(http://www.nano.gov/), is the understanding and control of matter at dimensionsof roughly 1–100 nm, where unique phenomena enable novel applications. Encom-passing nanoscale science, engineering, and technology, nanotechnology involvesimaging, measuring, modeling, and manipulating matter at this length scale. It is thepopular term for the construction and utilization of functional structures with at leastone characteristic dimension measured in nanometers—a nanometer is one billionthof a meter (10–9 m). This is roughly four times the diameter of an individual atomand the bond between two individual atoms is 0.15 nm long. Proteins are 1–20 nmin size. The definition of “small,” another term used in relation to nanotechnology,depends on the application but can range from 1 nm to 1 mm. Nano is not the small-est scale; further down the power of ten are angstrom (0.1 nm), pico, femto, atto,and zepto. By weight, the mass of a small virus is about 10 ag. An attogram is onethousandth of a femtogram, which is one thousandth of a picogram, which is onethousandth of a nanogram. The dimensions of various objects in nanoscale are givenin Table 1.2.

Given the inherent nanoscale functional components of living cells, it was in-evitable that nanotechnology will be applied in biotechnology, giving rise to the termnanobiotechnology. A brief introduction will be given to basic nanotechnologiesfrom physics and chemistry, which are now being integrated into molecular biologyto advance the field of nanobiotechnology. The aim is to understand the biologicalprocesses to improve diagnosis and treatment of diseases. Technical achievements

Table 1.2 Dimensions ofvarious objects in nanoscale

Object Dimension (nm)

Width of a hair 50,000

Red blood cell 2,500

Vesicle in a cell 200

Bacterium 1,000

Virus 100

Exosomes (nanovesiclesshed by dendritic cells)

65–100

Width of DNA 2.5

Ribosome 2–4

A base pair in humangenome

0.4

Proteins 1–20

Amino acid (e.g.,tryptophan, the largest)

1.2 (longest measurement)

Aspirin molecule 1

An individual atom 0.25

Source: Jain PharmaBiotech.

Page 23: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

4 1 Introduction

in nanotechnology are being applied to improve drug discovery, drug delivery, andpharmaceutical manufacturing. A vast range of applications has spawned many newterms, which are defined as they are described in various chapters.

Relation of Nanobiotechnology to Nanomedicine

Nanobiotechnology already has an impact on healthcare. Research on biosystems atthe nanoscale has created one of the most dynamic science and technology domainsat the confluence of physical sciences, molecular engineering, biology, biotech-nology, and medicine (Roco 2003). Numerous applications in the pharmaceuticalindustry such as drug discovery and drug delivery can be covered under the term“nanobiopharmaceuticals.” The relationship of nanobiotechnology to nanomedicineand related technologies is depicted graphically in Fig 1.1.

Landmarks in the Evolution of Nanomedicine

Historical landmarks in the evolution of nanomedicine are listed in Table 1.3.

Fig. 1.1 Relationship of nanobiotechnology to nanomedicineSource: Jain PharmaBiotech.

Page 24: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Landmarks in the Evolution of Nanomedicine 5

Table 1.3 Historical landmarks in the evolution of nanomedicine

Year Landmark

1905 Einstein published a paper that estimated the diameter of a sugar molecular asabout 1 nm

1931 Max Knoll and Ernst Ruska discovered the electron microscope—enablessubnanomolar imaging

1959 Nobel Laureate Richard Feynman gave a lecture entitled “There’s Plenty of Roomat the Bottom,” at the Annual Meeting of the American Physical Society. Heoutlined the principle of manipulating individual atoms using larger machines tomanufacture increasingly smaller machines (Feynman 1992)

