222
Louisiana State University LSU Digital Commons LSU Historical Dissertations and eses Graduate School 1956 e Hall Effect in Bismuth at High Magnetic Fields and Low Temperatures. eodore Edward Leinhardt Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: hps://digitalcommons.lsu.edu/gradschool_disstheses is Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and eses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. Recommended Citation Leinhardt, eodore Edward, "e Hall Effect in Bismuth at High Magnetic Fields and Low Temperatures." (1956). LSU Historical Dissertations and eses. 173. hps://digitalcommons.lsu.edu/gradschool_disstheses/173

The Hall Effect in Bismuth at High Magnetic Fields and Low

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Hall Effect in Bismuth at High Magnetic Fields and Low

Louisiana State UniversityLSU Digital Commons

LSU Historical Dissertations and Theses Graduate School

1956

The Hall Effect in Bismuth at High Magnetic Fieldsand Low Temperatures.Theodore Edward LeinhardtLouisiana State University and Agricultural & Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion inLSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please [email protected].

Recommended CitationLeinhardt, Theodore Edward, "The Hall Effect in Bismuth at High Magnetic Fields and Low Temperatures." (1956). LSU HistoricalDissertations and Theses. 173.https://digitalcommons.lsu.edu/gradschool_disstheses/173

Page 2: The Hall Effect in Bismuth at High Magnetic Fields and Low

THE HALL EFFECT IN BISMUTH AT HIGH MAGNETIC FIELDS AND LOW TEMPERATURES

A Thesis

Submitted to the Graduate Faculty of the Louisiana State University and

Agricultural and Meohanioal College in partial fulfillment of the requirements for the degree of

Doctor of Philosophyin

The Department of Physios

byTheodore Edward Leinhardt

M. S., Louisiana State University, 195S August, 1955

Page 3: The Hall Effect in Bismuth at High Magnetic Fields and Low

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation to Dr. J. M. Reynolds for his guidance and supervision.He is also indebted to Mr. H. W. Hemstreet, Mr. D. D. Triantos, Mr. W. Good, and the other members of the low temperature group for their helpful suggestions and in­valuable assistance.

ii

Page 4: The Hall Effect in Bismuth at High Magnetic Fields and Low

TABLE OF CONTENTS

Chapter PageI INTRODUCTION 1II APPARATUS 7

III PROCEDURE 23IV TABULATION OF RECORDED DATA AND

CALCULATION OF HALL COEFFICIENTS 31V THE HALL COEFFICIENT CURVES 62VI DISCUSSION 69

SELECTED BIBLIOGRAPHY 77APPENDIX I 80APPENDIX II 82APPENDIX III 85APPENDIX IV 172AUTOBIOGRAPHY 211

iii

Page 5: The Hall Effect in Bismuth at High Magnetic Fields and Low

LIST OF FIGURES

Figure1234567

8

9

10

11

12

13

14

15

16

17

PageThe oryostat and the crystal holder 9The measuring circuit 14The electromagnet 16A cooling plate 18The eleotromagnet circuit 20The electromagnet control circuit 21The experimental data at 1.3°K, field parallel to the trigonal axis 32The experimental data at 1.82°K, field parallel to the trigonal axis 33The experimental data at 2.21°K, field parallel to the trigonal axis 34The experimental data at 2.58°K, field parallel to the trigonal axis 35The experimental data at 3.15°K, field parallel to the trigonal axis 36The experimental data at 3.71°K, field parallel to the trigonal axis 37The experimental data at 4.2°K, field parallel to the trigonal axis 38The experimental data at 1.5°K, field parallelto a binary axis 39The experimental data at 1.82°K, field parallel to a binary axis 40

oThe experimental data at 2.21 K, field parallel to a binary axis 41The experimental data at 2.58°K, field parallel to a binary axis 42

iv

Page 6: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure Page18 The experimental data at 3.15°K, field parallel

to a binary axis 4319 The experimental data at 3.71°K, field parallel

to a binary axis 4420 The experimental data at 4.2°K, field parallel

to a binary axis 4521 The experimental data at 1.3°K, field perpen­

dicular to the trigonal and a binary axes 4622 The experimental data at 1.82°K, field perpen­

dicular to the trigonal and a binary axes 4723 The experimental data at 2.21°K, field perpen­

dicular to the trigonal and a binary axes 4824 The experimental data at 2.58°K, field perpen­

dicular to the trigonal and a binary axes 4925 The experimental data at 3.15°K, field perpen­

dicular to the trigonal and a binary axes 5026 The experimental data at 3.71°K, field perpen­

dicular to the trigonal and a binary axes 5127 The experimental data at 4.2°K, field perpen­

dicular to the trigonal and a binary axes 5228 The Hall coefficient at '1.3°K 5529 The Hall coefficient at 1.82°K 5630 The Hall coefficient at 2.21°K 5731 The Hall coefficient at 2.58°K 5832 The Hall coefficient at 3.15°K 5933 The Hall coefficient at 3.71°K 6034 The Hall coefficient at 4.2°K 6135 The period of the osoillations, field parallel

to the trigonal axis 64

Page 7: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure36

37

The periods of the oscillations, field parallel to a binary axis and field perpen­dicular to the trigonal and a binary axesThe experimental data in terms of the de Haas - van Alphen amplitude function

Page

66

7338 A plot to determine the constant B' 74

Page 8: The Hall Effect in Bismuth at High Magnetic Fields and Low

LIST OF ILLUSTRATIONS

PlateI

II

A field sweep at 13 mm Hg, with the magnetic field parallel to the trigonal axisSections of the recorder tapes at 41 mm Hg. with the magnetic field parallel to the trigonal axis

Page

27

29

vii

Page 9: The Hall Effect in Bismuth at High Magnetic Fields and Low

ABSTRACT

The low temperature Hall effect has been examined in a bismuth single crystal in fields up to 13.5 kilo-gauss. The phenomenon was studied in the temperature range 1.3°K to 4.2°K. Measurements were made with the magnetic field parallel to the trigonal axis, parallel to a binary axis, and perpendicular to the trigonal and a binary axes. By interchanging the function of the Hall voltage probes and the current probes, it was possible to obtain data at two probe orientations for each alignment of the field with respect to a crystalline axis.

Oscillations were found in the Hall voltages and in the calculated Hall coefficients at each of the three field orientations. The interchanging of the probes had no effect upon the periods, phases, or amplitudes of the oscillations. Although the amplitudes of the oscillations show a strong temperature dependence, their periods and phases are independent of this variable. With the field directed along the trigonal axis, the Hall coefficient contains a single oscillating term which is periodic in l/H. The coefficient contains at least two and possibly more oscillating terms when the field is in the other orientations. The periods determined from data obtained with the field parallel to the trigonal axis and with the field parallel to a binary axis are in good agreement with

viii

Page 10: The Hall Effect in Bismuth at High Magnetic Fields and Low

those found previously in the oscillatory Hall effect and magneto-resistance of bismuth. Attempts to fit the amplitude of the oscillations to a de Haas - van Alphen type formula were unsuccessful.

ix

Page 11: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER I INTRODUCTION

An anomalous variation in the diamagnetio suscepti­bility of single crystals of bismuth at the temperatures of liquid hydrogen was discovered by de Haas and van Alphen1. This and later investigations at the lowertemperatures of liquid helium showed that the susoepti-

2 3bility is a quasi-periodio function of l/H ' . Although the period is independent of temperature, it is strongly dependent upon the orientation of the magnetio field with respect to the crystalline axes. No fluctuations in the susceptibility are observed when the field is parallel to the trigonal axis. At other orientations, the effect differs in details such as the periodicity and the number of oscillating terms. The oscillations increase in ampli­tude as the field inoreases and as the temperature de­creases,

A theory of this phenomenon, based upon a free electron

1W. J. de Haas and P. M. van Alphen, Leiden Comm., No. 212 (1930) and No. 220d (1932).

2D. Shoenberg, Proo. Roy. Soc. (London), A 170.341 (1939). -----

3D. Shoenberg, Trans. Roy. Soc. (London), A 245.1 (1952). -----

1

Page 12: The Hall Effect in Bismuth at High Magnetic Fields and Low

4 5 6model, was developed by Peierls , Blaokman , and Landau .It was later modified and extended by a number of othersincluding Rumer^, Sondheimer and Wilson8, Akheiser9,Dingle'1'0, and Robinson'1'*1'. By this theory, the diamagnetiosusceptibility is determined from the thermodynamic freeenergy of an electron gas. The susceptibility is given bythe relation:

~ d FX = -

Here, F is the Helmholtz free energy of an electron gas in a magnetic field. Appropriate corrections and approxi­mations are made to relate this to the free energy of oon-

Peierls, Z. Physik, 80, 763 (1933) and 81, 186(1933). — —

5M. Blaokman, Proo. Roy. Soc., A 166. 1 (1938).6L. Landau, see Appendix to reference £,7Y. B. Rumer, J. Exptl. Theor. Phys., U.S.S.R.,

18, 1081 (1948).H. Sondheimer and A. H. Wilson, Proo. Roy.

Soc., A £10, 173 (1951).9A. Akheiser, Compt. Rendus Acad. Sci., U.S.S.R.,

£3, 874 (1939).10R. B. Dingle, Proo. Roy. Soo., A £11, 500 (195£);

Proo, Roy. Soo.. A £11. 517 (195£); and Proo. Roy. Soc.,A £1£, 47 (195£).

^J. E. Robinson, Thesis, Yale University, Un­published (1950).

Page 13: The Hall Effect in Bismuth at High Magnetic Fields and Low

duction electrons in a metallic single crystal.Shoenberg and others have found that experiment up­

holds this theory fairly well. Furthermore, the theory is general enough to indicate the possibility that the diamagnetic susceptibilities of certain other elements might behave in a similar manner. Thus far, this hasbeen found to be true in fifteen single crystals. Among

12 1 ̂these are crystals of the elements: tin , zinox , be­ryllium14, cadmium15'16, aluminum17, lead^8, antimony19, arsenic3, and graphite20. It is possible that the effect is present in a number of other metals but can­not be detected because the periods and amplitudes of their oscillating susceptibilities are too small3.

The assumption that it is the behavior of the con­duction electrons of these metals in the presence of a

i ?D. Shoenberg, Nature, 164. 225 (1939).13J. A. Marcus, Phys. Rev., 71, 559 (1947).^^Verkin, Lazarev, and Rudenko, Doklady Akad.

Nauk., U.S.S.R., 73, 59 (1950).15Verkin, Lazarev, and Rudenko. J. Exptl.

Theoret. Phys., TJ.S.S.R,, 20, 93 (1950).16D. Shoenberg, Nature, 166, 652 (1950).17D. Shoenberg, Nature, 167. 647 (1951).18D. Shoenberg, Nature, 170. 569 (1952).19T. G. Berlinoourt, Phys. Rev., 92, 1069 (1953).20T. G-. Berlinoourt, Phys. Rev., 98, 956 (1955).

Page 14: The Hall Effect in Bismuth at High Magnetic Fields and Low

magnetic field which gives rise to this phenomenon sug­gests the appearance of similar osoillations in some of the other eleotronio prooesses. It was, in fact, the ob­servation of an anomalous magneto-resistanoe in bismuth by de Haas and Schubnikow2-1- that led de Haas and van Alphen to their discovery. A search for oscillatory galvano-magnetio and thermo-magnetic phenomena in a number of the de Haas - van Alphen metals has shown that in several instances they do indeed exist.

The anomalies found earlier by Schubnikow and de Haasin the magneto-resistanoe of bismuth were re-examined by

22de Haas, Blom, and Schubnikow . More recently, this property was investigated in great detail by Alers and

pfT pAWebber . Berlinoourt’s measurements of the de Haas - van Alphen effect in the same crystal used by Alers and Webber established a previously noted correlation in the osoillations of the two effects. Further correlations were found in the periodicity of the osoillations in the diamagnetio susceptibility and magneto-resistanoe of

21L. W. Schubnikow and W, J. de Haas, Proo. Acad, Soi. Amsterdam, 33, 130, 363, and 418 (1930).

22W. H. de Haas. J. W, Blom, and L. W. Schubnikow, Leiden Comm., 237 (1935),

23P, B. Alers and R, T. Webber, Phys. Rev., 91, 1060 (1953).

24T. G. Berlinoourt, Phys. Rev., 91, 1277 (1953).

Page 15: The Hall Effect in Bismuth at High Magnetic Fields and Low

zinc25'26 and graphite25 single crystals.De Haas and Gerritsen27 reported that the Hall effect

in bismuth possibly oscillated at low temperatures, recent­ly, this was definitely established by Reynolds, Leinhardt,

po 05and Hemstreet . Berlinoourt also found an oscillatory29Hall effeot in a graphite orystal. Steele and Babiskin

discovered a similar oscillatory magnetic field dependence in both the thermoelectric power and thermal conductivity of bismuth. It has been found that the period of at leastone oscillating term is common to all of these differentphenomena.

This investigation was undertaken to study further the oscillatory Hall effect in a oubioal single crystal of bismuth. Measurements were made at seven different temperatures in the range 4.2°K to 1.3°K and for threeorientations of the orystal with respect to the magneticfield. Moderately high fields, up to 13.5 kilo-gauss,

25T. Gr. Berlinoourt and J. K. Logan, Phys. Rev.,93, 348 (1954).

26N. M. Naohimovioh, J. Phys., U.S.S.R., 6, 111(1942).

27A. H, Gerritsen and W. T. de Haas, Leiden Comm., 216b (1940).

28J. M, Reynolds, T. E. Leinhardt, and H. W. Hemstreet, Phys. Rev„, 93, 247 (1954).

29M. C. Steele and J. Babiskin, Phys. Rev., 98,359 (1955).

Page 16: The Hall Effect in Bismuth at High Magnetic Fields and Low

were used. A description of the experiment, tables of data and calculations, a number of graphs and other illus­trations, and a discussion of the Hall coefficient are presented in the following pages.

Page 17: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER II APPARATUS

The orystal used in this investigation was prepared by Reynolds and Hemstreet from speotroscopioally pure bismuth purchased from Johnson, Matthey, and Company, Ltd., London. Molten bismuth was allowed to crystallize slowly in an evacuated Bridgeman-type glass mold. The resulting crystal was cylindrical in shape. An examination of its etched surface and some careful cleaving at liquid nitro­gen temperatures indicated that the cylinder was a single orystal. Hemstreet, using a water-cooled oarborundum outting wheel, shaped a selected section of this cylinder into a nearly cubical form. It was cut so that two of its faces are perpendicular to the trigonal axis; two other faces are perpendioular to a binary axis; and the third pair of faoes is parallel to the plane formed by this binary axis and the trigonal axis.

The dimensions of the crystal in its final form were 6.7 x 5.2 x 5.2 mm. Repeated etchings and some additional cutting have, however, reduced its size. This additional outting was required to remove the deep pits and grooves left in the sides of the crystal by probes used in making previous Hall measurements. At the conclusion of this investigation, its dimensions were 5.6 x 4.2 x 4.2 mm.

The successful performance of this study depended to

Page 18: The Hall Effect in Bismuth at High Magnetic Fields and Low

a great extent upon the oareful selection, design, and as­sembly of certain apparatus. It was essential, for instance, that there be available a oryostat capable of keeping the crystal at the temperatures of liquid helium for considerable lengths of time. A orystal holder was needed to maintain the orystal in a predetermined orien­tation while providing good electrioal contact and allow­ing for expansion or contraction. Provision had to be made for the accurate and rapid measurement of Hall volt­ages and currents. It was also necessary to have an electromagnet which could furnish reasonably steady fields over a considerable range of values for long periods of time. A description of the apparatus which more or less met these requirements follows.

Figure One is a diagram of the cryostat and orystal holder. The cryostat consisted of two Dewar flasks, one inside the other. Liquid helium was oontained in an inner flask (A). To reduce the temperature gradient between the walls of the helium flask, an outer flask (B) was filled with liquid nitrogen. The two flasks are of similar de­sign, their lower ends being slender, double-walled glass tubes. This permitted the use of a narrow air gap between the pole pieces of the electromagnet.

The flask containing helium was covered by a brass cap (C). A threaded brass ring (D) and a pair of "0” - rings firmly held the oap in place. A vaouum-tight fit

Page 19: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 1.

— (W

Page 20: The Hall Effect in Bismuth at High Magnetic Fields and Low

was provided by one of the "0n - rings (E). The other helped to protect the upper rim of the flask from meohani- cal shock. On to the upper part of the cap there were soldered a flue (E), a copper tube (G), and a stainless steel tube (H), During an experimental run, a thick- walled rubber hose oonneoted the flue to a high pumping rate mechanical vacuum pump, A seotion of the hose was constrioted between the jaws of a hand vise. The size of this constriction determined the rate at which the helium vapor was removed from the inner flask. In this way the pressure of the vapor above the liquid helium was regu­lated, Vapor pressures were measured with a mercury vaouum gauge connected by a rubber hose to the oopper tube (G), An oil manometer containing Octoil "S** measured very low pressures. By referring the measured vapor pressures to a set of vapor pressure tables, it was possible to de-

*30termine the temperature of the liquid helium. The Mond^w Tables were used.

To minimize the thermal emffs usually found in oryo- stat cap electrodes, all of the wire leads ooming from the crystal probes were directed through a six inch stainless steel tube to an octal socket (J). The temperature gradi­ent across the socket electrodes was not great enough to

®°H, van Dijk and D, Shoenberg, Nature, 164. 151(1949).

Page 21: The Hall Effect in Bismuth at High Magnetic Fields and Low

11develop large thermal currents. "Pyrex" brand glass wool, packed around the leads in the tube reduced thermal con­vection currents.

A crystal holder (K) was suspended by a 1/8 inch luoite rod from, a small brass bushing (L) soldered to the underside of the flask cap. A small screw in the side of the bushing helped to prevent the rod from slipping or turning. The length of the rod was adjusted so that it kept the orystal holder and hence the orystal within the most homogeneous region of the magnetic field.

The orystal holder, about 1-1/4 inches long, was machined from luoite. It was made to fit snugly within the 1/2 inch inner tube of the helium flask. A pair of adjustable probes (M), cut from thin gauge phospher bronze sheet, was mounted with No. 80 maohine screws onto the sides of the holder. The other pair of probes (N) was made of phospher bronze wire. These were fitted to a pair of brass bushings (0) set with some precision ore the axis of the holder. Two phospher bronze springs (P) were at­tached to the holder to apply enough pressure on the wire needles to keep them in good contact with the surfaces of the crystal. The lower end of the lucite rod was glued to the crystal holder cap with coil dope.

Number 38 B. and S. Gauge, Pormvar coated, copper wire leads were soldered to the probes. The two leads of each set of conductors, after being well coated with coil dope,

Page 22: The Hall Effect in Bismuth at High Magnetic Fields and Low

12were twisted together to make them non-inductive. They were then wound around the luoite rod and directed up through the stainless steel tube. The leads were solder­ed to the inner electrodes of the octal socket (J). At room temperatures, the resistance of each of these leads was found to be 1,2 ohms.