1974 Start of development of molecular electronics by Aviram and Rattner (Hush 2003)1974 Norio Tanaguchi of Japan coined the word “nanotechnology”1979 Colloidal gold nanoparticles used as electron-dense probes in electron microscopy

and immunocytochemistry (Batten and Hopkins 1979)1981 Conception of the idea of designing molecular machines analogous to enzymes

and ribosomes (Drexler 1981)1984 The first description the term dendrimer and the method of preparation of

poly(amidoamine) dendrimers (Tomalia et al 1985)1985 Discovery of buckyballs (fullerenes) by Robert Curl, Richard Smalley, and Harold

Kroto, which led to the award of the 1996 Nobel Prize in Chemistry (Smalley1985; Curl et al 1997)

1987 Cancer targeting with nanoparticles coated with monoclonal antibodies (Douglaset al 1987)

1987 Publication of the visionary book on nanotechnology potential Engines of Creation(Drexler 1987)

1988 Maturation of the field of supramolecular chemistry relevant to nanotechnology:construction of artificial molecules that interact with each other leading to awardof the Nobel prize (Lehn 1988). Awarded the Nobel Prize

1990 Atoms visualized by the scanning tunneling microscope discovered in the 1980s atthe IBM Zurich Laboratory (Zurich, Switzerland), which led to the award of aNobel Prize (Eigler and Schweizer 1990)

1991 Discovery of carbon nanotubes (Iijima et al 1992)1994 Nanoparticle-based drug delivery (Kreuter 1994)1995 FDA approved Doxil, a liposomal formulation of doxorubicin, as an intravenous

chemotherapy agent for Kaposi’s sarcoma. Drug carried by nanosize liposomesis less toxic with targeted delivery

1997 Founding of the first molecular nanotechnology company—Zyvex Corporation1998 First use of nanocrystals as biological labels, which were shown to be superior to

existing fluorophores (Bruchez et al 1998)1998 Use of DNA-gelatin nanospheres for controlled gene delivery (Truong-Le et al

1998)1998 Use of the term “nanomedicine” in publications (Freitas 1998)2003 National Nanotechnology Initiative announced in the United States (Roco 2003)2000 First FDA approval of a product incorporating the NanoCrystal R© technology

(Elan, King of Prussia, PA, USA), a solid-dose formulation of theimmunosuppressant sirolimus—Rapamune R© (Wyeth)

2003 The US Senate passed the Nanotechnology Research and Development Act,making the National Nanotechnology Initiative a legal entity, and authorized

2005 FDA approved AbraxaneTM, a taxane based on nanotechnology, for the treatmentof breast cancer. The nanoparticle form of the drug overcomes insolubilityproblems encountered with paclitaxel and avoids the use of toxic solvents

Source: Jain PharmaBiotech.

Page 25: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Chapter 2Nanotechnologies

Introduction

This chapter will focus on nanobiotechnologies that are relevant to applications inbiomedical research, diagnostics, and medicine. Invention of the microscope rev-olutionalized medicine by enabling the detection of microorganisms and study ofhistopathology of disease. Microsurgery was a considerable refinement over crudemacrosurgery and opened up the possibility of using procedures that were not car-ried out previously or were associated with high mortality and morbidity. Nanotech-nologies, by opening up the world beyond microscale, will have a similar impact onmedicine and surgery. Various nanobiotechnologies are described in detail in a spe-cial report on this topic (Jain 2007e). Those relevant to understanding of diseases,diagnosis, development of new drugs, and management of diseases are describedbriefly in this chapter.

Classification of Nanobiotechnologies

It is not easy to classify the vast range of nanobiotechnologies. Some just representmotion on a nanoscale, but most of them are based on nanoscale structures, whichcome in a variety of shapes and sizes. A few occur in nature, but most are engi-neered. The word nano is prefixed to just about anything that deals with nanoscale.It is not just nanobiotechnology but many other disciplines such as nanophysicsand nanobiology. A simplified classification of basic nanobiotechnologies is givenin Table 2.1. Some technologies such as nanoarrays and nanochips are furtherdevelopments.

Micro- and Nanoelectromechanical Systems

The rapid pace of miniaturization in the semiconductor industry has resulted infaster and more powerful computing and instrumentation, which have begun torevolutionize medical diagnosis and therapy. Some of the instrumentation usedfor nanotechnology is an extension of microelectromechanical systems (MEMS),

K.K. Jain, The Handbook of Nanomedicine, 7C© 2008 Humana Press, Totowa, NJ

Page 26: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

8 2 Nanotechnologies

Table 2.1 Classification ofbasic nanobiotechnologies

NanoparticlesQuantum dotsNanocrystalsLipoparticlesMagnetic nanoparticlesPolymer nanoparticlesNanofibersNanowiresCarbon nanofibersDendrimersPolypropylenimine dendrimersComposite nanostructuresNanoemulsionsNanoliposomesNanocapsules enclosing other substancesNanoshellsNanovesiclesCochleatesNanoconduitsNanotubesNanopipettesNanoneedlesNanochannelsNanoporesNanofluidicsNanostructured siliconNanoscale motionCantileversVisualization and manipulation at nanoscaleAtomic force microscopyScanning probe microscopyNanomanipulationSurface plasmon resonanceFemtosecond laser systems

Source: Jain PharmaBiotech.

which refers to a key enabling technology used to produce microfabricated sensorsand systems. The potential mass application of MEMS lies in the fact that minia-ture components are batch-fabricated using the manufacturing techniques developedin the semiconductor microelectronics industry enabling miniaturized, low-cost,high-performance, and integrated electromechanical systems. The “science of minia-turization” is a much more appropriate name than MEMS as it involves a goodunderstanding of scaling laws and different manufacturing methods and materialsthat are being applied in nanotechnology.

MEMS devices currently range in size from one to hundreds of micrometersand can be as simple as the singly supported cantilever beam used in atomicforce microscopy (AFM) or as complicated as a video projector with thousandsof electronically controllable microscopic mirrors. Nanoelectromechanical systems(NEMS) devices exist correspondingly in the nanometer realm. The concept of

Page 27: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Microarrays and Nanoarrays 9

using externally controllable MEMS devices to measure and manipulate biologicalmatter (BioMEMS) on the cellular and subcellular levels has attracted much atten-tion recently. This is because initial work has shown the ability to detect single-base-pair mismatches of DNA and to quantifiably detect antigens using cantileversystems. In addition is the ability to controllably grab and manipulate individualcells and subsequently release them unharmed.

A new approach at the California Institute of Technology, called surface nanoma-chining, combines the processing methods of MEMS with the tools of electron beamnanofabrication to create three-dimensional (3D) nanostructures that move (and thuscan do new types of things). This opens exciting new avenues of exploration andinvestigations in physics and biology at very short length scales.

BioMEMS

Because BioMEMS involves the interface of MEMS with biological environments,the biological components are crucially important. To date, they have mainly beennucleic acids, antibodies, and receptors that are involved in passive aspects of de-tection and measurement. These molecules retain their biological activity followingchemical attachment to the surfaces of MEMS structures (most commonly, thiolgroups to gold) and their interactions are monitored through mechanical (deflectionof a cantilever), electrical (change in voltage or current in the sensor), or optical(surface plasmon resonance [SPR]) measurements. The biological components arein the nanometer range or smaller; therefore, the size of these systems is limitedby the minimum feature sizes achievable using the fabrication techniques of theinorganic structures, currently 100 nm to 1 �m. Commercially available productsresulting from further miniaturization could be problematic because of the expand-ing cost and complexity of optical lithography equipment and the inherent slownessof electron beam techniques. In addition to size limitations, the effects of frictionhave plagued multiple moving parts in inorganic MEMS, limiting device speeds,and useful lifetimes (Schmidt and Montemagno 2002).