A brass bar (R) was attached to the flask oap. Two 1/8 inch brass rods (U) with threaded ends were suspended from this bar to a luoite form (T). A luoite spacer (S) and the form (T) helped to keep the outer flask in proper alignment. Four hexagonal nuts on the ends of each of the rods (U) were tightened to keep the whole assembly rigid.It was highly important that, after alignment, this as­sembly could be removed from the magnet and later returned to its original position. This requirement was met by a rigid, angle bar bracket (V) mounted on the magnet yoke.The flask cap bar (R) was bolted to a pair of adjustable aluminum rods on this bracket. A lucite form (W) helped to align the lower end of the cryostat. Two brass spacers were embedded in this form and a hole large enough to ac­commodate the smaller section of the cryostat was drilled along a diameter. The form (W) was mounted between the pole pieces of the magnet.

To facilitate a rapid acquisition of large quantities of data, a Leeds and Northrup recording potentiometer was used to measure Hall voltages. This device was adjusted to

Page 23: The Hall Effect in Bismuth at High Magnetic Fields and Low

have a full scale deflection of 5 milli-volts. It was calibrated against a White double potentiometer by meas­uring with each in turn a potential developed across a standard resistor. Appendix I is a table of calibration data. It was found that each recorded potential had to be corrected by the addition of 0.07 milli-volt. The error in the readings, considering the White potentiometer to be correct, is probably less than 0.05 milli-volt, plus or minus. Previous experience has demonstrated that the variation in Hall current due to magneto-resistance is negligible in view of the other experimental errors.Hence, the Hall current was not automatically recorded, but was monitored by a K-3 Leeds and Northrup potentiome­ter. Figure Two is a schematic diagram of the cirouits used to record the Hall voltages and currents.

The apparatus was designed so that the function of the probes could be interchanged. This made it possible to obtain two sets of data for each field orientation. Thus, for a particular orientation of the magnetio field with respect to an axis of the crystal, the probes, M, connected to the Leeds and Northrup recording potentiome­ter by the leads, 2-blaclc and 4-red, measured the Hall voltages. The numbers refer to the octal socket eleo- trodes and the colors refer to the leads of a four con­ductor, twisted cable. The probes, N, were connected to the current supply by the leads, 6-green and 8-white. The

Page 24: The Hall Effect in Bismuth at High Magnetic Fields and Low

TWISTED CABLE OCTAL

BLACK

GREEN

WHITE

HALLPOT.

CURRENT

6 V

STD. R

TO TYPE "K" POT.

TO L &.NRECORDINGPOT. Figure 2.

Page 25: The Hall Effect in Bismuth at High Magnetic Fields and Low

15K-3 potentiometer monitored the voltage (and, thus, the current) across a one ohm standard resistor. After a set of data had been recorded for this orientation, the probes, M, were connected to the current supply and the probes, N, to the recording potentiometer. A second set of data was then recorded.

Figure Three is a diagram of the electromagnet. The yoke of this magnet was taken from a General Electrio impulse magnetizer. A set of eight coils (A) and six cooling plates (B) were built for it. Each of the coils was wound on a coil form (C) having an inner diameter of 5 inches, an outer diameter of 5-1/4 inches, and a width of 7/8 inch. The forms were cut from Phenolite tubing (Nat. XX-24) supplied by the National Vulcanized Fibre Company. A shallow one inch slot was cut on the outside of each coil form to receive a 45° flat fold in the con­ductor strip. Another fold, around the inner rim of the finished coil, permitted this lead to be brought out along a radius of the coil to a point where it could easily be connected to the other coils. About 120 turns of one inch by 0.015 inch, high electrical conductivity copper strip (D) was lathe-wound on each coil form. Insulation between the turns was provided by one inch by 0.005 inch "Peer­less" Fish Paper (E). While being wound, the paper re­ceived a light coating of transformer varnish to help bind the windings together. To prevent uneveness, the coils

Page 26: The Hall Effect in Bismuth at High Magnetic Fields and Low

16

Figure 3.

Page 27: The Hall Effect in Bismuth at High Magnetic Fields and Low

17were wound between heavy brass and luoite discs. An outer lead was provided by another 45° fold in a direction oppo­site to that of the inner fold. A copper strip was se­curely fastened around its outer circumference to hold the coil together. As an added precaution, a number of turns of heavy copper wire was wound and twisted about this strap. If the sides of a finished coil were found to be uneven, they were tapped even with a flat wooden block before the varnish binder dried. Excess varnish was care­fully removed to make certain that the sides of the copper windings were bare.

The cooling plates, Figure Four, were made in the form of thin annular discs. A series of concentric grooves and radial slots were machined in six disos, each having an inner diameter of 5-1/4 inches, an outer diame­ter of 11-1/8 inches, and a thickness of 1/4 inch. Over each of these a 1/16 inch brass disc having the same di­ameters was soldered. Water, entering a 3/8 inch flare fitting mounted on the outer rim of each plate, flows along a radius toward the inner rim. It then circulates back and forth through the grooves to the outer rim where it is discharged through another 3/8 inch fitting.

The manner in whioh the coils and cooling plates are mounted on the five inoh by five inch cylindrical pole pieoes is shown in Figure Three. Insulation between the coils and the cooling plates is provided by Fiber Glass

Page 28: The Hall Effect in Bismuth at High Magnetic Fields and Low

18WPmWil --1" . ■ .In nn'm

w \I

m>u

Figure 4.

CO

OLI

NG

P

LA

TE

Page 29: The Hall Effect in Bismuth at High Magnetic Fields and Low

19Base Phenolite (Nat. G-5-813, also supplied by the National Vulcanized Fibre Company) sheets, 0.010 inch thick (F). This same material serves to insulate the coils from each other. However, to guide and space the copper lead strips from the inner parts of the coils, 1/16 inch mica sheets (G) are employed.

A set of brackets (H) are used to hold the plates and coils firmly together and to the magnet posts. These were tightened evenly while a high current was sent through the windings of the coils with no cooling. The heat generated by the coils melted some of the phenolite so that it flowedevenly about the bare sides of the oopper windings and the cooling plates. In this way a fairly good thermal contactbetween the coils and the cooling plates was assured.

The coils, connected in series, have a total resist­ance of 1,1 ohms at 25°C. They are powered by a 125 volt, 15 kilo-watt, direct current generator. With a pole sepa­ration of 1-5/16 inch the magnet delivers about 13.5 kilo- gauss at 13 kilo-watts. Figure Five is a schematic dia­gram of the magnet oircuit. Operating data and other pertinent information may be found in Appendix II.

In order to stabilize the field and to provide a smooth current control, a voltage regulator, Figure Six, was assembled. This was copied from a similar device originally designed by R. Beringer at Yale University.The magnet voltage is balanced against a potential

Page 30: The Hall Effect in Bismuth at High Magnetic Fields and Low

MAGNETVOLTAGE

CONTROLBROWN

RECORDER

HELIPOT

Q Q

10 K DECADE

0.01 100 AMP.

STD. R

15 KW GEN.

Figure 5.

Page 31: The Hall Effect in Bismuth at High Magnetic Fields and Low

21

+ &BATT

seaTWELVE 6 A 8 7 18

IN PARALLEL

I00K4 io .|a IOOK

3 0 AMP.

18 V

6K-I0W-wv— -v w -BOOK4 H

I6KIOW

VR 105

500 V OT

8̂ FVRIBO

5R46SJ7/ T \ V R I03

JOK

9 0 V

4 0 TURN 100 K

H ELIPO T

Figure 6.

Page 32: The Hall Effect in Bismuth at High Magnetic Fields and Low

22

developed across a 40 turn Helipot. Error signals control a gang of twelve parallel 6AS7’s which supply the generator excitation current. This instrument successfully controls and steadies the magnetic field for values less than 10 kilo-gauss. Beyond this point, there is a noticeable periodic drift in the magnet current. This is probably a heating effect. The variation in current is about 0.5 ampere, but, since it occurs above the "knee" of the field curve, it introduces an error of hardly more than 100 gauss in this region.

A Brown Recorder, as shown in Figure Five, measured the magnetio field ourrent. A 10,000 ohm decade box, shunted across the 0.01 ohm standard resistor in the power line, was used as a voltage divider. This potentiometer was adjusted so that the signal it supplied the Recorder caused a full scale deflection of 50 milli-volts while 100 amperes flowed through the coils of the magnet. The magnet was calibrated directly against the Brown Recorder measurements of the current. The conventional flip coil and ballistic galvanometer method was used.

Page 33: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER III PROCEDURE

Although one pair of the probes in contact with the crystal was more or less precisely set along an axis, it was necessary to adjust the other pair by trial and error. This was done with the crystal in position on the crystal holder. The adjustable probes were aligned opti- oally along an axis that was perpendicular to and bisected the axis of the other two probes. As nearly as possible, the plane in which the axes of the probes lay was made parallel to the plane of a crystal face. Then the flask oap with its suspended holder and the crystal was mounted on the magnet bracket. The assembly was adjusted until a side of the crystal and, hence, the plane of the probes, was made parallel to the face of a pole piece of the magnet. This was done visually by sighting along the face of a machined block placed on either side of the crystal and in contact with the face of the pole pieoe. It is believed that the crystal axis was out of alignment by not more than a degree or so for each orientation.

After the crystal had been satisfactorily mounted, the cap was placed on the helium flask and it was tight­ened into position. The helium flask was then filledwith liquid nitrogen and the whole assembly was fitted into place on the magnet. Electrical connections were

23

Page 34: The Hall Effect in Bismuth at High Magnetic Fields and Low

made and a current of about 0.1 ampere was sent through, the crystal. The magnet was then turned on and its field was raised until a fairly high Hall voltage v/as measured across the Hall probes. This potential was recorded and then the oryostat was removed from the bracket, rotated 180°, and remounted. The Hall leads were reversed at the potentiometer. The last step was necessary since a ro­tation of the crystal through 180° is the same as the re­versal of the magnetic field, A change in the direction of the field brings about a change in the sign of the Hall voltage.

Another measurement was made with the field at the same value as before. If the difference between the read­ings was greater than one-half their average, the probes, after the crystal warmed up to room temperature, were re­aligned. The direction in which the probes had to be moved was indicated by the measurements. This processwas repeated until the above requirements were met. The difference in the two readings represents an IR drop and indicates a slight displacement of the Hall probes from exact perpendicularity to the current probe axis. With each adjustment, the probe removed was etched to rid it of oxides. It was then oleaned with distilled water and dried before being placed in contact with the crystal surfaoe. Usually it was necessary to reset only one probe. A slight indentation left in the crystal face

Page 35: The Hall Effect in Bismuth at High Magnetic Fields and Low

25served to guide its next alignment.

Once the crystal and its probes had been properly set,the oryostat was prepared to receive liquid helium. Theflasks were cleaned and assembled. The flask cap wastightened down upon the "C’-rings which had been coatedwith silicone vacuum grease. Some of this grease was alsoapplied to the flue and to the manometer tube to which were connected their respective vacuum hoses. A shortlength of vacuum hose was attached to the flue and it in turn was connected to the pump hose by a small brass tube. Clamping off the shorter tube before removing the pump hose prevented contamination of the helium container.

The helium flask was then evacuated and with the pump hose closed off, the apparatus was tested for leaks. This was done by observing the rate at whioh the mercury in the gauge rose. Most often, leaks were easily stopped by re-setting the various seals. If excessive leaking was not deteoted, dry helium gas was admitted to the system through a lfTH connection in the manometer hose. The pressure inside the flask was allowed to rise to a point slightly above atmospheric pressure. Then, the system was re-evacuated and the filling process repeated. This was done several times to insure the removal of vapors and atmospheric gases. Finally, with the flask containing helium gas at some pressure slightly above that of the atmosphere, the outer flask was filled with liquid nitrogen.

Page 36: The Hall Effect in Bismuth at High Magnetic Fields and Low

26As the inner flask cooled, helium gas was admitted to the system to compensate for the resulting decrease in pressure. When equilibrium had been reached, that is, after the gas inside the helium flask reached the temperature of liquid nitrogen, the small hose connected to the flue was clamped off and the pump hose removed. The manometer hose was re­moved from the "T" and its open end was plugged with a wad of "Pyrex" Brand fiber glass. Then the oryostat was re­moved from its bracket on the magnet and taken to the helium liquifier where it was filled with liquid helium. During this process, the leads were frequently checked for shorts and breaks. After being well charged with liquid helium, this apparatus was returned to its position on the magnet. Electrical connections were made and the process of data-taking begun.

Sometime prior to the actual run, the generator and the other eleotrioal apparatus had been turned on so that they were all well "warmed up" by the time they were needed. Now, the valve admitting water to the cooling system of the magnet was opened. The motors driving the tapes in the re­cording potentiometers were started and the ourrent source was adjusted to deliver a ourrent of about 0.015 ampere to the crystal. The magnet switoh was closed and its ourrent was adjusted with the 40-turn Helipot in its control circuit. A slow, smooth field sweep was made to determine the general form of the Hall voltage curve. Plate I is a

Page 37: The Hall Effect in Bismuth at High Magnetic Fields and Low

£7

Plate I. A field sweep at 13 mm Hg. with the magnetic field parallel to the trigonal axis.

Page 38: The Hall Effect in Bismuth at High Magnetic Fields and Low

28photograph of the recorder tape made during such a sweep. Then, the ourrent was reduced to zero and increased again in small increments. After each increase in field current the system was allowed to reach equilibrium. This took about 30 seconds beoause of the large time constant of the magnet and its control circuit. As soon as the recording pens stopped moving, identifying numbers were written next to the inked lines on the two tapes. Plate II, a photo­graph of corresponding sections of the two tapes, illus­trates this. The upper tape is a record of the field ourrent, the lower is a record of the Hall voltage.Pressure and pressure variations, ourrent and ourrent vari­ations, and other information were noted along side the recorded Hall voltages as often as necessary.

After the field had reached its highest value, the magnet current was decreased to zero, the oryostat was turned through 180°, and the Hall leads were reversed. A second set of data was then reoorded in the manner indi­cated above. Upon the completion of this, the Hall and current leads were interchanged and the data taking pro­cedure was repeated. Thus, at each temperature, four sets of data were obtained, two for each orientation of the Hall and current probes.

To obtain data at a lower temperature, the pump was turned on and, with a small constriction in the connecting hose, the pressure in the oryostat was gradually reduced

Page 39: The Hall Effect in Bismuth at High Magnetic Fields and Low

29

ESSgSi *it&vmmv * *•SSS«-!

.us*.*** . irrssrr-- in*!'. •*• £*M SMI..' , W»*A *i’ ui>

aJisSjiJla

Plate II. Sections of the recorder tapes at 41 ram Hg. with the magnetic field parallel to the trigonal axis.

Page 40: The Hall Effect in Bismuth at High Magnetic Fields and Low

to a predetermined value. After the pressure had reached equilibrium, the procedure outlined above was followed. This was oontinued on down to the lowest temperature.

Once the data had been recorded for a given field orientation, the apparatus was allowed to warm up and the crystal was removed. It was etched and remounted on the holder with a different axis parallel to the direction of the magnetio field. Then, a new set of data was taken. This was done for three orientations of the field with respect to the cubical single crystalTs axes.

Page 41: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER IV TABULATION OP RECORDED DATA AND CALCULATION OP HALL COEFFICIENTS

The data recorded on the potentiometer tapes were translated into numerical values of Hall voltages and magnetic field strengths and were tabulated. Appendix III is a compilation of this data. Figures Seven through Thirteen are graphs made from the data recorded with the magnetic field parallel to the trigohal axis of the crystal. The two upper curves in each figure of this series were drawn from measurements made with the Hall probes perpen­dicular to the trigonal axis and to a binary axis. The ourrent probes were parallel to this binary axis. The lower curves result from measurements made with the Hall and ourrent probes interchanged.

The second series of graphs, Figures Fourteen through Twenty, are drawn from measurements made with the field parallel to a binary axis. For the upper curves the Hall probes were parallel to the trigonal axis and the axis of the ourrent probes was perpendioular to the trigonal axis and this binary. Again the probes were interchanged to obtain the data plotted in the two lower ourves.

Figures Twenty-one through Twenty-seven are graphs ofthe third and last series of measurements. For this set of data the magnetic field was directed along an axis perpen-

31

Page 42: The Hall Effect in Bismuth at High Magnetic Fields and Low

H-4<D 01

a>cCOCD

r\ooojo001bCDorslO00OCOb

bo

oo3o

b o

VII BIN.(H

-)A-

V (MILL-VOLTS)

V ( MlLLI-VOLTS)

Page 43: The Hall Effect in Bismuth at High Magnetic Fields and Low

V (MILLI -VOLTS)

<D roO O*o

-lo

4CD

CD

CD

CD

O OJ 03UJV (MILLI-VOLTS)

Page 44: The Hall Effect in Bismuth at High Magnetic Fields and Low

Fig

ure

V (MILLI-VOLTS)

r\oO GJo 4̂o

<o01CD>CCDCD

OJb

ororocno

CDo->ioCDb

CDo

Doorob

ojo

ro OJ

V (MILLI-VOLTS)

Page 45: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 10.

V (MILLI -VOLTS)

o o roo ojo o

xr-01a>cCDCD

OJb

orooi

bcnb

a»b

CDo

ooo

o jo

o

V (MILLI-VOLTS)

Page 46: The Hall Effect in Bismuth at High Magnetic Fields and Low

*1H*£CD

H*H

5r01o>cCOCO

V (MILLI-VOLTS)

b ° oroo

CMo orooCMb

DUib

01b

No00b

COo

bo

o

ro CM

V (MILLI-VOLTS)CMOk

Page 47: The Hall Effect in Bismuth at High Magnetic Fields and Low

4CD

»-*W

01o > c cn in

rooo jo001 'oCDor>IOCDOCDOQO

rooOJo

o

VI) BIN.

V (MILLI-VOLTS)

— ro oj ^o ° o b o o

— ro oj w‘o 0 ’o b ^

V (MILLI-VOLTS)

Page 48: The Hall Effect in Bismuth at High Magnetic Fields and Low

(MIL

LI-V

OLT

S)

384.0

T - 4.2° K

H II TRIG.

3.0V I TRIG. & BIN.

2.0V(H)

.0-V(-H)

01.0 V(H)

VII BIN.

02.0 30 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

4.0

3.0

2.0

1.0

0

H (KILO-GAUSS)

Figure 13.

(MIL

LI-V

OLT

S)

Page 49: The Hall Effect in Bismuth at High Magnetic Fields and Low

o

V X

TRIG

, a BIN.

V (H)

A 3

-V(-H)

V (M ILLI-VO LTS)N pi f

b o o o

w ab o oV (M ILL I-V O LTS )

w<D

Page 50: The Hall Effect in Bismuth at High Magnetic Fields and Low

o

H*4CD

HClCO>CCOCO

Oio*bOlo0>oso©o

(Oowo

o

V JL

TRIG

, a B

IN.