Microarrays and Nanoarrays

Arrays consist of orderly arrangements of samples, which, in the case of biochips,may be complementary DNAs (cDNAs), oligonucleotides (ODNs), or even pro-teins. Macroarraying (or gridding) is a macroscopic scheme of organizing coloniesor DNA into arrays on large nylon filters ready for screening by hybridization. Inmicroarrays, however, the sample spot sizes are usually <200 �m in diameter andrequire microscopic analysis. Microarrays have sample or ligand molecules (e.g.,antibodies) at fixed locations on the chip, while microfluidics involves the transportof material, samples, and/or reagents on the chip.

Microarrays provide a powerful way to analyze the expression of thousands ofgenes simultaneously. Genomic arrays are an important tool in medical diagnostic

Page 28: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

10 2 Nanotechnologies

and pharmaceutical research. They have an impact on all phases of the drugdiscovery process from target identification through differential gene expression,identification and screening of small-molecule candidates, to toxicogenomic studiesfor drug safety. To meet the increasing needs, the density and information contentof the microarrays is being improved. One approach is fabrication of chips withsmaller, more closely packed features—ultrahigh-density arrays that will yield

� high information content by reduction of feature size from 200 �m to 50 nm;� reduction in sample size; and� improved assay sensitivity.

Nanoarrays are the next stage in the evolution of miniaturization of microarrays.Whereas microarrays are prepared by robotic spotting or optical lithography, limit-ing the smallest size to several microns, nanoarrays require further developments inlithography such as dip-pen nanolithography (DPN). Technical discussion of theseis beyond the scope of this work.

Protein Nanoarrays

High-throughput protein arrays allow the miniaturized and parallel analysis of largenumbers of diagnostic markers in complex samples. This capability can be enhancedby nanotechnology. DPN technique has been extended to protein arrays with fea-tures as small as 45 nm and immunoproteins as well as enzymes can be deposited.Selective binding of antibodies to protein nanoarrays can be detected without theuse of labels by monitoring small (5–15 nm) topographical height increases in AFMimages.

BioForce Nanosciences’ Protein Nanoarrays contain up to 25 million spots persquare centimeter. They can be used to detect protein–protein interactions. Bio-Force’s NanoReader uses a customized AFM to decipher molecules on a NanoArraychip. The company was awarded a grant in 2002 by the US Department of Defensefor breast cancer research titled, “Protein Nanoarrays for Studying Malignant Pro-gression in Breast Cancer Cell Lines.” The project aims to construct a nanoscaleprotein array platform and use it as a basic research tool to study alterations incellular signaling pathways that accompany breast cancer disease progression.

Microfluidics and Nanofluidics

Microfluidics is the handling and dealing with small quantities (e.g., microliters,nanoliters, or even picoliters) of fluids flowing in channels the size of a humanhair (∼50 � m thick) even narrower. Fluids in this environment show very differentproperties than in the macro world. This new field of technology was enabled by ad-vances in microfabrication—the etching of silicon to create very small features. Mi-crofluidics is one of the most important innovations of biochip technology. Typical

Page 29: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

Microfluidics and Nanofluidics 11

dimensions of microfluidic chips are 1–50 cm2 and have channels 5–100 � m. Usualvolumes are 0.01–10 �l but can be less. Microfluidics is the link between microar-rays and nanoarrays as we reduce the dimensions and volumes.

Microfluidics is the underlying principle of lab-on-a-chip devices, which carryout complex analyses, while reducing sample and chemical consumption, decreas-ing waste, and improving precision and efficiency. The idea is to be able to squirt avery small sample into the chip, push a button and the chip will do all the work,delivering a report at the end. Microfluidics allows the reduction in size with acorresponding increase in the throughput of handling, processing, and analyzingthe sample. Other advantages of microfluidics include increased reaction rates, en-hanced detection sensitivity, and control of adverse events.

Drawbacks and limitations of microfluidics and designing of microfluidic chipsinclude the following:

� Difficulties in microfluidic connections� Because of laminar flows, mixing can only be performed by diffusion� Large capillary forces� Clogging� Possible evaporation and drying up of the sample

Applications of microfluidics include the following:

� DNA analysis� Protein analysis� Gene expression and differential display analysis� Biochemical analysis

Nanotechnology on a Chip

Nanotechnology on a chip is a new paradigm for total chemical analysis systems.The ability to make chemical and biological information much cheaper and easierto obtain is expected to fundamentally change healthcare, food safety, and law en-forcement. Lab-on-a-chip technology involves micro-total analysis systems that aredistinguished from simple sensors because they conduct a complete analysis; a rawmixture of chemicals goes in and an answer comes out. Sandia National Laborato-ries is developing a handheld lab-on-a-chip that will analyze for airborne chemicalwarfare agents and liquid-based explosives agents. This development project bringstogether an interdisciplinary team with areas of expertise including microfabrica-tion, chemical sensing, microfluidics, and bioinformatics. Although nanotechnologyplays an important role in current efforts, miniaturized versions of conventional ar-chitecture and components such as valves, pipes, pumps, and separation columnsare patterned after their macroscopic counterparts. Nanotechnology will providethe ability to build materials with switchable molecular functions that could pro-vide completely new approaches to valves, pumps, chemical separations, and de-tection. For example, fluid streams could be directed by controlling surface energy

Page 30: The Handbook of Nanomedicine - Startseite€¦ · The Handbook of Nanomedicine covers the broad scope of this field. Starting with the basics, the subject is developed to potential

12 2 Nanotechnologies

without the need for a predetermined architecture of physical channels. Switchablemolecular membranes and the like could replace mechanical valves. By eliminatingthe need for complex fluidic networks and microscale components used in currentapproaches, a fundamentally new approach will allow greater function in muchsmaller, lower-power total chemical analysis systems.

A new scheme for the detection of molecular interactions based on optical read-out of nanoparticle labels has been developed. Capture DNA probes were arrayedon a glass chip and incubated with nanoparticle-labeled target DNA probes, contain-ing a complementary sequence. Binding events were monitored by optical means,using reflected and transmitted light for the detection of surface-bound nanoparti-cles. Control experiments exclude significant influence of nonspecific binding on theobserved contrast. Scanning force microscopy revealed the distribution of nanopar-ticles on the chip surface.

Nanoarrays, ultraminiaturized versions of the traditional microarrays, can actu-ally measure interactions between individual molecules down to resolutions of aslittle as 1 nm. Nanoarrays are the next evolutionary step in the miniaturization ofbioaffinity tests for proteins and nucleic acids.

Use of Nanotechnology in Microfluidics

Construction of Nanofluidic Channels

Techniques such as nanoimprinting are used to construct large arrays of nanoscalegrooves with efficiency and speed. Now such grooves can be sealed with similarease, to form nanofluidic channels. Laser-assisted direct imprint techniques enablethe construction of millions of enclosed nanofluidic channels side by side on a singlesubstrate, which is ideal for such parallel processing. Other methods have been usedto fabricate flexible tubes whose diameters are 100 nm, i.e., 10 times narrower thanthose used in current microfluidic systems. The tubes could be used to make stacked,interconnected fluidic networks designed to shunt fluids around biochips that senseand analyze chemicals.

Restriction mapping of DNA molecules has been performed using restrictionendonucleases in nanochannels with diameters of 100–200 nm (Riehn et al 2005).Restriction mapping with endonucleases is a central method in molecular biology.It is based on the measurement of fragment lengths after digestion, while possiblymaintaining the respective order. The location of the restriction reaction within thedevice is controlled by electrophoresis and diffusion of Mg2+ and EDTA. It is pos-sible to measure the positions of restriction sites with precision using single DNAmolecules with a resolution of 1.5 kbp within 1 min.

Most of the microscale flow visualization methods evolved from methodsdeveloped originally for macroscale flow. It is unlikely, however, that developedmicroscale flow visualization methods will be translated to nanoscale flows in a sim-ilar manner. Resolving nanoscale features with visible light presents a fundamentalchallenge. Although point-detection scanning methods have potential to increase