V(H) /

y-V

(-H)

V (M ILLI-VOLTS)

V (MILLI-VOLTS)

Page 51: The Hall Effect in Bismuth at High Magnetic Fields and Low

o

M*£©

o>

r-01o>cCOCO

o

VX tRIG.

a BIN.

V(H) X

A -V(*H)

V (M IL L I-V O L T S )_ N W A

o o o b o

ro w Xb o oV (MILLI-VOLTS)

Page 52: The Hall Effect in Bismuth at High Magnetic Fields and Low

o o

H*<24CD

-V(-H

) V

II TR

IO.

2.0

V (MILLI - VOLTS)

V (MIL LI-VOLTS)

Page 53: The Hall Effect in Bismuth at High Magnetic Fields and Low

o

*1H*$4(DI—100

5r~01o>

01o*o»bO)o

CO _ O) O

Moao

o

V X

TRIG

, a

BIN

.

V(H> a

r-vt-H)

V (M IL L I-V O L T S )

V (MILLI -VO LTS)

Page 54: The Hall Effect in Bismuth at High Magnetic Fields and Low

H-4CD

tD

X£r*01o>c=CDCD

Oio

Oioo>b

r4Oa>o<0*o

oo

N>*o

doV 1

T

RIG

.a B

IN.

VtH

) rf

,/ —

V(-H

)

V (MILLI-VOLTS)— M OJ Ao o o O

ro « 4ko o oV (M ILL I-V O LTS ) ^

Page 55: The Hall Effect in Bismuth at High Magnetic Fields and Low

o

oV

JLTR

IG.

a B

IN.

2.0

V (M ILLI-VOLTS)

01oV (MILLI-VOLTS)

01

Page 56: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 21,

V (MILLI - VOLTS)

01CD>cCDCD

rob

ojo oOJoo M

CDo Xo

CDoCDooobrooo j

o

roo

V (M IL L I-V O L T S )

Page 57: The Hall Effect in Bismuth at High Magnetic Fields and Low

H-

®roro

o

V(H)

V (MILLI-VOLTS)

V (MILLI-VOLTS)

Page 58: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 23,

V (MILLI-VOLTS)

O 6 ro<D OJO -p*o

CJl

X

f-O ^Io <x>> o ~dCO _CO o _

OJ

V (M ILLI-VOLTS) 00

Page 59: The Hall Effect in Bismuth at High Magnetic Fields and Low

V (MILLI

V (M ILL-VOLTS)

-V(-H

)

VOLTS)

o roO

04o o

o to

Page 60: The Hall Effect in Bismuth at High Magnetic Fields and Low

(KILO-G

AUSS

)

V (M ILLI-VOLTS)

V (MILLI-VOLTS)

V(H)

roo ojo o

cno

cno

01o

Page 61: The Hall Effect in Bismuth at High Magnetic Fields and Low

H-<2®roo»

01a>czcncn

ojOocnO<T>oNo

CDocoopo

rob

ojo

o

V! II TRIG.

V (MILLI-VOLTS)

Page 62: The Hall Effect in Bismuth at High Magnetic Fields and Low

4CDCO<1

Olo>c :cncn

o jb

b

CJib

cno

r-Jo00oCDoob

rob

ojo

b

V II TRIG

.

V (MILLI -VO LTS

b b rob o j

b

— r o o j

o o bV (MILLI-VOLTS) cn

to

Page 63: The Hall Effect in Bismuth at High Magnetic Fields and Low

53dioular to the trigonal axis and the binary axis. The two upper graphs are made from measurements recorded with the Hall voltage probes parallel to the binary axis and the current probes parallel to the trigonal axis. In the lower set, the voltage was measured along the trigonal axis and the current probes were parallel to the binary axis.

The diameters of the circles centered about the experimental points are large enough to include the ap­proximate error in each measurement. As noted in Appendix I, the error in the recorded Hall potential measurements is taken to be about 0.05 milli-volt. The error in the magnetic field measurements is approximately 2 percent at the higher field values (Appendix II).

Two curves are drawn on each set of axes. The upper curve represents the voltage measured between the Hall probes with the field in one direction. The lower curve results from measurements made with the field reversed. As stated previously, the difference in potential between these two curves is the voltage drop due to the magneto-resistanoe of the crystal. The Hall potential at a specific field is the average of the two curves at this field value. The average, V(H)/2 - V(-H)/2, was taken directly from the curves by determining the mid-point between the inter­sections of the two curves with the line representing the field at that point. These numbers were not plotted, but were tabulated along with the field values at which they

Page 64: The Hall Effect in Bismuth at High Magnetic Fields and Low

54were averaged. From these numbers, the Hall coefficients were calculated.

The defining equation for the Hall coefficient,B *» (Vt)/(HI), was used in making these calculations. Here, V is the Hall potential in volts; t_ is the thickness of the crystal in centimeters (it is measured along the axis to which the magnetic field, H in gauss, is parallel); and I is the Hall current in amperes. The calculated Hall coef­ficients are tabulated in Appendix IV. These values were plotted against the reciprocals of their respective field strengths. The resulting curves are to be found in Figures Twenty-eight through Thirty-four.

Page 65: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 28

R X 10 (OHM-CM/GAUSS).->1 O

R X 10 (O H M - CM/GAUSS)

H II TR

IG.

R X 10® (O H M - CM/GAUSS)

O O Ooo o o_ p

Ixq.©>Cmt/>1

“To

R X 10® (O H M -C M /G AU SS)— [o oi — ro ojb o o b o o

b

x roroO

0)■CMo

Page 66: The Hall Effect in Bismuth at High Magnetic Fields and Low

R X

10 (O

HM

— C

M./G

AU

SS)

R X

10*

(OHM

- C

M./G

AU

SS

)

56H X TRIG, a BIN.

V II BIN.3.0

3 2.0

o (0x 1.0 2.0

l/H X I0 4 GAUSS"'3.0

X 3.0H X TRIG, a BIN. V II TRIG.20

10.0 30.0

9.0HII TRIG.

8.0 V I TRIG, a BIN.

7.0

6.0 — \

5.0

4.0

3.0

20</H X I04 GAUSS"'

9.0

8.0 H II TRIG.

V II BIN.

70

6.0

5.0

4.0

3.0

2.0l /H X I0 4 GAUSS"'

l /H X IO 4 GAUSS"'

3.0H II BIN.

<i)w < 2.00 \ at

1 L0 2Xo

V II TRIG.

10.0 20.0 30.0l/H X I0 4 GAUSS"'o

£ 30

2.0 V X TRIG, a BIN.

10.0 20.0 30.0l /H X I 0 4 GAUSS"'

T - 1 .82°K

Figure 29.

Page 67: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 30.

R X 10® (O HM -CM /G AUSS)

HI

roho

R X 10® (OHM - CM /GAUSS)

\X

o*o>cCOCOI

o ’o o

po

N>Po

so

V II BIN.

h W

\ V

II TR

IG.

I/HX

IO4 GAUSS*'

10.0 20.0

30.0I

l/H X

104 GA

USS

"'

R X 10* (O H M - CM/GAUSS)

O O OO O O O“ CD— D

R X I 0 * (OHM -CM /G AUSS)— ro oi _ ro pio b o b o o

po

x ro °§ a

Crioo

Page 68: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 31.

rob

R X 10® (OHM - CM./GAUSS)orO Ab oi

bo>o S

o b

_ oa>—ob_F5‘O— 4kb'o

xXo*o>cCOCO

— \

rocn00o

R X 10* (0HM-CM./GAUSS)

O o

po

wob

R X IO 8 (OHM -CM ./GAUSS)<o ro oj a o> ® h ®o o b b >o b o o o

_ P

—p

c2 2 a a— at

z £P

R X IO 8 (OHM— CM./GAUSS)rob orb roP orP

ob

x

a2 2 o p p p

* o

Olsp

OlCO

Page 69: The Hall Effect in Bismuth at High Magnetic Fields and Low

R X 10 (OHM-CM/GAUSS)OJ -O pi <J> -«4 00c o o o o o

_ e

—oXX

a>ccoco—o

i

H-4CDWro

—I IOJcno

robR X 10® (OHM-CM/G AUSS)

5 too o>o

5 N * §

so

po

rooo

oioo

R X 10*(OHM-CM./GAUSS)OI CDo oo b o o'o b

_ro

o>ccncn

I

R X 10* (OHM -CM /G AUSS)r- ro cn r- N oio 'o o o b o

oo

O to*orooP

xoI

zOIoo

Page 70: The Hall Effect in Bismuth at High Magnetic Fields and Low

\ X

10 CO

HW

-CM

/GAU

SS)

R X

10*

(OH

M-C

M/G

AU

SS)

609.0

8.0A

H II TRIO.

V_L TRIG, ft BIN.

7.0

6.0

5.0

4.0

0.8 10.0 V.O 14.0 16.0 18.02.0l/H X I04 GAUSS'1

9.0

H II TRIG.8.0V II BIN.

7.0

6.0

i

•.'» I.,)0 )/() !■» 0 |6j0

in t n r>701 2 Xo

oXcc

HJ. TRIG, a BIN.

V II BIN.

3.0

o

M

30.010.0 20.0l/H X IO 4 GAUSS

H ± TRIG, a BIN.3 0

V II TRIG.

2.0

1.0100

oXa.

20.0 30.0l /H X 10 GAUSS

3.0BIN.

V U TRIG.2.0

1.0xo 20.0 30.010.0

l/H XIO 4 GAUSS"'

l /H X I0 4 GAUSS'1

30H II BIN.

V J. TR IG , a BIN.2.0

1.010.0 20.0 30.0

l /H X 104 GAUSS-1

T - 3 .7 I°K

Figure 33

Page 71: The Hall Effect in Bismuth at High Magnetic Fields and Low

(OH

M-C

M./G

AU

SS

) R

X 10

(OiM

-CM

./GA

US

S)

619 0

II II TRIG.00 V J _ T R I G ft

B IN .

7.0

6.0

5.0

4.0

3.0

08 IQO 120 14.0 IdO 18.02.0

xre

l/H X I 0 4 GAUSS"DO

H II TRIG.8.0V II BIN.

7.0

6.0

SO

3.0

0 8 10 0 12,0 140 16.02.0

l /H X 10 GAUSS

30

!'*.a A O < o s

0 i.o12 Xo

x 30 e

H 1 TRIG, ft BIN.

V II BIN

2 0

1.0

10.0

100

I__I20.0 30.0

H ± TRIG, a BIN.

V II TRIG.

I I I I I I I I I20.0 300

1/ H XIO GAUSS

3.0

V)V)= 2.0 os0 I.o12 X

V R-TRLG.

30.020.0l /H X 10* GAUSS"1

10.0

Ox 30 x BIN.

TRIG, ft BIN.20

30.010.0 200. l /H X I 0 4 GAUSS"1

t - 4 . 2 ° K

Figure 34.

Page 72: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER V THE HALL COEFFICIENT CURVES

The calculated Hall coefficients are all negative.This means there is an exoess of electron over "hole" carriers in the crystal. In general, the Hall coefficient osoillates about a ourve which appears to be a monotonio function of the reciprocal field. The amplitudes of these oscillations increase as the temperature and the reciprocal field decreases. Within the limits of experimental error, a 90° rotation of the measuring probes has little, if any, effect upon the oscillations. On the other hand, their character changes dramatically with the orientation of the field. This is first observed in the graphs of the experi­mental data, Figures Seven through Twenty-seven; and, again, in the calculated curves, Figures Twenty-eight through Thirty-four. An examination of these curves re­veals that for a particular orientation of the field, the maxima and minima of the oscillations always occur at the same field (or reciprocal field) values regardless of the arrangement of the Hall and current probes.

The periodicities and phases of the oscillations are independent of the temperature. Although the amplitudes of the oscillations are less pronounced at the higher temperatures, a specific maxima or minima is always found at the same value of field or reciprocal field strength,

62

Page 73: The Hall Effect in Bismuth at High Magnetic Fields and Low

The simplest of the oscillatory Hall coefficient curves are those calculated from the data obtained with the magnetic field parallel to the trigonal axis. Here, the coefficient appears to be represented by a single oscillating term, periodic in l/H, superimposed upon an­other term which decreases monotonically with the recipro­cal field. To determine the periodicity of the oscil­lations, the reciprocal field values at the points of tangency of the oscillatory ourve with its envelope were plotted against successive integers. Twice the slope of the straight line drawn through these points is the period, A graph was drawn for each orientation of the measuring probes. These appear in Figure Thirty-five. The recipro­cal field values of the maxima (odd integers) and the minima (even integers) for all seven temperatures are plotted om the same graph. The two graphs show further that the period of the oscillatory Hall effect is inde­pendent of the temperature and the orientation of the Hall voltage and current probes. The slope of each curve is0.76 x 10”5 gauss”1 indicating a periodicity of 1.5 x 10”®

-1 33gauss , Reynolds £t al.- reported finding the sameperiod in this crystal at the same field orientation. Thevalue compares favorably with that found by Overton and

33Reynolds, Hemstreet, Leinhardt, and Triantos, op. cit.. 1207.

Page 74: The Hall Effect in Bismuth at High Magnetic Fields and Low

1.8

CO *-6 W< 1.4CD

L2X LOXN — 08

0.6

H U TRIO.V II BIN

SLOPE = 0 .76 X IO '5GAUSS'

J l I I l l i i i i I6 8

N10 12

Figure 35i/H

X I0

4 G

AU

SS

"1

H II TRIO.VJ.TRIG. a BIN1.6

1.4

1.0SL0PE=0.76X 10 '

GAUSS'0.8

060 2 4 6 8 10 12

N

cn

Page 75: The Hall Effect in Bismuth at High Magnetic Fields and Low

6534Berlincourt in another crystal whose trigonal axis was

parallel to the magnetic field.The Hall coefficient curves have a much greater com­

plexity when they are calculated from measurements made with the magnetic field parallel to the other axes of the crystal. The periodicities of the observed oscillations could not be found by the simple method outlined above. Hence, a graphical method of analysis was used. Figure Thirty-six illustrates this method. It is assumed that the coefficient curves at these orientations contain a number of oscillating terms. The approximate field values at which their maxima occur were found. Then, those values having equal intervals in gauss’"̂ between them were assumed to belong to the same oscillating term. These were plotted against successive integers and the slope of the resulting straight line curve was taken to be the period of that par­ticular term. The axes of the graphs were adjusted so that the zero of the axis of integers coincided with the zero of the l/H axis. An approximate value of the phase of the different oscillations is given by the intercept of the straight lines with the axis of integers.

For those measurements made with the magnetic field parallel to a binary axis of the crystal, the following

3% . C. Overton, Jr. and T. G. Berlinoourt, Phys. Rev., 99, 1165 (1955).

Page 76: The Hall Effect in Bismuth at High Magnetic Fields and Low

Figure 36.

H II BIN. V II TRIG.

bV e. x id5 GAUSS- '

----------- 5 .6

----------- 3.6

4.0

3.0DoX 20 cr

1.0

0.2 0.4 0.6 0.8 1.0 12 1.4 1.6 1.8 2.0 2.2 2/4 2.6 2.8 3.0

l /H X IO4 GAUSS '

R X

10

T — l.3*KHI BIN.8 TRIG. VH BIN.

B'/E.X I05GAUSS‘

► 8.2k.-------------- 4.7

I ------------- 4.1

-------------- 1.5

4.0

3.0(O

2.0

Q2 0 4 0.6 0.8 IO 12 1.4 L6 1.8 2 0 22 2.4 2 6 2.8 3.0

l/H X IO4 GAUSS 1

Page 77: The Hall Effect in Bismuth at High Magnetic Fields and Low

67-5 -1 -5 -1periods were, found: 5.6 x 10 gauss , 3.6 x 10 gauss ,

and 3,1 x 10 gauss . With the field perpendicular to-5the trigonal and binary axes, the periods are: 8.2 x 10

gauss”1, 4.7 x 10”5 gauss”1, and 4.1 x 10~5 gauss”1. It is possible that each of these curves possesses another oscillating term which has the same periodicity and phase as that found with the field parallel to the trigonal axis. For both orientations the two oscillating terms having the longer periods have the same phase, about 0.6. The phase of the two shorter periods is nearly 0.8.

It is interesting to compare the periodicities de­termined by this method with those found by others in

35related magneto-oscillatory phenomena. Alers and Webberobserved that, with the field perpendicular to the trigonaland a binary axis, there are two oscillating terms in themagneto-resistanoe of a bismuth single crystal. Their

-5 -1report indicates the periods are 8.2 x 10 gauss and -5 14.1 x 10 gauss" . These values agree with two of the

periods found in the Hall coefficient at this orientation.rzcSteele and Babiskin were unable to determine the perio­

dicity of the phenomena they studied in a bismuth singlecrystal having this orientation. However, they found a

-5 1period of 7.1 x 10 gauss"x in the oscillations of thermal

*35Alers and Webber, op, oit.. 1065,Steele and Babiskin, pp. oit., 364,

Page 78: The Hall Effect in Bismuth at High Magnetic Fields and Low

6 8

oonduotivity, thermoelectric power, and resistance in a magnetic field parallel to a binary axis and perpendicular to the trigonal axis. No such value was found at this orientation by the above analysis.

Page 79: The Hall Effect in Bismuth at High Magnetic Fields and Low

CHAPTER VI DISCUSSION

At the present time, there is no satisfactory theo­retical formula describing the low temperature Hall coef­ficient in bismuth single crystals at the moderately highfields encountered in this investigation. It has been the

37practioe , however, to analyze the Hall coefficient and other magneto-oscillatory phenomena in terms of an equation having the form:

RCTH)--XjR0i(T,H) •1_Aj(T,H)sih(zrf.j/̂ H+ i>)J ' {1)

R0(T,H) is frequently found to vary with H, the magnetio 58field . It is nearly independent of the temperature, T.

A(T,H) is given by:

A (T, H) = Co*a. . (2)

E0 is the Fermi energy of the conduction electrons; B’ isa double effective Bohr magneton and is equal to eh/m1; m 1 is the effective mass of the electrons in a plane perpen­dicular to the field; <f> is the phase of the oscillations.

39Equation (1) is aotually a modified form of Landau’s

37Overton and Berlincourt, o£. oit., 1165.38Steele and Babiskin, 0£. cit.. 366 and Alers

and Webber, oj>. oit.. 1064.39Landau, op. oit.

69

Page 80: The Hall Effect in Bismuth at High Magnetic Fields and Low

70equation for the oscillatory diamagnetio susceptibility.His value of the exponent, a, is -3/2 and he gives -ir/4 as being the phase, 0. Allowing sinh(2ir^kT/B*H) to be ap­proximated by (1/2) exp(27r2kT/B,H), and a to be 1/2, equation (2) then becomes a formula derived by Grimsal^0 .In this form the equation was meant to describe the oscil­latory Hall coefficient in an isotropic crystal at low temperatures and at low fields.

With the magnetic field parallel to the trigonal 41axis , a suitable expression for the Hall coefficient

might well be one of the form (1); or, considering only the term in j « 1:

R(X H)= R„(T,H) + A(T,H)sin(e-<p) _ (s)

However, an attempt to fit the experimental curves defin­ing the amplitude of the oscillations to equation (2) was not successful.

If it is assumed that 0 in equation (3) has the form given in equation (1), then, B,/Eq is equal to 1.5 x 10" gauss"’'*'. This is the periodicity of the oscillations found in Chapter V. From his studies of the de Haas - van Alphen

40E, G. Grimsal, Thesis, Louisiana State University, Unpublished (1954).

^This orientation was ohosen because of the rela­tive simplicity of its Hall coefficient curves.

Page 81: The Hall Effect in Bismuth at High Magnetic Fields and Low

7142effeot in bismuth, Shoenberg has determined a value for

E 0 which is considered to be quite reliable. He found that-14it is equal to 2.9 x 10 erg. The product of this number

and the period of the oscillations should be a fairly accurate value of B*. This is 4.4 x 10“19 erg/gauss. Writing equation (2) in logarithmic form and introducing to it this value of B», there is obtained:

Then, a plot of Ln(A/T) vs. Ln(sinh6200T/H) using experi­mental values of A and T should fall along a straight line. If equation (2) and Bf are correct, then the slope of this line must be -1. Three graphs drawn in this manner appear in Figure Thirty-seven. Although the experimental points fall on straight line curves with little scattering, the slopes of the curves are less than -1. Furthermore, the slope varies with the different reciprocal fields which are held constant.

An approximate value of B1 may be found in another way. Taking sinh(2v2kT/B*H) to be close to (l/2)exp(2ir2kT/H), equation (4) becomes:

L * 0 W * l h ( c< > H S t . ) + e | U 6 / ) - c t V h . (5)

42Shoenberg, Trans. Roy. Soo,, 0£. cit.

Page 82: The Hall Effect in Bismuth at High Magnetic Fields and Low

Graphs of the experimental values of Ln(A/T) vs. T/H atconstant reciprocal fields are, within experimental error,straight line curves. Each line should have the sameslope, C = 2ir k/B1. However, as is illustrated by FigureThirty-eight, the slope varies with l/H. For small valuesof l/H, C is about -1 x 104 gauss/deg. As l/H increases,C approaches -0.7 x 104 gauss/deg. The calculated valuesof B’ vary from 2.7 x 10"-1-9 erg/gauss to 3.4 x 10-'1'9erg/gauss. When these numbers are divided by the period

-5 _iof the oscillations, 1.5 x 10 gauss , E Q is found to-14 -14range in value from 2.2 x 10 erg to 1.8 x 10 erg.

The larger value is 25 percent less than that found byShoenberg.

The variation in C may be due to the error introduced by approximating sinhCT/H with (1/2)expCT/H. This possi­bility was investigated in the following way. Holding the reciprocal field constant, a value of C was found which gave a slope of -1 to the curve, Ln(A/T) vs. Ln(sinhCT/H). This was repeated at several reciprocal field values. A different C = 2ir k/Bf was found in each case, showing that either the equation is incorrect or B’ is field dependent.

Other inconsistencies are revealed when an attempt is made to evaluate the exponent a. The simplest way to find a is to plot Ln(A/T) + CT/H against Ln(H). The slope of the resulting straight line should be a. Here, however, this method is of doubtful value since it depends upon C.

Page 83: The Hall Effect in Bismuth at High Magnetic Fields and Low

73

Ol/HXIO4 GAUSS"1

Qo— 2.0

□o

o — □ - O -

0 .8 0

0.92

1 .0 4

h-

X<z-I

J L

\s O ID

\1.0 <po

SX

O XCt) \

\ s1.0 \

I V I M2.0

LN SINH 6200 T/H □ O s\ X\

9

o-1 .0

Figure 37.

Page 84: The Hall Effect in Bismuth at High Magnetic Fields and Low

3.0|/H X 10 GAUSS

0.80 0.92 1.04

o—

20

Xp<2_J 2.0 3.0 4.0 5.0

-T /H X IO

- 1.0

Figure 38.

Page 85: The Hall Effect in Bismuth at High Magnetic Fields and Low

75Another method involves the plotting of the experimental values of Ln(A/THa) against T/H. If the proper a is se­lected, all the experimental points should fall upon the same curve. Taking a to be -3/2,. the points fall with fair regularity upon smooth curves which are close to being straight lines. But, there is a separate ourve for each temperature. With a equal to 1/2, the curves overlap to some extent, yet, waver about in an uncertain manner.

43Reynolds £t al. were able to reduce the scattering in asimilar set of curves by xising a corrected temperature,T» * t + 0,5. This correction factor was suggested byDingle44 for the de Haas - van Alphen effect. When thesame correction was applied to the temperature in thisstudy, no remarkable change was observed in the graphs.In their studies of the pressure dependency of the Hall

4-5coefficient in bismuth, Overton and Berlinoourt obtained a good fit with a equal to -2,4. This, however, was for only one temperature, 4.2°K. If the same value of a were used here, it would only serve to increase the separation of the curves.

In view of the inconsistencies discussed above,

43Reynolds, Hems treet, Leinhardt, and Triantos, op. oit., 1207.

44R. B. Dingle, Proo. Roy. Soc., A 211. op. oit.,500.

45Overton and Berlincourt, op,. oit.. 1168.

Page 86: The Hall Effect in Bismuth at High Magnetic Fields and Low

76equation (2) is not the equation of the amplitude of the oscillations in the low temperature Hall coefficient of bismuth single crystals. The experimental curves of A(T,H) and R0(T,H) are far too complex to be fitted to the simpler empirical formulas. However, at the lower temperatures and above 9 kilo-gauss, RQ(T,H) is nearly proportional to H1 *2. In this region, the non-oscillatory component is almost entirely independent of the temperature.

Page 87: The Hall Effect in Bismuth at High Magnetic Fields and Low

SELECTED BIBLIOGRAPHY

Alers, P. B., and R. T. Webber, Phys. Rev., 91, 1060(1953). —

Akheiser, A., Compt. Rendus Acad. Sci., U. S. S. R.,23, 874 (1939).

Babiskin, J., see Steele and Babiskin (1955).Berlinoourt, T. G., Phys. Rev., 91, 1277 (1953).Berlinoourt, T. G., Phys. Rev., 92, 1068 (1953).Berlinoourt, T. G., and J. K. Logan, Phys. Rev., 93,

348 (1954).Berlinoourt, T. G., Phys. Rev., 98, 956 (1955).Berlinoourt, T. G., see Overton and Berlinoourt (1955).Blackman, M., Proo. Roy. Soo. (London), A 166. 1 (1938).Blom, J. W., see de Haas, Blom, and Sohubnikow (1935),de Haas, W. I., and P. M. van Alphen, Leiden Comm., No.

212 (1930) and No. 220d (1932).de Haas, W. J., and J. W. Blom, and L. W. Sohubnikow,

Leiden Comm., No. 237 (1935).de Haas, W. J., see Gerritsen and de Haas (1940).de Haas, W. J., see Sohubnikow and de Haas (1930).Dingle, R. B., Proc. Roy. Soo. (London), A 211. 500 and

517 (1952).Dingle, R. B., Proo. Roy. Soc. (London), A 212, 47 (1952).Gerritsen, A. H. and W. J. de Haas, Leiden Comm., 216b

(1940).Grimsal, E. G., Thesis, Louisiana State University, Un­

published (1954).Hemstreet, H. W., see Reynolds, Leinhardt, and Hemstreet.

77

Page 88: The Hall Effect in Bismuth at High Magnetic Fields and Low

78Hemstreet, H. W., see Reynolds, Hemstreet, Leinhardt,

and Triantos (1954).Leinhardt, T, E., see Reynolds, Leinhardt, and Hemstreet

(1954).Leinhardt, T. E., see Reynolds, Hemstreet, Leinhardt, and

Triantos (1954).Logan, J. K., see Berlinoourt and Logan (1954).Marous, J. A., Phys. Rev., 71, 559 (1947).Nachimovich, N. M., J. Phys,, U. S. S. R., 6, 111 (1942).Overton, W. C., and T. G. Berlinoourt, Phys. Rev., 99,

1165 (1955).Peirls, R., Z. Physik, 80, 763 (1933).Peirls, R., Z. Physik, 81, 186 (1933).Reynolds, J. M., T. E. Leinhardt, and H. W. Hemstreet,

Phys. Rev., 93, 247 (1954).Reynolds, J. M., H. W. Hemstreet, T. E. Leinhardt, and

D. D. Triantos, Phys. Rev., 96, 1203 (1954).Robinson, J. E., Thesis, Yale University, Unpublished

(1950).Rumer, Y. B., J. Exptl. Theor. Phys., U. S. S. R., 18,

1081 (1948).Sohubnikow, L. W. and W. J. de Haas, Proc. Aoad. Sci.

Amsterdam, 33, 130, 363, and 418 (1930).Sohubnikow, L. W., see de Haas, Blom, and Sohubnikow (1935).Shoenberg, D., Nathre, 164, 225 (1939).Shoenberg, D., Proo. Roy. Soo. (London), A 170. 341 (1939).Shoenberg, D., Nature, 166, 652 (1950).Shoenberg, D., Nature, 167. 647 (1951).Shoenberg, D., Nature, 170. 569 (1952).Shoenberg, D., Trans. Roy. Soo. (London), A 245, 1 (1952).

Page 89: The Hall Effect in Bismuth at High Magnetic Fields and Low

79Shoenberg, D., see van Dijk and Shoenberg (1949).Sondheimer, E. H., and A. H. Wilson, Proc. Roy. Soo.

(London), A 210, 173 (1951).Steele, M. 0., and J. Babiskin, Phys. Rev., 98, 359 (1955).Triantos, D. D., Thesis, Louisiana State University, Un­

published (1954).Triantos, D. D., see Reynolds, Hemstreet, Leinhardt, and

Triantos (1954).van Alphen, P. M., see W. J. de Haas and van Alphen (1930

and 1932).van Dijk, H., and D. Shoenberg, Nature, 164. 151 (1949). Webber, R. T., see Alers and Webber, (1953).Wilson, A. H., see Sondheimer and Wilson (1951).

Page 90: The Hall Effect in Bismuth at High Magnetic Fields and Low

APPENDIX ICALIBRATION OF THE LEEDS AND NORTHRUP RECORDING

POTENTIOMETER

The potential developed across a standard resistance was measured first by a White double potentiometer (A) and, then, by the L. and N. recording potentiometer (B).

Increasing Potential Depressing PotentialA

milli­volts

Bmilli­volts

Diff.milli­volts

Amilli­volts

Bmilli­volts

Diff.milllvolts

0.524 0.430 0.094 4.203 4.140 0.0631.148 1.010 0.138 3.460 3.410 0.0501,904 1.810 0.094 2.812 2.760 0.0522.809 2.720 0.089 1.847 1.800 0.0473.270 3.200 0.070 1.130 1.090 0,0403.683 3.600 0.083 0.576 0.530 0.0464.200 4.120 0.0804.525 4.440 0.0854.903 4.820 0.0834.986 4.900 0.086

Considering both sets of data, the average difference is about 0,07 milli-volt. If the recorded voltages are oorreoted by the addition of 0.07 milli-volt, the average deviation of the readings is about 0.0S milli-volt. If the readings whose differenoe is 0.138 milli-volt are excluded

80

Page 91: The Hall Effect in Bismuth at High Magnetic Fields and Low

the maximum deviation is less than 0,05 milli-volt. The 0.138 milli-volt difference is probably due to slippage of the tape.

Page 92: The Hall Effect in Bismuth at High Magnetic Fields and Low

APPENDIX II - A OPERATING CHARACTERISTICS OF MAGNET

A thermocouple with one of its junctions mounted be­tween two coils, close to the forms upon which they are wound, measured a temperature of 19.5°C without water circulating through the cooling plates. With water flow­ing through the plates, the temperature rises 8°C.

MagnetCurrentAmperes

MagnetVoltageVolts

CoilRes.Ohms

PowerKilo­watts

TempDeg.Cent

0.0 0.0 1.04 0.00 27.53.0 3.2 1.07 0.01 28.04.5 5.0 1.11 0.02 28.0

10.0 11.0 1.10 0.11 28.515.8 17.2 1.09 0,27 29.820.0 21.8 1.09 0.44 31.526.5 29.2 1.10 0.77 35.030.0 33.2 1.11 1.00 37.437.1 41.6 1.12 1.54 43.044.5 50.6 1.14 2.25 49.049.5 57.7 1.17 2.86 55.055.2 65.7 1.19 3,63 60.560.0 72.6 1.21 4.36 66.066.0 81.0 1.23 5.34 71.672.2 91.0 1.26 6.57 77.8

82

Page 93: The Hall Effect in Bismuth at High Magnetic Fields and Low

83

MagnetCurrentAmperes

MagnetVoltageVolts

CoilRes.Ohms

PowerKilo­watts

TempDeg.Cent

78.5 100.5 1.28 7.89 85.084.5 110.2 1.31 9.31 90.490.0 118.6 1.32 10.68 95,495.0 127.5 1.34 12.11 101.699.9 135.3 1.36 13.50 107.2

103.0 140.4 1.36 14.46 111.8

For currents less than 60 amperes, a fifteen minute warmup was allowed. Above this current, measurements were recorded as soon as the temperature ceased to rise.

Page 94: The Hall Effect in Bismuth at High Magnetic Fields and Low

APPENDIX II - B MAGNETIC FIELD INTENSITY

IN TERMS OF BROWN RECORDER TAPE READINGS

The values listed below are the averages of three separate field calibrations. Above 10 kilo-gauss, the average deviation of the points is about 200 gauss.

Tape(mv)

Field(gauss)

Tape(mv)

Field(gauss)

Tape(mv)

FieldISaussi

0.0 170 17.0 10,240 34.0 12,7301.0 970 18.0 10,490 35.0 12,8102.0 1,770 19.0 10,730 36.0 12,9103.0 2,540 20.0 10,930 37.0 12,9904.0 3,290 21.0 11,130 38.0 13,0705.0 4,020 22.0 11,300 39.0 13,1506.0 4,720 23.0 11,450 40.0 13,2307.0 5,400 24.0 11,600 41.0 13,3108.0 6,050 25.0 11,750 42.0 13,3909.0 6,690 26.0 11,900 43.0 13,470

10.0 7,290 27.0 12,040 44.0 13,55011.0 7,840 28.0 12,140 45.0 13,62012.0 8,360 29.0 12,240 46.0 13,69013.0 8,830 30.0 12,340 47.0 13,76014.0 9,250 31.0 12,440 48.0 13,82015.0 9,630 32.0 12,540 49.0 13,88016.0 9,950 33.0 12,640 50.0 13,940

84

Page 95: The Hall Effect in Bismuth at High Magnetic Fields and Low

APPENDIX III EXPERIMENTAL DATA

The recorded data are tabulated in the following pages.For each set of data, the orientation of the field, theaverage current, and the vapor pressure are noted. Tounderstand the other notations, refer to Figure Two.Octal N means that the field is directed out of the pageof the diagram. Octal S means that the field is directedinto the page, Hall(b+,r-) means that the blaok lead(right probe of M) is connected to the positive terminal of the potentiometer recording the Hall voltages. The redlead (left probe of M) is connected to the negative termi­nal. Current(w+,g-) means that the probes N are used as current probes, with the upper probe (white lead) having a positive polarity and the lower (green lead) a negative polarity.

85

Page 96: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal axis; P=762 mm Hg.Ootal S; Hall(b+,r«); Current(w+,g-) * 0.0165 amp.

Field Hall k.-g§.;.m.v.

FieldHall k.-g.m.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.55 0 01 7.52 0 66 10.44 1 62 11.95 2 15 12.67 2.653.29 0 02 7.69 0 71 10.49 1 67 11.99 2 18 12.73 2.673.81 0 05 7.84 0 77 10.59 1 73 12.04 2 22 12.76 2.684.17 0 08 8.02 0 81 10.67 1 76 12.10 2 27 12.82 2.694.44 0 11 8.29 0 89 10,77 1 79 12.12 2 31 12.85 2.704.59 0 13 8.44 0 92 10.85 1 81 12.17 2 33 12.91 2.714.87 0 16 8.65 0 98 10.93 1 83 12.20 2 36 12.96 2.725.15 0 20 8.88 1 06 11.06 1 85:: 12.24 2 39 13.02 2.735.28 0 22 9.02 1 12 11.17 1 86 12.26 2 41 13.07 2.745.43 0 24 9.16 1 18 11.24 1 88 12.30 2 45 13.15 2.755.56 0 26 9.37 1 23 11.35 1 90 12.35 2 48 13i28 2.755.66 0 27 9.50 1 26 11.41 1 91 12.42 2 53 13.39 2.766.12 0 34 9.63 1 29 11.47 1 93 12.45 2 55 13.43 2.776.44 0 40 9.77 1 33 11.56 1 97 12.49 2 57 13.76 2.906.57 0 42 9.90 1 36 11.62 1 99 12.52 2 586.72 0 46 9.96 1 39 11.69 2 02 12.56 2 606.93 0 50 10.09 1 45 11.75 2 04 12.61 2 637.11 0 55 10.19 1 50 11.78 2 06 12.64 2 637.29 0 59 10.29 1 56 11.83 2 08 12.67 2 657.40 0 62 10.34 1 59 11.87 2 11 12.73 2 67

Page 97: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal axis; P«762 mm Hg,Octal N; Hall(r+,b-); Current (w+,g-i) = 0.0165 amp.

Fieldk.-gt

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.97 0.01 9.29 1.69 11.69 2.63 12.90 3,603.99 0.17 9.49 1.74 11,79 2.68 12.95 3.614.34 0.22 9.63 1.78 11.84 2.72 13.01 3.614.58 0.26 9.86 1.84 11.90 2.75 13.07 3.614.79 0.29 10.03 1.92 11.95 2.80 13.13 3.624.93 0.32 10.16 2.01 12.00 2.84 13.45 3.625.14 0.36 10.29 2.11 12.06 2.90 13.53 3.625.60 0.45 10.42 2.21 12.10 2.965.79 0.50 10.52 2.28 12.15 3.026.05 0.57 10.64 2.35 12.21 3.096.38 0.65 10.75 2.40 12.28 3.186.84 0.77 10.86 2.44 12.33 3.237.23 0.89 10.98 2.46 12.37 3.347.51 0.98 11.09 2.47 12.50 3.407.68 1.09 11.13 2.48 12.58 3.457.98 1.17 11.29 2.49 12.66 3.518.21 1.25 11.38 2.50 12.70 3.538.41 1.31 11.47 2.53 12.74 3.558.70 1.43 11.53 2.55 12.80 3.579.03 1.57 11.62 2.58 12.85 3.58

Page 98: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field Parallel trigonal axis; P = 450 mm Hg.Octal S; Hall(b+,r-); current(w+,g-) = 0.0165 amp.

Field Hall k.-g. m.v.

Field Hall k.-g. m.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.69 0.00 8.85 1.10 11.24 1.95 12.09 2.38 12.65 2.773.33 0.03 9.01 1.11 11.30 1.96 12.12 2.41 12.71 2.793.85 0.06 9.17 1.23 11.35 1.97 12.15 2.43 12.75 2.804.13 0.08 9.25 1.27 11.41 1.99 12.17 2.45 12.82 2.814.37 0.10 9.37 1.29 11.57 2.00 12.19 2.48 12.85 2.824.72 0.14 9.49 1.31 11.60 2.02 12.23 2.50 12.93 2.825.10 0.18 9.63 1.33 11.65 2.05 12.24 2.52 12.94 2.825.33 0.24 9.80 1.36 11.68 2.07 12.28 2.55 13.23 2.825.79 0.29 9.92 1.40 11.71 2.09 12.31 2.58 13.34 2.826.18 0.36 10.04 1.45 11.72 2.11 12.32 2.60 13.43 2.826.41 0.40 10.16 1.51 11.75 2.13 12.36 2.62 13.54 2.826.63 0.46 10.24 1.58 11.78 2.16 12.38 2.64 13.59 2.836.93 0,58 10.29 1.62 11.81 2.18 12.40 2.65 13.61 2.847.35 0.64 10.34 1.68 11.84 2.19 12.44 2.67 13.63 2.857.56 0.70 10.44 1.74 11.90 2.22 12.46 2.69 13.65 2.857.95 0.81 10.57 1.80 11.96 2.26 12.48 2.708.26 0.88 10.64 1.90 11.99 2.28 12.51 2.728.41 0.94 10.91 1.92 12.03 2.31 12.53 2.738.63 1.00 11.01 1.93 12.05 2.34 12,56 2.748.74 1.04 11.15 1.94 12.07 2.36 12.59 2.75

Page 99: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal axis; P = 450 mm Hg.;Octal N; Hall (r+,b-); Current(w+,g-) =0.0165 amp.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

Fieldk.g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-J2..

Hallm.v.

2.17 0.02 9.77 1.85 11.69 2.72 12.30 3.32 12.95 3.742.69 0.05 9.92 1.90 11.72 2.74 12.31 3.34 13.01 3.743.33 0.11 9.98 1.94 11.75 2.76 12.34 3.36 13.07 3.744.09 0.20 10.07 1.99 11.81 2.80 12.36 3.40 13.13 3.744.72 0.30 10.10 2.03 11.86 2.84 12.38 3.41 13.17 3.735.07 0.37 10.19 2.07 11.88 2.86 12.40 3.44 13.22 3.725.56 0.50 10.24 2.13 11.92 2.90 12.43 3.47 13.29 3.706.18 0.63 10.35 2.48 11.97 2.94 12.46 3.50 13.35 3.696.69 0.75 10.64 2.54 12.02 2.99 12.48 3.53 13.39 3.686.99 0.86 10.88 2.55 12.04 3.03 12.52 3.56 13.46 3.677.35 0.99 11.18 2.55 12.07 3.06 12.54 3.58 13.53 3.667.73 1.09 11.30 2.56 12.09 3.08 12.59 3.60 13.56 3.667.95 1.22 11.33 2.56 12.12 3.14 12.62 3.63 13.64 3.668.16 1.30 11.36 2.58 12.14 3.16 12.66 3.65 13.66 3.668.41 1.35 11.45 2.59 12.16 3.18 12.69 3.678.65 .1.43 11.48 2.61 12.18 3.20 12.73 3.698.92 1.55 11.54 2.63 12.19 3.22 12.78 3.719.01 1.62 11.60 2.65 12.24 3.25 12.82 3.729.15 1.71 11.63 2.68 12.26 3.28 12.86 3.739.41 1.79 11.66 2.70 12.28 3.30 12.91 3.74

Page 100: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal axis; P * 225 mm Hg.;Octal S; Hall(b+,r-); current(w+, g-} - <D.0165 amp.

Field Hall k.-g. m.v.

Field Hall k.-g. m.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

Fieldk.-g.

Hallm.v.

2.09 0.00 8.16 0.94 10.57 1.91 12.04 2.35 12.70 2.913.67 0.07 8.26 0.96 10.67 1.94 12.06 2.39 12.74 2.924.13 0.11 8.41 0.98 10.72 1.96 12.01 2.43 12.78 2.92,4.58 0.15 8.51 1.01 10.80 1.97 12.12 2.46 12.84 2.935.00 0.20 8.74 1.10 10.93 1.98 12.16 2.51 12.90 2.935.34 0.25 8.87 1.16 11.05 1,98 12.17 2.56 12,95 2.935.50 0.29 8.99 1.24 11.13 1.98 12.23 2.60 13.00 2.935.79 0.34 9.01 1.28 11.24 1.98 12.26 2.63 13.05 2.935.93 0.37 9.17 1.32 11.33 1.98 12.28 2.66 13.09 2.926.15 0.40 9.32 1.35 11.42 1.98 12.31 2.69 13.13 2.906.41 0.46 9.49 1.36 11.51 1.99 12.34 2.72 13.17 2.906.69 0.51 9.63 1.38 11.57 2.01 12.36 2.75 13.22 2.896.84 0.55 9.79 1.40 11.60 2.02 12.41 2.77 13.24 2.886.96 0.60 9.95 1.45 11.67 2.06 12.44 2.79 13.27 2.877.18 0.66 10.11 1.54 11.74 2.10 12.46 2.81 13.31 2.867.40 0.71 10.19 1.62 11.83 2.15 12.49 2.83 13.34 2.657.62 0.77 10.29 1.71 11.86 2.20 12.52 2.84 13.37 2.857.73 0.83 10.37 1.78 11.92 2.24 12.57 2.86 13.39 2.857.95 0.88 10.46 1.84 11.96 2.27 12.62 2.88 13.59 2.848.06 0.92 10.52 1.88 11.99 2.30 12.66 2.90

Page 101: The Hall Effect in Bismuth at High Magnetic Fields and Low

91Data 6/28/55: Field parallel trigonal axis; P = 225 mm Hg.

Octal N; Hall(r+,b-); ourrent(w+,g~) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-fi.

Hallm.v.

2.84 0.04 9.09 1.76 11.17 2.57 12.10 3.19 12.78 3.803.37 0.11 9.21 1.80 11.22 2.56 12.12 3.23 12,84 3.813.74 0.16 9.41 1.84 11.24 2.55 12.16 3.29 12.90 3.814,33 0.25 9.70 1,84 11.30 2,55 12.18 3.33 12.94 3.815.00 0.36 9.91 1.89 11.34 2.54 12.20 3.36 12.99 3.815.52 0.48 10.04 1.98 11.42 2.54 12.23 3.40 13.01 3.815.79 0.55 10.15 2.08 11.49 2.54 12.28 3.47 13.06 3.806.05 0.61 10.24 2.16 11.54 2.55 12.29 3.49 13.10 3.786.41 0.73 10.30 2.25 11.60 2.57 12.31 3.51 13.13 3.77,6.69 0.80 10.37 2.31 11.63 2.59 12.35 3.54 13.17 3.756.99 0.91 10.43 2.39 11.69 2.63 12.38 3.58 13.21 3.737.31 1.02 10.49 2.43 11.72 2.74 12.39 3.60 13.23 3.717.62 1.10 10.54 2.47 11.77 2.79 12.40 3.60 13.25 3.707.84 1.21 10.59 2.51 11.78 2.82 12.42 3.63 13.29 3.697.90 1.31 10.64 2.55 11.83 2.86 12.45 3.65 13.33 3.678.06 1.34 10.71 2.57 11.87 2.90 12.47 3.67 13.36 3.658.41 1.37 10.77 2.59 11,90 2.95 12.49 3.69 13.39 3.648.65 1.48 10.85 2.60 11.96 3.00 12.54 3.72 13.43 3.628.67 1.58 10.97 2.60 11.99 3.04 12.61 3.75 13.48 3.618.90 1.64 11.13 2.59 12.03 3.08 12.66 3.77 13.52 3.609.01 1.71 11.15 2.58 12.06 3.13 12.71 3.79 13.59 3.59

Page 102: The Hall Effect in Bismuth at High Magnetic Fields and Low

92Data 6/28/55: Field parallel trigonal axis; V - 90 mm Hg.

Octal S; Hall(b+,r-); current(w+,g-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.vt

2.84 0.00 9,89 1.403.23 0.02 10.01 1.463.81 0.06 10.13 1.544.20 0.10 10.16 1.614.76 0.16 10.25 1.705.27 0.24 10.34 1.805.66 0.30 10.39 1.856.05 0.38 10.47 1.916.51 0.49 10.54 1.956.94 0.57 10.62 1.997.17 0.66 10.77 2.037.55 0.72 10.89 2.037.84 0.82 10.97 2.038.05 0.94 11.05 2.008.36 0.97 11.13 1.998.65 1.03 11.18 1.988.74 1.10 11.24 1.968.94 1.24 11.35 1.949.05 1.30 11.45 1.949.18 1.36 11.54 1.949.45 1.38 11.60 1.969.64 1.38 11.68 2.00

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

11.72 2.04 12.66 2.9911.77 2.08 12.71 2.9911.83 2.12 12.78 2.9911.86 2.15 12.85 2.9911.90 2.19 12.91 2.9911.94 2.24 12.94 2.9811.98 2.29 12.97 2.9812.02 2.34 12.99 2.9612.05 2.47 13.02 2.9512.07 2.51 13.07 2.9412.12 2.56 13.10 2.9212.14 2.60 13.13 2.9212.17 2.65 13.16 2.9012.20 2.69 13.18 2.8812.24 2.73 13.23 2.8612.28 2.77 13.26 2.8512.32 2.81 13.30 2.8312.36 2.85 13.34 2.8012.42 2.89 13.36 2.7912.48 2.92 13.41 2.7812.54 2.94 13.45 2.7612.60 2.96 13.53 2.75

Page 103: The Hall Effect in Bismuth at High Magnetic Fields and Low

93Data 6/28/55: Field parallel trigonal axis; P = 90 mm. Hg.

Octal n ; Hall(r+,b-); current(w+,g-) - c>.0165 amp.Field Hall Field Hall Field Hall Field Hall Field Hallk . - g . m V . k . - g . m v. k . - g . m v. k . - g . m.v. k . - g . m v.2.69 0 05 9.49 1 89 10.97 2 69 11.98 3.01 12.56 3 883.48 0 13 9.56 1 89 11.01 2 68 12.00 3.15 12.60 3 904.26 0 24 9.63 1 87 11.06 2 65 12.03 3.10 12.66 3 924.86 0 35 9.72 1 86 11.09 2 64 12.06 3.15 12.74 3 945.34 0 45 9.89 1 87 11.13 2 63 12.07 3.19 12.82 3 955.79 0 55 9.95 1 90 11.21 2 60 12.09 3.23 12.87 3 956.12 0 64 10.01 1 95 11.23 2 58 12.12 3.28 12.95 3 946.54 0 78 10.07 2 01 11.26 2 56 12.14 3.33 12.97 3 946.75 0 85 10.12 2 07 11.30 2 53 12.16 3.36 13.01 3 927.08 0 98 10.16 2 13 11.33 2 53 12.19 3.40 13.04 3 907.29 1 04 10.24 2 20 11.39 2 52 12.20 3.44 13.07 3 897.62 1 10 10.27 2 25 11.45 2 51 12.22 3.48 13.11 3 857.90 1 28 10.29 2 31 11.54 2 51 12.24 3.51 13.12 3 858.01 1 35 10.33 2 36 11.61 2 53 12.26 3.54 13.13 3 848.22 1 38 10.34 2 40 11.65 2 55 12.28 3.58 13.17 3 828.60 1 41 10.39 2 44 11.69 2 58 12.30 3.61 13.20 3 808.74 1 53 10.40 2 48 11.72 2 61 12.32 3.65 13.23 3 778.84 1 62 10.49 2 54 11.75 2 64 12.35 3.68 13.26 3 748.94 1 71 10.54-. 3 58 11.79 5,67 12.38 3.71 13.30 3 719.01 1 76 10.58 2 62 11.81 2 70 12.40 3.75 13.35 3 669.05 1 80 10.64 2 65 11.84 2 73 12.44 3.78 13.40 3 639.10 1 84 10.73 2 68 11.87 2 78 12.47 3.80 13.43 3 619.25 1 89 10.85 2 70 11.92 2 95 12.50 3.84 13.48 3 599.35 1 90 10.93 2 70 11.95 2 97 12.52 3.85 13.53 3 56

Page 104: The Hall Effect in Bismuth at High Magnetic Fields and Low

94Data 6/38/55: Field parallel trigonal; P = 41 mm Hg.;

Octal S; Hall(b+,r-); current(w+,g-) = 0.0165 amp.Field Hall k.-g. m.v.3.47 0.003.75 0.013.14 0.03 3.59 0.053.75 0.073.89 0.094.30 0.114.31 0.134.71 0.154.90 0.195.34 0.345.34 0.39 5.70 0.315.91 0.38 6.11 0.40 6.19 0.466.45 0.51 6.78 0.536.90 0.587.08 0.667.39 0.707.46 0.707.63 0.75

Field Hall _ k.-g. m.v.

7.73 0.837.90 0.938.04 0.988.31 0.998.41 0.99 8.56 1.008.74 1.10 8.83 1.198.99 1.399.07 1.35 9.17 1.409.35 1.41 9.37 1.419.51 1.419.63 1.349.77 1.38 9,86 1.389.98 1.44

10.08 1.5410.16 1.63

10.34 1.7310.33 1.8310.39 1.90

Field Hall k.-g. m.v.10.45 1.9510.53 3.0010.63 3.04 10.69 3.0610.74 3.0710.81 3.08 10.85 3.0810.93 3.0710.99 3.0611.05 3.0411.13 3.0311.17 3.0011.33 1.9811.38 1.9511.33 1.9411.36 1.9311.41 1.9311.45 1.9311.51 1.93 11.55 1.9311.60 1.9411.66 1.96 11.71 3.00

Field Hall k.-g. m.v.11.75 3.0411.81 3.0911.87 3.1611.91 3.3111.96 3.3713.01 3.3413.04 3.4013.07 3.4613.10 3.5313.14 3.5813.17 3.6413.33 3.7113.34 3.7513.38 3.8013.31 3.8413.34 3.8713.36 3.9013.39 3.95 13.43 3.9713.46 3.9913.50 3.0113.54 3.03 13.58 3.04

Field Hall k.-g. m.v.13.63 3.0513.67 3.0513.73 3.0513.76 3.0513.81 3.0513.87 3.0513.93 3.0413.96 3.0313.00 3.0313.04 3.0013.08 3.9813.13 3.9513.17 3.9313.31 3.9013.36 3.8613.39 3.8513.33 3.8315.38 3.7913.41 3.7713.46 3.7513.50 3.7513.55 3.73

Page 105: The Hall Effect in Bismuth at High Magnetic Fields and Low

95Data 6/28/55: Field parallel trigonal axis; P = 41 mm Hg.;

Octal N; Hall(r+,b-); current(w+,g-) = 0.0165 amp.Field Hall Field Hall Field Hall Field Hall Field Hallk.-g. m V. k.-g. m v. k.-g. m vf k.-g. m v t k.-g. m2.54 0 04 8.16 1 40 10.73 2 75 11.92 2 81 12.74 4 022.77 0 06 8.29 1 40 10.81 2 75 11.96 2 89 12.81 4 032.99 0 08 8.56 1 39 10.86 2 75 12.01 2 96 12.87 4 043.29 0 12 8.74 1 50 10.96 2 74 12.04 3 04 12.94 4 043.74 0 16 8.85 1 66 11.03 2 70 12.08 3 13 13.01 4 024.12 0 21 - 9.01 1 78 11.13 2 66 12.11 3 23 13.05 4 004.34 0 25 9.09 1 88 11.18 2 62 12.14 3 31 13.08 3 994.58 0 30 9.23 1 93 11.23 2 59 12.18 3 38 13.12 3 974.96 0 35 9.35 1 93 11.27 2 56 12.22 3 46 13.16 3 945.15 ) .41 9.51 1 92 11.32 2 53 12.25 3 55 13.19 3 915.35 0 48 9.63 1 87 11.38 2 50 12.28 3 60 13.21 3 885.66 0 53 9.79 1 84 11.43 2 48 12.31 3 65 13.26 3 845.93 0 63 9.89 1 84 11.47 2 47 12.34 3 70 13.29 3 806.26 0 65 10.01 1 90 11.52 2 47 12.41 3 82 13.34 3 756.49 0 79 10.09 2 00 11.57 2 47 12.43 3 84 13.38 3 726.78 0 81 10.19 2 13 11.62 2 48 12.47 3 86 13.44 3 666.94 0 90 10.25 2 24 11.66 2 51 12.49 3 91 13.47 3 647.20 1 04 10.39 2 39 11.69 2 54 12.53 3 94 13.51 3 607.30 1 05 10.42 2 51 11.75 2 59 12.56 3 95 13.54 3 587.54 1 05 10.49 2 61 11.78 2 63 12.60 3 98 13.60 3 547.84 1 20 10.59 2 68 11.81 2 67 12.63 4 00 13.64 3 507.95 1 35 10.67 2 72 11.87 2 74 12.68 4 00

Page 106: The Hall Effect in Bismuth at High Magnetic Fields and Low

96Data 6/E8/55: Field parallel

oil S; Octal S; Hall (b+,r-Field Hall

m.v.FieldK - Z & k

Hallm.v.

Fieldk.-g.

3.92 0.01 8.72 1.04 10.633.29 0.03 8.75 1.09 10.733.92 0.08 .8.84 1.18 10.814.38 0.12 8.93 1.30 10.854.71 0.15 9.07 1.40 10.875.01 0.19 9.17 1.44 10.905.19 0.23 9.32 1.46 10.935.54 0.30 9.48 1.45 10.975.92 0.36 9.53 1.43 11.026.09 0.40 9.57 1.40 11.076.43 0.46 9.65 1.37. 11.126.57 0.51 9.77 1.34 11.166.72 0.52 9.83 1.33 11.217.02 0.60 9.93 1.35 11.247.29 0.71 9.96 1.38 11.287.47 0.71 10.04 1.44 11.337.73 0.73 10.08 1.50 11.377.79 0.81 10.18 1.61 11.427.91 0.94 10.25 1.74 11.468.05 1.02 10.29 1.82 11.508.26 1.00 10.35 1.51 11.608.36 1.00 10.42 1.99 11.638.46 0.98 10.47 2.04 11,668.64 0.99 10.54 2.10 11.72

rigonal axis; P = 20 cm Oct- ; current (w+,g-) = 0.0165amp.Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.13 11.75 1.99 12.60 3.142.15 11.80 2.09 12.69 '3.152.15 11.84 2.09 12.71 3.152.15 11.87 2.13 12.76 3.152.14 11.90 2.20 12.80 3.152.13 12.20 2.38 12,84 3.152.12 12.21 2.41 12.90 3.152.10 12.23 2.46 12.95 3.152.08 12.26 2.54 13.00 3.132.05 12.10 2.58 13.04 3.102.03 12.12 2.62 13.08 3.092.00 12.15 2.68 13.13 3.061.98 12.17 2.72 13.14 3.041.95 12.19 2.76 13.16 3.021.91 12.21 2.80 13.21 3.001.89 12.24 2.85 13.24 2.961.86 12.29 2.90 13.27 2.931.85 12.30 2.95 13.32 2.891.84 12.35 3.00 13.34 2.861.84 12.39 3.03 13.44 2.831.85 12.43 3.06 13.49 2.781.87 12.48 3.09 13.51 2.751.90 12.52 3.11 13.52 2.681.94 12.59 3.14 13.60 2.64

Page 107: The Hall Effect in Bismuth at High Magnetic Fields and Low

97

Data 6/28/55: Field parallel trigonal axis; Poil S; Octal N; Hall amp.

Field Hall Field Hallk • s ».m V . k.-g. m v.2.24 0 03 8.01 1 422.84 0 07 8.16 1 433.37 0 13 8.26 1 413.82 0 18 8.36 1 384.36 0 27 8.44 1 354.83 0 34 8.56 1 345.15 0 41 8.65 1 395.48 0 51 8.73 1 455.92 0 64 8.83 1 566.31 0 70 8.88 1 696.41 0 74 8.93 1 786.44 0 78 9.01 1 846.57 0 81 9.08 1 906.82 0 81 9.17 1 957.04 0 92 9.29 1 977.08 1 02 9.43 1 957.22 1 06 9.53 1 917.41 1 04 9.57 1 867.57 1 04 9.63 1 837.68 1 11 9.71 1 797.78 1 22 9.82 1 777.86 1 31 9.92 1 787.95 1 37 10.01 1 86

(r+,b-) ; current (w+,g-

Field Hall Field Hallm V k.-g. m v.

10.08 1 98 11.60 2 3310.13 2 06 11.66 2 4110.19 2 15 11.72 2 4710.24 2 26 11.76 2 5410.29 2 40 11.81 2 6010.34 2 55 11.84 2 6510.44 2 60 11.98 2 8610.49 2 68 12.00 2 9310.55 2 73 12.03 3 0110.65 2 78 12.06 3 0910.73 2 80 12.07 3 1910.81 2 80 12.08 3 2510.85 2 79 12.12 3 3310.93 2 77 12.16 3 3910.98 2 74 12.19 3 4511.04 2 70 12.22 3 5311.13 2 64 12.23 3 5611.21 2 56 12.26 3 6311.30 2 48 12.29 3 7011.34 2 43 12.32 3 7311.38 2 40 12.36 3 8011.45 2 33 12.41 3 8611.51 2 32 12.47 3 92

20 cm Oct- ) = 0.0165

Fieldk.-g.

Hallm.v.

12.51 3 9512.55 3 9912.62 4 0112.68 4 0312.76 4 0412.82 4 0412.89 4 0412.98 4 0113.03 4 0013.08 3 9813.11 3 9413.16 3 9013.24 3 8313.27 3 7813.32 3 7213.36 3 6713.41 3 6013.47 3 5413.50 3 5013.54 3 4413.60 3 3813.63 3 35

Page 108: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal, P = 22 cm Octoil S;Octal S; Hall (b+,r-); current (w+,g-) ® 0.0165 amp.

Field Hallm.v.

Fieldk fZ£-

Hallm.v.

Fieldk.-St

Hallm.v.

Field k • “-£•

Hallm.v.

Field k. •zEt.

Hallm.v.

3.13 0.02 8.01 1.04 10.01 1.37 11.39 1.80 12.38 3.103.44 0.05 8.16 1.04 10.07 1.50 11.45 1.77 12.42 3.143.88 0.09 8.27 1.02 10.13 1.57 11.50 1.77 12.54 3.174.30 0.12 8.47 0.97 10.22 1.75 11.53 1.76 12.57 3.204.72 0.18 8.51 0.95 10.31 1.93 11.60 1.77 12.67 3.215.07 0.24 8.66 1.00 10.41 2.07 11.65 1-.81 12.76 3.215.53 0.31 8.75 1.14 10.47 2.12 11.71 1.88 12.81 3.225.66 0.32 8.83 1.22 10.54 2.15 11.75 1.92 12.84 3.215.92 0.40 8.91 1.30 10.59 2.18 11.80 1.99 12.86 3.206.18 0.41 8.96 1.36 10.64 2.20 11.84 2.05 12.59 3.206.38 0.50 9.04 1.41 10.73 2.20 11.97 2.26 12.96 3.186.51 0.54 9.09 1.46 10.81 2.20 12.01 2.33 12.98 3.166.52 0.54 9.17 1.50 10.86 2.20 12.05 2.40 13.07 3.146.69 0.53 9.25 1.50 10.93 2.18 12.08 2.46 13.11 3.126.93 0.56 9.32 1.50 10.97 2.14 .12.09 2.53 13.19 3.077.05 0.69 9.43 1.49 11.03 2.12 12.13 2.60 13.27 3,007.17 0.72 9.49 1.47 11.07 2.09 12.16 2.67 13.35 2.937.23 0.74 9.54 1.44 11.13 2.05 12.17 2.72 13.37 2.867.36 0.73 9.56 1.41 11.17 2.00 12.18 2.77 13.42 2.807.41 0.70 9.63 1.38 11.21 1.98 12.19 2.80 13.44 2.737.58 0.70 9.70 1.34 11.24 1.94 12.20 2.87 13.49 2.667.68 0.75 9.76 1.31 11.27 1.91 12.22 2.90 13.54 2.617.73 0.85 9.82 1.30 11.30 1.88 12.26 2.95 13.59 2.557.84 0.93 9.89 1.30 11.33 1.85 12.30 3.00 13.62 2.547.95 1.00 9.95 1.33 11.36 1.83 12.41 3.05

Page 109: The Hall Effect in Bismuth at High Magnetic Fields and Low

99Data 6/28/55: Field parallel trigonal, P * 2.2 cm Octoil S;

Octal N: Hall (r+,b-): current (w+,g-) * 0.0165 amp.Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

Fieldk.-g,

2.26 0.03 7.62 1.04 9.632.69 0.05 7.79 1.22 9.703.14 0.10 7.85 1.40 9.773.59 0.15 7.96 1.48 9.833.95 0.19 8.11 1.49 9.894.30 0.24 8.21 1.46 10.014.58 0.29 8.27 1.41 10.074.86 0.35 8.37 1.35 10.135.15 0.43 8.46 1.31 10.345.40 0.48 8.57 1.31 10.365.67 0.52 8.66 1.41 10.395.99 0.66 8.74 1.53 10.556.25 0.65 8.83 1.66 10.676.44 0.79 8.89 1.77 10.776.67 0.85 8.93 1.88 10.836.69 0.83 9.01 1.96 10.896.81 0.80 9.09 2.00 10.976.93 0.90 9.18 2.04 11.097.12 1,06 9.33 2.03 11.127.23 1.11 9.41 2.00 11.157.34 1.09 9.49 1.95 11.207.51 1.03 9.56 1.89 11.27

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.84 11.29 2.42 12.22 3.751.77 11.36 2.35 12.27 3.831.73 11.39 2.33 12.36 3.911.72 11.45 2.30 12.41 3.951.72 11.54 2.28 12.48 4.001.86 11.61 2.29 12.53 4.031.96 11.63 2.31 12.63 4.082.10 11.69 2.34 12.73 4.102.75 11,72 2.38 12.81 4.112.80 11.78 2.43 12.93 4.112.84 11.79 2.49 12.98 4.112,86 11.84 2.60 13.04 4.102.87 11.86 2.74 13.08 4.062.86 11.88 2.85 13.15 4.032.82 11.91 2.95 13.21 3.972.79 11.99 3.19 13.29 3.882.75 12.03 3.30 13.35 3.782.70 12.06 3.38 13.41 3.662.65 12.09 3,45 13.47 3.582.59 12.14 3.53 13.54 3.472.52 12.16 3.60 13..62 4.332.46 12.18 3.66 13.68 4.26

Page 110: The Hall Effect in Bismuth at High Magnetic Fields and Low

100

Data 6/28/55: Field parallel trigonal axis; P = 762 mm Hg.;Octal N; Hall (w+,g-); current (b+,r-) = 0.0165 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.54 0.00 11.59 1.94 12.70 2.703.95 0.07 11.61 1.97 12,76 2.734.76 0.15 11.71 2.00 12.84 2,755.40 0.24 11.80 2.04 12.89 2.776.05 0.35 11.92 2.12 12.94 2.786.69 0.46 11.96 2.14 13.00 2.797.29 0.65 12.04 2.19 13.06 2.808.21 0.88 12.10 2,25 13.12 2,808.65 0.98 12.15 2.30 13.17 2.808.97 1.10 12.18 2.34 13.23 2.819.21 1.22 12.22 2.36 13.25 2.819.51 1.28 12.25 2.40 13.62 2.849.79 1.34 12.30 2.44 13.69 2.869.95 1.39 12.32 2.46

10.16 1.49 12.38 2.5010.32 1.59 12.44 2.5410.67 1.77 12.50 2.5910.81 1.83 12.56 2.6310.97 1.88 12.61 2.6611.10 1.88 12.66 2.69

Page 111: The Hall Effect in Bismuth at High Magnetic Fields and Low

101

Data 6/28/55: Field parallel trigonal axis; P « 762 mm Hg,;Octal S; Hall (g+,w-); current (b+,r-) = 0,0165 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

2.39 0.02 8.70 1.41 11.55 2.63 12.92 '3.563.33 0.09 8.85 1.50 11.64 2.68 12.99 3.573.82 0.15 9.01 1.58 11.73 2.74 13.10 3.574.30 0.22 9.11 1.63 11.81 2.79 13.20 3.574.72 0.29 9.33 1.70 11.90 2.88 13.28 3.575.15 0.37 9.49 1.73 11,98 2.93 13.40 3.515.41 0.43 9.77 1.78 12.06 3.01 13.49 3.585.66 0.48 9.83 1.82 12,12 3.08 13.55 3.595.82 0.53 9.98 1.88 12.18 3.15 13.62 3.626.12 0.58 10.16 1.97 12.28 3.22 13.68 3.646.44 0.66 10.24 2.05 12.35 3.28 13.69 3.666.75 0.75 10.32 2.12 12.40 3.336.99 0.84 10.44 2.21 12.47 3.387.29 0.93 10.54 2.28 12.52 3.427.40 1.00 10.59 2.92 12.59 3.457,84 1.12 11.09 2.48 12.64 3.497.92 1.21 11.21 2.49 12.69 3.518.19 1.26 11.30 2.52 12.74 3.538.36 1.30 11.37 2.55 12.80 3.548,53 1.36 11.47 2.58 12.86 3.55

Page 112: The Hall Effect in Bismuth at High Magnetic Fields and Low

108Data 6/28/55: Field parallel trigonal axis; P «= 450 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g* m.v.

2.56 0 00 9.25 1.28 10.89 1.94 12.01 2.23 12.56 2.754.02 0 09 9.27 1.30 10.97 1.94 12.04 2.25 12.58 2.764.68 0 15 9.37 1.32 11.05 1.99 12.06 2.28 12.60 2.785.10 0 21 9.53 1.34 11.13 1.94 12.10 2.31 12.64 2.795.41 0 26 9,62 1.35 11.27 1,94 12.11 2.34 12.67 2.805.89 0 34 9.73 1.36 11.36 1,94 12.12 2.35 12.70 2.816.18 0 39 9.84 1.39 11.38 1.94 12.14 2.36 12.73 2.836.50 0 45 9.95 1.43 11.44 1.95 12,16 2.39 12.78 2.856.81 0 52 10.02 1.46 11.48 1.96 12.20 2.43 12.82 2.867.02 0 58 10.17 1.54 11.53 1.97 12.22 2.45 12.85 2.867.29 0 65 10,23 1.57 11.60 1.99 12.23 2.47 .12.88 2.877.61 0 72 10.28 1.63 11.64 2.01 12.24 2.49 12.91 2.887.73 0 78 10.34 1.67 11.70 2.04 12.28 2.51 12.96 2.887.92 0 85 10.39 1.72 11.75 2.06 12.30 2.54 13.00 2.888.06 0 90 10.44 1.75 11.77 2.08 12.33 2.57 13.07 2.888.26 0 94 10.49 1.77 11.81 2.09 12.34 2.59 13.22 2.888.45 0 98 10.54 1.80 11.84 2.11 12.38 2.61 13.29 2.888.65 1 09 10.59 1.84 11.89 2.14 12.40 2.64 13.33 2.888.76 1 09 10.69 1.88 11.90 2.15 12.42 2.65 13.37 2.888.83 1 10 10.75 1.90 11.93 2.17 12.44 2.67 13.62 2.878.93 1 18 10.79 1.91 11.95 2.15 12.48 2.709.07 1 .22 10.84 1.92 11.97 2.20 12.52 2.73

Page 113: The Hall Effect in Bismuth at High Magnetic Fields and Low

103Data 6/28/55: Field parallel trigonal axis; P = 450 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-)= 0.0165 amp.Field Hall k.-g. m.v.2.09 0.032.54 0.052.91 0.08 3.15 0.10 3.44 0.133.67 0.163.98 0.19 4.25 0.244.51 0.284.72 0.325.00 0.375.14 0.40 5.27 0.435.46 0.475.66 0,525.92 0.586.15 0.636.31 0.686.60 0.756.78 0.806.81 0.846.90 0.907.05 0.91

Fieldk.-g.

Hallm.v.

7,17 0.967.32 1.007.45 1.037.57 1.067.62 1.107.73 1.147.84 1.207.90 1.258.06 1.298.21 1.328.36 1.358.49 1.398.65 1.458.74 1.508.83 1.568.85 1.628.94 1.679.03 1.709.09 1.749.25 1,769.41 1.809.56 1.819.74 1.84

Fieldk.-g.

Hallm.v.

9.83 1.889.89 1.93

10,01 1.9810.13 2.0510.16 2.0910.22 2.1310.25 2,1510.27 2.1810,29 2.2210.34 2.2710.40 2.3110.45 2.3610.49 2.3910.55 2.4310.59 2.4510.64 2.4610.69 2.4910.73 2.5010.80 2.5210.85 2.5310.93 2.5411.05 2.5411,19 2.54

Fieldk.-g.

Hallm.v.

11.30 2.5411.40 2.5511.45 2.5611.50 2.5711.54 2.9911.55 2,6011.60 2.6211.63 2.6411.66 2.6511.69 2.6711.73 2.6911.75 2.7111.79 2.7511.82 2.7711.87 2.8111.90 2.8511.95 2.8911.99 2.9312.02 2.9612,04 2.9812.05 3.0012.07 3.0312.09 3.06

Field Hall

Page 114: The Hall Effect in Bismuth at High Magnetic Fields and Low

104Data 6/28/55: Field parallel trigonal axis; P = 450 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hallm tv t

12.12 3.10 12.37 3.43 12.65 3.65 13.17 3.6812.14 3.13 12.38 3.44 12.69 3.66 13.20 3.6812.16 3.16 12.40 3,46 12.71 3.67 13,25 3.6612.18 3.19 12.42 3.48 12.74 3.68 13.28 3.6612.22 3.24 12.45 3.51 12.78 3.69 13.31 3.6512.24 3.27 12.48 3.54 12.80 3.70 13.34 3.6512.26 3.30 12.50 3,55 12.87 3.70 13.36 3.6412.28 3.32 12.52 3,56 12.94 3.70 13.45 3.6312.29 3.33 12.54 3.59 12.98 3,70 13.65 3.6412.31 3.36 12.57 3.60 13.04 3.7012.33 3.39 12.60 3.61 13.09 3.7012.35 3.41 12.62 3.63 13.13 3.69

Page 115: The Hall Effect in Bismuth at High Magnetic Fields and Low

105Data 6/28/55: Field parallel trigonal axis; P « 225 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.09 0.00 9.52 1 36 11.72 2 03 12,52 2 853.29 0.04 9.70 1 37 11.78 2 06 12.56 2 864.03 0.09 9.90 1 41 11.84 2 10 12.60 2 884.58 0.14 10.06 1 50 11.87 2 13 12.63 2 905.07 0.20 10.14 1 56 11.92 2 16 12.69 2 915.34 0.25 10.24 1 61 11.97 2 21 12.73 2 935.41 0.31 10.29 1 67 12.01 2 24 12.79 2 946.05 0.38 10.34 1 74 12.04 2 27 12.86 2 956.25 0.43 10.44 1 81 12.08 2 38 12.94 2 956.57 0.49 10.49 1 85 12.10 2 40 13.01 2 956.81 0.54 10.59 1 91 12.12 2 44 13.05 2 957.05 0.63 10.66 1 95 12.14 2 96 13.10 2 947.29 0.67 10.77 1 98 12.12 2 50 13.12 2 937.63 0,76 10.89 1 99 12.20 2 54 13.17 2 927.85 0.85 11.01 1 99 12.24 2 58 13.20 2 918.11 0.94 11.19 1 98 12.26 2 61 13.23 2 908.37 0.97 11.27 1 96 12.28 2 65 13.27 2 898.71 1.05 11.33 1 96 12.30 2 67 13.29 2 888.83 1.14 11.40 1 95 12.34 2 70 13.34 2 869.01 1.24 11,46 1 95 12.38 2 74 13.40 2 859.11 1.29 11.57 1 96 12.43 2 77 13.47 2 849.25 1.34 11.63 1 98 12.46 2 80 13.57 2 839.41 1.36 11.66 2 00 12.48 2 83

Page 116: The Hall Effect in Bismuth at High Magnetic Fields and Low

106Data 6/28/55: Field parallel trigonal axis; P = 225 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-§.

Hallm.v.

Fieldk.-g.

2.85 0.08 8.99 1.69 10.813.37 0.12 9.07 1.75 10.933.74 0.16 9.16 1.80 11.054.33 0.26 9.21 1.81 11.094.87 0.36 9.33 1.83 11.165.33 0.44 9.53 1.84 11.225.73 0.53 9.77 1.84 11.285.93 0.60 9.83 1.86 11.406.32 0.70 9.93 1.91 11.516.51 0.77 10.01 1.96 11.576.84 0.85 10.13 2.05 11.607.06 0.95 10.19 2.11 11.677.29 1.00 10.24 2.18 11.727.35 1.04 10.29 2.25 11.757.62 1.11 10.35 2.33 11.817.85 1.25 10,42 2.39 11.848.00 1.30 10.46 2.44 11.878.17 1.34 10.53 2.49 11.908.45 1.36 10.59 2.52 11.958.66 1.45 10.66 2.55 12.008.83 1.58 10.73 2.58 12,03

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hallm.v.

2.59 12.04 3.10 12.73 3.802.59 12.06 3.13 12.80 3.802.59 12.08 3.16 12.86 3.802.58 12.10 3.19 12.91 3.802.56 12.12 3.22 12.93 3.802.55 12.14 3.27 12.95 3.792.54 12.17 3.32 13.00 3.782.54 12.22 3.36 13.02 3.772.54 12.23 3.41 13.05 3.752.56 12.26 3.46 13.09 3.742.58 12.29 3.51 13.13 3.722.62 12.31 3.53 13.17 3.762.66 12.34 3.56 13.21 3.682.69 12.37 3.60 13.23 3.672.73 12.42 3.64 13.25 3.662.86’ 12.46 3.68 13.28 3.652.90’ 12.48 3.70 13.34 3.622.94’ 12.54 3.74 13.36 3.612.99’ 12.58 3.75 13.39 3.603.05’ 12.63 3.78 13.43 3.583.07 12.68 3.79 13.55 3.57

' Chart slippage.

Page 117: The Hall Effect in Bismuth at High Magnetic Fields and Low

107Data 6/28/55: Field parallel trigonal axis; P = 90 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.47 0 00 8.63 1.09 11.17 2 02 12.16 2 52 12.92 3.052.84 0 01 8.83 1.19 11.21 2 00 12.18 2 56 12.95 3.053.44 0 05 9.01 1.31 11.24 1 99 12.22 2 60 12.99 3.053.91 0 09 9.11 1.38 11.27 1 98 12.24 2 65 13.01 3.044.30 0 13 9.26 1.40 11.33 1 96 12.26 2 67 13,03 3.034.59 0 17 9.45 1.40 11.37 1 95 12.28 2 70 13.05 3.034.93 0 21 9.60 1.40 11.42 1 94 12.30 2 73 13.09 3.005.27 0 ,25 9,70 1.39 11.47 1 94 12.34 2 81 13.11 3.005.53 0 30 9.80 1.39 11.51 1 94 12.35 2 83 13.14 2.995.79 0 35 9.98 1.95 11.56 1 94 12.36 2 84 13.17 2.985.93 0 40 10.10 1.56 11.61 1 95 12.40 2 86 13.21 2.976.25 0 45 10.24 1.67 11.66 1 97 12.42 2 89 13.23 2.956.44 0 50 10.29 1.77 11.71 2 00 12.44 2 90 13.29 2.936.63 0 52 10.34 1.85 11.75 2 03 12.48 2 93 13.33 2.916.81 0 55 10.47 1.93 11.81 2 06 12.52 2 95 13.35 2.896.89 0 60 10.51 1.98 11.86 2 11 12.54 2 97 13.37 2.887.05 0 69 10.60 2.01 11.90 2 17 12.59 2 99 13.39 2.877.23 0 70 10.69 2.04 11.95 2 21 12.63 3 00 13.41 2.857.40 0 73 10.73 2.05 11.99 2 25 12.66 3 02 13.45 2.857.68 0 82 10.81 2.06 12.02 2 30 12.72 3 03 13.46 2.847.75 0 93 10.85 2.06 12.05 2 35 12.77 3 04 13.51 2.828.06 0 97 10.92 2.06 12.08 2 39 12.80 3 05 13.53 2.808.17 0 98 10.97 2.06 12.10 2 43 12.83 3 058.46 0.99 11.09 2.04 12.12 2 48 12.88 3.05

Page 118: The Hall Effect in Bismuth at High Magnetic Fields and Low

108Data 6/28/55: Field parallel trigonal axis; P = 90 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) » 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g,.

Hallm.v.

Fieldk.-g,.

Hallm.v.

2.39 0 28 7.95 1 12 10.71 1 89 11.90 2.60 12.60 3 262,50 0 29 8.01 1 15 10.77 1 92 11.93 2.62 12.64 3 303.07 0 37 8.21 1 17 10.83 1 95 11.97 2.65 12.70 3 373.44 0 42 8.41 1 21 10.89 1 98 12.01 2.68 12.74 3 423.67 0 45 8.56 1 24 10.97 2 02 12.04 2.70 12.80 3 483.88 0 48 8.74 1 28 11.02 2 05 12.06 2.72 12.86 3 544.09 0 51 8.87 1 31 11.09 2 08 12.08 2.74 12.91 3 604.30 0 54 9.01 1 34 11.17 2 12 12.11 2.76 12.94 3 644.51 0 57 9,09 1 36 11.22 2 15 12.13 2.79 12.96 3 664.79 0 61 9.21 1 39 11.26 2 18 12.16 2.82 12.99 3 705.00 0 64 9,33 1 42 11.30 2 20 12.18 2.84 13.03 3 755.27 0 68 9.49 1 46 11.34 2 23 12.22 2.88 13.07 3 805.40 0 70 9.61 1 50 11,39 2 26 12.26 2.92 13.10 3 845 .66 0 74 9.67 1 51 11.45 2 30 12.27 .\93 13.13 3 885.83 0 77 9.84 1 56 11.48 2 32 12.30 2.96 13.18 3 946.05 0 80 9.90 1 59 11.54 2 36 12.32 2,98 13.21 3 976.18 0 82 9,98 1 61 11.61 2 41 12.36 3.02 13.25 4 036.35 0 85 10.14 1 66 11.64 2 43 12.40 3.06 13.29 4 086.69 0 90 10.24 1 70 11.69 2 46 12.42 3.08 13.33 4 126.84 0 93 10.30 1 73 11.72 2 48 12.94 3.10 13.35 4 167.08 0 97 10.39 1 76 11,76 2 51 12.46 3.12 13.39 4 207.29 1 00 10,49 1 80 11.79 2 53 12.49 3.15 13.43 4 267.46 1 03 10.54 1 82 11,82 2 55 12.54 3.20 13.47 4 307.73 1.08 10.64 1 86 11.86 2 58 12.57 3.23 13.51 4 35

Page 119: The Hall Effect in Bismuth at High Magnetic Fields and Low

109Data 6/28/55: Field parallel trigonal axis; P = 41 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g...

Hallm.v.

3.36 0 02 8.56 1 00 10.25 1 69 11.24 2 00 12.29 2.703.66 0 06 8.65 1 04 10.29 1 74 11.27 2 00 12.33 2.794.16 0 10 8.75 1 11 10.34 1 81 11.30 1 97 12.46 2.904.51 0 15 8.88 1 20 10.39 1 87 11.33 1 96 12,56 3.004.79 0 18 8.98 1 30 10.44 1 92 11.36 1 95 12.60 3.035.14 0 23 9.09 1 36 10.49 1 96 11.39 1 94 12.68 3.055.34 0 25 9.17 1 41 10.52 2 00 11,44 1 93 12.77 3.065.53 0 30 9.31 1 44 10.57 2 03 11.47 1 92 12.85 3.095.73 0 33 9.33 1 44 10.62 2 05 11.60 1 92 12.89 3.105.92 0 39 9.45 1 44 10.64 2 08 11.68 1 94 13.02 3.106.31 0 44 9.49 1 44 10.69 2 09 11.72 1 97 13.13 3.106.51 0 51 9.56 1 43 10.73 2 10 11.75 2 00 13.16 3.096.63 0 53 9.63 1 41 10.77 2 11 11.80 2 03 13.19 3.076.90 0 56 9.67 1 40 lo.83 2 11 11.84 2 07 13.25 3.047.02 0 69 9.71 1 39 10.87 2 11 11.87 2 11 13.32 3.007.29 0 71 9.81 1 38 10.93 2 11 11.92 2 16 13.36 2.987.46 0 71 9.89 1 38 10.95 2 11 11.96 2 30 13.41 2.937.64 0 76 9,98 1 40 11.01 2 10 12.06 2 34 13.47 2.907.84 0 86 10.05 1 45 11.05 2 09 12.15 2 48 13.51 2.887.90 0 94 10.07 1 48 11.07 2 08 12.18 2 53 13.55 2.848.07 1 00 10.13 1 53 11.13 2 06 12.20 2 58 13.58 2.828.17 1 00 10.16 1 57 11.17 2 05 12.22 2 63 13.63 2.798.36 1 00 10.24 1 66 11.21 2 03 12.28 2 70 13.67 2.78

Page 120: The Hall Effect in Bismuth at High Magnetic Fields and Low

110

Data 6/28/55: Field parallel trigonal axis; P = 41 mm Hg.;Octal S; Hall (g+,w-); current (b+,r-) * 0.0165 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field k . — g •

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.09 0 01 8.75 1.52 10.49 2 60 11.72 2.60 12.76 4,002.54 0 04 8.91. .1.64 10.55 2 66 11.82 2.75 12.80 4.002.92 0 07 8.99 1.71 10.59 2 70 11.88 2.82 12.87 4.003.37 0 12 9.09 1.85 10.71 2 75 11.89 2.86 12.91 4.003.74 0 16 9.17 1.91 10.83, 2 75 11.96 3.00 12.96 4.004.23 0 24 9.31 1.94 10.91 2 74 11.99 3.10 12.99 3.994.72 0 32 9.49 1,93 10.93 2 73 12.03 3.18 13.00 3.995.00 0 36 9.57 1.90 10.99 2 71 12.08 3.24 13.04 3.975.34 0 44 9.63 1.86 11.02 2 68 12.12 3.34 13.08 3.955.66 0 52 9.71 1.85 11.09 2 66 12.13 3.46 13.14 3.915.99 0 60 9.79 1.84 11.13 2 62 12.18 3.51 13.19 3.866.05 0 64 9.88 1,84 11,19 2 59 12.24 3.58 13.24 3.826.54 0 80 9.95 1.85 11.23 2 55 12.27 3.63 13.30 3.766.96 0 95 10.01 1.89 11,24 2 55 12.33 3.70 13.34 3.717.29 1 05 10.07 1.96 11,27 2 52 12.40 3.76 13.40 3.667.84 1 22 10.13 2.04 11.33 2 50 12.44 3.81 13.44 3.608.01 1 38 10.21 2.15 11,39 2 48 12.50 3.858.17 1 40 10.25 2.27 11.44 2 46 12,53 3.908.42 1 39 10.30 2.35 11.51 2 46 12.60 3.948.51 1 38 10.35 2.42 11.58 2 48 12.62 3.958.65 1 40 10.39 2.48 11.63 2 50 12.65 3.978.70 1.45 10.44 2.55 11.66 2.54 12,71 3.99

Page 121: The Hall Effect in Bismuth at High Magnetic Fields and Low

IllData 6/28/55: Field parallel trigonal axis; p « 20 cm Oct-

oil S; Ootal N; Hall (w+,g-); current (b+,r-) = 0.0165amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.84 0.01 8 .21 1.00 10.203.31 0.03 8.35 1.00 10.243.59 0.05 8.40 0.98 10.294.09 0.10 8.56 0.98 10.324.56 0.15 8.65 1.00 10.394.86 0.20 8.74 1.08 10.445.14 0.24 8.83 1.15 10.525.60 0.30 8.90 1.25 10.625.92 0.40 8.97 1.32 10.716.12 0.40 9.09 1.39 10.796.51 0,53 9.17 1.44 10.906.75 0.53 9.29 1.45 10.956.93 0.58 9.45 1.45 11.017.05 0.65 9.53 1.43 11.077.17 0.72 9.63 1.40 11.137.40 0.72 9.70 1.38 11.227.58 0.73 9.83 1.35 11.277.70 0.79 9.95 1.-36 11.337.82 0.88 10.01 1.43 11.367.89 0.95 10.10 1.52 11.428.01 1.00 10.16 1.59 11.51

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

1.66 11,60 1.87 12.73 3.101.74 11.63 1.90 12.82 3.101.80 11.69 1.94 12.89 3.101.86 11.73 1.98 12.97 3.101.95 11.81 2.05 13.02 3.092.00 11.85 2.12 13.03 3.082.05 12.00 2.32 13.07 3.062.10 12.02 2.37 13.12 3.042.12 12.04 2.40 13.16 3.002.12 12.08 2.50 13.22 2.962.11 12.13 2.59 13.29 2.912.10 12.14 2.67 13.33 2.872.08 12.19 2,76 13.37 2.832.05 12.25 2.84 13.41 2.792.00 12.29 2.89 13.48 2.751.96 12.36 2.95 13.57 2.691.94 12.41 2.00 13.64 2.651.90 12.44 3.011.88 12.51 3.051.87 12.56 3.071.87 12.64 3.09

Page 122: The Hall Effect in Bismuth at High Magnetic Fields and Low

112

Data 6/28/55: Field parallel trigonal axis; P = 20 cm Oct-oil S; Octal S; Hall (g+,w- amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g,

2.11 0.02 8.35 1.41 10.372.54 0.05 8.44 1.36 10.442.99 0.09 8.56 1.35 10.493.44 0.14 8.65 1.37 10.543.88 0.20 8.74 1.44 10.674.23 0.25 8.83 1.59 10.734.58 0.31 8.92 1.72 10.815.00 0.40 9.01 1.84 10.855.40 0.50 9,09 1.91 10.895.72 0.55 9.17 1.955 10.646.05 0.64 9.26 1.98 10.816.38 0.77 9.42 1.96 10.896.69 0.81 9.63 1.86 10.976.93 1.00 9.67 1,83 11.017.29 1.07 9.78 1.78 11.097.43 1.05 9.89 1.78 11.137.57 1.05 9.96 1.82 11.217.74 1.20 10.07 1.95 11.277.84 1.30 10.13 2.05 11.357.95 1.39 10.19 2.18 11.378.06 1.43 10.25 2,31 11.428.16 1.44 10.30 2.41 11.48

; current (b+,r-) = 0.0165

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.55 11.51 2.36 12.71 4.052.64 11.63 2.36 12.77 4.052.69 11.78 2.43 12.83 4.052.75 11.86 2.53 12.89 4.052.80 11.92 2.74 12.98 4.042.80 11.97 2.84 13.02 4.022.80 12.02 2.91 13.03 4.002.80 12.04 3.02 13.10 5.972.78 12.06 3.10 13.14 3.942.73 12.08 3.23 13.18 3.902.78 12.14 3.36 13.24 3.842.80 12.16 3.46 13.28 3.772.80 12.20 3.59 13.39 3.692.75 12.22 3.62 13.43 3.582.72 12.28 3.71 13.50 3.482.68 12.31 3.76 13.60 3.382.59 12.36 3.84 13.69 3.302.55 12.48 3.882.50 12.57 3,962.45 12.63 4.002.41 12.66 4.032.38 12.69 4.05

Page 123: The Hall Effect in Bismuth at High Magnetic Fields and Low

Data 6/28/55: Field parallel trigonal axis; P =oil S; Octal N; Hall (w+,g-); current (b+,r-)amp.

Field Hall Field Hallk.-g. m.v. k . -_g. m.v.3.44 0.04 8.56 0.984.02 0.09 8.65 1.054.65 0.15 8.78 1.205.27 0.24 8.87 1.345.69 0.31 9.05 1.456.05 0.41 9.22 1.496,41 0.51 9.42 1.486.60 0.59 9.63 1.396.81 0.53 9.77 1.326.93 0.63 9.91 1.317.11 0.73 10.01 1.407.29 0.74 10.13 1.587.41 0.71 10.24 1.787.62 0.73 10.29 1.907.74 0.90 10.39 2.047.95 1.02 10.49 2.108.03 1.04 10.64 2.158.17 1.02 10.75 2.178.34 0.99 10.89 2.168.41 0.96 11.01 2.12

Fieldk.-g.

Hallm tv.

Fieldk.-g.

Hallm.vt

11.07 2.08 12.45 3.0711.13 2.04 12.50 3.0911.23 1.97 12.56 3.1011.30 1,90 12.64 3.1311.37 1.85 12.71 3.1411.44 1.81 12.79 3.1511.53 1.80 12.86 3.1511.62 1.82 12.93 3.1511.70 1.89 12.97 3.1311.79 2.00 13.04 3.1011.87 2.15 13.09 3.0811.96 2.30 13.12 3.0512.01 2.39 13.18 3.0012.05 2.55 13.23 2.9512.12 2.70 13.28 2.9112.18 2.80 13.33 2.8512.22 2.88 13.37 2.8012.28 2.95 13.64 2.5412.34 3.0012.40 3.05

1132.2 cm Oct-- 0.0165

Field Hall k.-g. m.v.

Page 124: The Hall Effect in Bismuth at High Magnetic Fields and Low

114Data 6/28/55; Field parallel trigonal axis; P ** 2.2 cm

Octoil S; Octal S; Hall (g+,w-); current (b+,r-) = 0.0165amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk._-g._

Hallm.v.

Field Hall k.-g. m.v.

Field Hall k.-g. m.v.

2.36 0.02 8.02 1.98 10.49 2.79 11.96 2.98 13.02 4.063.45 0.13 8.26 1,95 10.64 2.85 12.02 3.15 13.05 4.034.02 0.20 8.36 1,40 10.73 2.87 12.06 3.23 13.10 3.984.37 0.27 8.42 1.35 10.81 2.87 12.08 3.35 13.13 3.934.72 0.34 8.56 1.31 10.87 2.86 12.10 3.43 13.21 3.885.22 0.42 8.70 1.38 10.93 2.83 12.13 3.54 13.27 3.745.59 0.52 8.82 1.54 11.01 2.80 12.16 3.65 13.33 3.665.92 0.66 8.97 1.84 11.07 2.73 12.23 3.78 13.40 3.576.31 0.77 9.10 1.99 11.13 2.66 12,28 3.86 13.43 3.486.51 0.84 9,33 2.03 11.23 2.54 12.31 3.91 13.50 3.386.69 0.82 9.49 2.00 11.27 2.47 12.36 3.56 13.59 3.276.81 0.80 9.56 1.91 11.36 2.36 12.42 4.01 13.61 3.256.93 0.90 9.63 1.80 11.39 2.33 12.47 4.057.05 1,04 9.89 1.72 11.45 2.29 12.54 4.087.17 1.10 9.98 1.78 11.51 2.28 12.59 4.107.46 1.02 10.07 1.91 11.55 2.28 12.68 4.117.56 1.02 10.22 2.20 11.61 2.30 12.75 4.127.67 1.15 10.26 2.39 11.68 2.37 12.78 4.127.73 1.28 10.34 2.55 11.77 2.52 12.88 4.107.92 1.45 10.41 2.69 11.85 2.71 12.95 4.09

Page 125: The Hall Effect in Bismuth at High Magnetic Fields and Low

115Data 7/4/55: Field perp. trig, and bin.; P = 763.4 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0165 amp.Field Hall k.-g. m.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

3,75 0.04 7,95 0.59 10.134.15 0.05 8.15 0.61 10.214.72 0.08 8.26 0.64 10.285.27 0.15 8.45 0.65 10.345.45 0,18 8.60 0.67 10.405.55 0.19 8.74 0.67 10.495.79 0.20 8.83 0.67 10.566.18 0.18 9.00 0.67 10.646.43 0.16 9.05 0 .66 10.736.68 0.18 9.11 0.66 10.816.75 0.20 9.25 0.65 10.856.88 0.25 9.30 0.65 10.926.93 0.28 9.35 0.64 10.957.05 0.34 9.45 0.63 11.137.17 0.39 9.63 0.63 11.217.23 0.42 9.77 0.63 11.277.35 0.46 9.84 0.65 11,367.50 0.50 9.92 0.66 11.427.62 0.54 9.98 0.68 11.457.73 0.56 10.07 0.71 11.51

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

0.75 11.55 1.09 12.79 0.970 .78 11.61 1,08 12.85 0,980.81 11.70 1.06 12.90 1.000.85 11.77 1.05 12.94 1.010.90 11.85 1.03 13.00 1.030.94 11.94 1.01 13.03 1.050.96 12.00 1.00 13.07 1.071.01 12.06 0.99 13.12 1.101.05 12.12 0.98 13.17 1.131.06 12.19 0.97 13.23 1.161.09 12.26 0.96 13.27 1.201.10 12.32 0.95 13.31 1.231.11 12.37 0.95 13.34 1.261.12 12.42 0.95 13.39 1.311.12 12.48 0.95 13.44 1.351.12 12.52 0.95 13.51 1.421.12 12.55 0.95 13.55 1.461.11 12.62 0.951.11 12.69 0.951,10 12.74 0.96

Page 126: The Hall Effect in Bismuth at High Magnetic Fields and Low

116Data 7/4/55: Field perp. trig, and bin.; P = 763.4 mm Hg.;Octal N; Hall (r+,b-); current (w+,g-) « 0.0165 amp.

Fieldk.-g.

Hallm tv.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.55 0.05 8.27 1.24 11.242.99 0.08 8.57 1.29 11.273.45 0.13 8.61 1.29 11,323.60 0.15 8.83 1.30 11.363.89 0.17 9.05 1.30 11.454.30 0.20 9.25 1.28 11.514.58 0.26 9.41 1.26 11.584.86 0.31 9.63 1.26 11.645.14 0.35 9.80 1.28 11.725.34 0.40 9.98 1.34 11.785.53 0,43 10.19 1.44 11.845.79 0,46 10.35 1.55 11.946.15 0.46 10.54 1.65 12.046.43 0.46 10.62 1.70 12.116,69 0.53 10.77 1.77 12.146.93 0.66 10.85 1.79 12.207.17 0.83 10.93 1.80 12.247.50 0.95 10.99 1.80 12.307.73 1.04 11.09 1.81 12.347.95 1.15 11.15 1.81 12.39

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.,-&..

Hallm.v.

1.81 12.45 1.60 13.39 2.411.81 12.52 1.60 13.40 2.461.81 12.57 1.61 13.45 2.531.80 12.64 1.63 13.49 2.611.78 12.68 1.65 13.53 2.701.76 12.73 1.66 13.54 2.701.74 12.78 1,691.71 12.84 1,721.70 12.90 1.751.68 12.94 1.791.66 12.99 1.831.65 13.03 1.851,63 13.07 1.911.61 13.11 1.961,61 13.15 2.011.60 13.19 2.081.60 13.23 2.131.60 13.26 2.20 -

1,60 13.31 2.261.60 13.34 2.34

Page 127: The Hall Effect in Bismuth at High Magnetic Fields and Low

117Data 7/4/55: Field perp. trig, and bin.; P = 451 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k„-g. m.v.

2.99 0 01 7.50 0.50 10.81 1.06 12.26 0 92 13.36 1.223.18 0 01 7.63 0.53 10.89 1.09 12.31 0 91 13.42 1.283.44 0 01 7.85 0.56 10.99 1.10 12.37 0 91 13.47 1.333.74 0 09 8.05 0.59 11.09 1.11 12.44 0 91 13.50 1.383.88 0 05 8.25 0.63 11.17 1.11 12.48 0 91 13.55 1.444.03 0 05 8.50 0.66 11.25 1.11 12.52 0 914.30 0 05 8.65 0.67 11.33 1.11 12.58 0 914.55 0 06 8.80 0.67 11.40 1.10 12.65 0 914.72 0 08 9.00 0.66 11.45 1.10 12.71 0 914.86 0 10 9.21 0.64 11.51 1.09 12.77 0 925.14 0 12 9.39 0.61 11.57 1.07 12.83 0 935.28 0 15 9.58 0.60 11.66 1.05 12.89 0 955.55 0 19 9.77 0.60 11.75 1.05 12.94 0 965.78 0 20 9.95 0.65 11.84 1.00 13.00 0 996.11 0 20 10.07 0.70 11.90 0.99 13.05 1 006.43 0 17 10.21 0.76 11.97 0.98 13.11 1 036.69 0 17 10.31 0.83 12.04 0.96 13.15 1 056.87 0 24 10.41 0.89 12.10 0.95 13.20 1 087.10 0 34 10.59 0.97 12.15 0,94 13.28 1 157.29 0 42 10.73 1.04 12.22 0.93 13.33 1 20

Page 128: The Hall Effect in Bismuth at High Magnetic Fields and Low

118Data 7/4/55: Field perp. trig, and bin.; P = 451 mm Hg.;

Octal N; Hall (r+,b-); current (w+,g-) *= 0.0165 amp.Fieldk.-g.

Hallm.v.

Field — rJZS

Hallm.v.

Fieldk.-g.

2.54 0.05 6.93 0.69 10.292.70 0.06 7.23 0.86 10.452.98 0.08 7.57 1.00 10.693.20 0.10 7.84 1.10 10.853.59 0,14 8.11 1.22 11.023.88 0.17 8.26 1.27 11.184.16 0.19 8.55 1,32 11.304.58 0.25 8.73 1.34 11.355.00 0.33 8.96 1.34 11.435.40 0.41 9.25 1.31 11.525.66 0.46 9.45 1.29 11.635.93 0.48 9.70 1.28 11.726.37 0.48 9.89 1.32 11.836.69 0.53 10.07 1.40 11.90

Hallm.v.

Fieldk

Hallm.v.

Field Hallm.v.

1.55 12.04 1.64 12.96 1.791.66 12.12 1.61 13.00 1.831.79 12.22 1.60 ' 13.07 1.901.84 12.29 1.60 13.15 2.021.87 12.36 1.60 13.23 2.151.87 12.40 1, 6o 13.30 2.281.86 12.46 1.60 13.36 2.401.84 12.56 1.60 13.40 2.471.83 12.64 1.61 13.44 2.551.79 12.65 1,63 13.51 2.691.75 12.74 1.65 13.58 2.831.72 12.77 1.67 13.59 2.851.69 12.87 1.711.65 12.91 1.75

Page 129: The Hall Effect in Bismuth at High Magnetic Fields and Low

119Data 7/4/55: Field perp. trig, and bin.; P = 225 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0350 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.54 0.02 6.69 0.41 10.102.84 0.03 6.93 0.65 10.273.07 0.04 7.05 0.80 10.343.37 0.04 7.29 0,95 10.403.52 0.07 7.40 1.08 10.493.74 0.10 7.62 1.16 10.563.95 0.11 7.84 1.21 10.734.16 0.12 8.02 1,28 10.774.30 0.14 8.21 1.35 10.894.58 0.16 8.46 1.43 10.974.72 0.19 8.65 1.95 11.014.79 0.21 8.79 1.45 11.094.93 0.24 9.01 1.41 11.195.14 0.27 9.17 1.35 11.275.27 0.32 9.25 1.31 11.355.40 0.40 9.41 1.27 11.405.68 0.44 9.57 1.25 11.485.92 0.44 9.74 1.25 11.576.18 0.39 9.95 1.35 11.616.47 0.35 10.02 1.42 11.66

Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

1,49 11.72 2.18 12.78 1.901.68 11.79 2.14 12.84 1.921.80 11.87 2.10 12.94 1.971.88 11.95 2.05 12.99 2.002.00 12.00 2.02 13.04 2.042.07 12.12 1.95 13.07 2.082.20 12.18 1.93 13.11 2.132.26 12.24 1.90 13.17 2.202.35 12.29 1.90 13.20 2.252.38 12.33 1.89 13.26 2.332.90 12.37 1.89 13.31 2.402.41 12.40 1,88 13.34 2.502.41 12.44 1.88 13.39 2.602.41 12.47 1.88 13.43 2.692.39 12.50 1.88 13.47 2.822.36 12.56 1.88 13.52 2.922.33 12.63 1.88 13.55 3.032.28 12.68 1.882.25 12.71 1.892.22 12.75 1.90

Page 130: The Hall Effect in Bismuth at High Magnetic Fields and Low

120

Data 7/4/55: Field perp. trig, and bin.; P = 225 mni Hg.;Octal N; Hall (r+,b-); current (w+,g-) = 0.0350 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

2.17 0.11 5.27 0 90 7.84 2 41 9.92 2 89 11.99 3 492.24 0.12 5.40 0 95 7.95 2 57 10.04 3 00 12.07 3 432.32 0.13 5.53 1 00 8.06 2 65 10.10 3 10 12,14 3 402.39 0.14 5.66 1 05 8.16 2 74 10.19 3 21 12.24 3 362.54 0.15 5.79 1 09 8.26 2 81 10.29 3 37 12.30 3 362.69 0.19 6.05 1 09 8.36 2 86 10.34 3 49 12.35 3 362.88 0.21 6.20 1 05 8.46 2 91 10.40 3 59 12.40 3 363.00 0 .24 6.31 1 04 8.56 2 95 10.47 3 66 12.46 3 363.14 0.25 6.57 1 05 8.65 2 95 10.59 3 83 12.51 3 363.29 0.26 6.63 1 11 8.83 2 95 10.65 3 91 12.55 3 363.45 0.33 6.72 1 24 8.92 2 95 10.77 4 01 12.59 3 38n.3.60 0.38 6.81 1 34 9.01 2 93 10.89 4 09 12.64 3 403.81 0.41 6.87 1 45 9.09 2 90 10.91 4 11 12.66 3 424.02 0.43 6.95 1 55 9.17 2 86 11.13 4 11 12.73 3 464.18 0.44 7.05 1 67 9.25 2 84 11.21 4 10 12.78 3 514.36 0.50 7.14 1 80 9,33 2 81 11.27 4 07 12.80 3 574.58 0.61 7.20 1 89 9.41 2 79 11.35 4 01 12.85 3 644.72 0.66 7.29 1 96 9,50 2 76 11.42 3 96 12.91 3 754.80 0,70 7.45 2 10 9.62 2 76 11.54 3 85 12.96 3 854.93 0.73 7.56 2 18 9.70 2 76 11.66 3 75 12.99 3 925.13 0.77 7.66 2 26 9.78 2 79 11.78 3 69 13.04 4 055.15 0.84 7.75 2 35 9.88 2 84 11.87 3 55 13.10 4 26

Page 131: The Hall Effect in Bismuth at High Magnetic Fields and Low

121

Data 7/4/55: Field perp. trig, and bin.; P = 90 mm Hg.;Octal S; Hall (b+,r-); current (w+,g-) = 0.0250 amp.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.69 0.00 6.82 0.30 9.832.84 0.01 7.00 0.45 9.892.99 0.02 7.10 0.57 9.953.14 0.03 7.18 0.65 10.023.29 0.03 7.30 0.71 10.103.40 0.03 7.62 0.81 10.173.44 0.04 7.80 0.85 10.293.55 0.05 7.95 0.89 10.413,66 0.06 8.16 0.94 10.463.88 0.06 8.30 0.99 10.514.02 0.07 8.46 1.03 10.594.17 0.07 8.60 1.05 10.704.37 0.09 8.74- 1.05 10.754.58 0.10 8.92 1.05 10.854.72 0.13 8.97 1.03 10.934.87 0.15 9.05 1.01 11.005.15 0.18 9.12 0.99 11,095.27 0.23 9,21 0.96 11.155.43 0.28 9.25 0.94 11.215.72 0.30 9.33 0.92 11.275.91 0.30 9.45 0.90 11.306.09 0.30 9.53 0.88 11.356.39 0.27 9.63 0.87 11.396.44 0.25 9.70 0.87 11.426.62 0.24 9.77 0.87 11.47

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

0.87 11.51 1.67 12.46 1.310.90 11.57 1.64 12.50 1.310.93 11.61 1.62 12.54 1.310.96 11.65 1.60 12.58 1.311.03 11.69 1.58 12.60 1.311.09 11.75 1.55 12.64 1.311.21 11.78 1.52 12.68 1.311.33 11,82 1.50 12.69 1.311.40 11.87 1.49 12.75 1.311.44 11.91 1.46 12.78 1.311.51 11.97 1.44 12.82 1.311.59 12.02 1.41 12.85 1.331.63 12.06 1.40 12.89 1.341.68 12.10 1.38 12.93 1.351.72 12.13 1.36 12.96 1.351.74 12.16 1.35 12.99 1.361.75 12.20 1.34 13.04 1.391.75 12.24 1.33 13.08 1.411.75 12.28 1.32 13.10 1.451.75 12.31 1.32 13.17 1.501.75 12.33 1.31 13.25 1.601,74 12.34 1.31 13.31 1.671.72 12.38 1.31 13.42 1.871.71 12.40 1.31 13.48 1.981.69 12.44 1.31 13.51 2.05

Page 132: The Hall Effect in Bismuth at High Magnetic Fields and Low

122

Data 7/4/55: Field perp. trig, and bin.; P = 90 mm Hg.;Octal S; Hall (b+,r-); current (w+,g-) = 0.0250 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v,

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

2.39 0 09 6.50 0 75 9,63 1 99 11.36 2 94 12,69 2.402.5o 0 10 6.58 0 77 9.72 1 98 11.42 2 90 12.73 2.412.55 0 10 6.69 0 86 9.83 2 01 11.48 2 86 12.77 2.432.69 0 13 6.87 1 06 9.93 2 07 11.57 2 79 12.83 2.472.84 0 14 7.00 1 18 10.00 2 14 11.65 2 74 12.92 2.552.95 0 15 7.05 1 28 10.07 2 23 11.70 2 69 12.94 2.613.14 0 17 7.10 1 33 10.16 2 30 11.75 2 64 13.01 2.723.29 0 19 7.28 1 41 10.24 2 39 11.81 2 60 13.05 2.823.44 0 22 7.34 1 50 10.35 2 57 11.87 2 56 13.10 2.923.59 0 27 7.56 1 58 10.44 2 66 11.93 2 51 13.13 3.013.88 0 30 7.68 1 66 10.50 2 75 12.04 2 47 13.18 3.174.02 0 31 7.84 1 74 10.60 2 84 12.08 2 44 13.22 3.284.23 0 32 7.95 1 86 10.66 2 89 12.16 2 41 13.25 3.404.35 0 36 8.16 2 00 10.73 2 93 12.23 2 39 13.30 3.554.57 0 45 8.28 2 07 10.77 2 95 12.28 2 39 13.33 3.694.72 0 50 8.52 2 15 10.82 2 98 12.32 2 38 13.39 3.884.86 0 52 8.67 2 16 10.89 3 00 12.36 2 38 13.43 4.055.00 0 56 8.95 2 16 10.93 3 01 12.39 2 38 13.47 4.205.15 0 61 9.03 2 14 11.01 3 02 12.44 2 38 13.55 4.485.30 0 68 9.13 2 10 11.05 3 02 12.49 2 38 13.57 4.545.55 0 74 9.21 2 07 11.13 3 02 12.56 2 385.79 0 79 9.30 2 04 11.21 3 02 12.61 2 386.05 0 80 9.41 2 00 11.27 3 00 12.64 2 386.30 0 75 9.50 1 99 11.33 2 97 12.67 2 39

Page 133: The Hall Effect in Bismuth at High Magnetic Fields and Low

123Data 7/4/55: Field perp. trig, and bin.; P = 41 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = p.0200 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.vt

Fieldk.-g.

2.84 0.01 6.93 0.24 9.493.14 0.02 7.05 0.33 9.603.29 0.02 7.23 0.45 9.673.51 0.03 7.30 0.51 9.843.8o 0.04 7.40 0.55 9.904.00 0.05 7.51 0.58 9.954.18 0,05 7.62 0.61 10.054.44 0.06 7.75 0.64 10.244.70 0.09 7.85 0.66 10.314.86 0.10 7.93 0.66 10.395.27 0.15 7.97 0.67 10.505.53 0.21 8.00 0.68 10.645.75 0.23 8.15 0.71 10.795.95 0.23 8.27 0.75 10.856.18 0.23 8.45 0.79 10.956.30 0.21 8.53 0.80 11.076.33 0.20 8.65 0.82 11.286.38 0.20 8.85 0.82 11.336.44 0.19 8.95 0.82 11.376.50 0.18 9.08 0.30 11.426.57 0.18 9.18 0.76 11.486.69 0.18 9.25 0.75 11.566.72 0.18 9.29 0.73 11.606.81 0.19 9.41 0.70 11.66

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

0.69 11.69 1.22 12.38 1.000.67 11.72 1.20 12.44 1.000.66 11.77 1.18 12.62 1.000.66 11.79 1.17 12.82 1.000.67 11.84 1.15 12.91 1.010,69 11.88 1.14 12.96 1.020.74 11.93 1.12 13.01 1.040.86 17.97 1.10 13.07 1.050.95 12.02 1.09 13.11 1.081.01 12.03 1.08 13.16 1.101.11 12.05 1.08 13.23 1.141.20 12.08 1.06 13.28 1.191.30 12.10 1.05 13.33 1.251.33 12.13 1.05 13.37 1.301.35 12.15 1.04 13.41 1.371.36 12.18 1.03 13.44 1.431,36 12.19 1.03 13.49 1.521.36 12,21 1.03 13.52 1.561,35 12.22 1.021.34 12.25 1.011.30 12.28 1.041.28 12.29 1.001.26 12.30 1.001.24 12.32 1.00

Page 134: The Hall Effect in Bismuth at High Magnetic Fields and Low

124Data 7/4/55: Field perp. trig, and bin.; P = 41 mm Hg.;

Octal S; Hall (r+,b-); current (w+,g-j = 0.0200 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.85 0.10 6.81 0.73 9.893.14 0.14 7.18 1.08 10.003.51 0.19 7.30 1.17 10.133.74 0.22 7.51 1.24 10.294.02 0.25 7.73 1.34 10.344.30 0.25 7.85 1.41 10.464.44 0.33 8.05 1.51 10.574.72 0.39 8.12 1.59 10.755.00 0.41 8.26 1.66 10.885.25 0.49 8.48 1.72 11.015.45 0.55 8.65 1.74 11.115.66 0.60 8.79 1.75 11.205.90 0.65 9.01 1.74 11.276.07 0.65 9.10 1.71 11.336.18 0.62 9.25 1.67 11.426.31 0.60 9.41 1.62 11.486.57 0.60 9.63 1.54 11.606.69 0.63 9.77 1.54 11.70

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.61 11.81 2.08 12.82 1.901.69 11.89 2.03 12.87 1.951.79 11.99 1.98 12.89 2.001.92 12.06 1.94 12.94 2.052,04 12.12 1.91 12.99 2.102.15 12.16 1.89 13.05 2.202.25 12.20 1.89 13.13 2.362.36 12,24 1.88 13.20 2.502.41 12.29 1.88 13.27 2.692.44 12.34 1.87 13.35 2.912.44 12.38 1.87 13.51 3.212.44 12.42 1.87 13.56 3.442.42 12.46 1.872.40 12.51 1.872.35 12.58 1.892.30 12,66 1.872,23 12.73 1.892.15 12.76 1.90

Page 135: The Hall Effect in Bismuth at High Magnetic Fields and Low

125Data 7/4/55: Field perp. trig, and bin.; P = 13 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0200 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field k. - g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

2.92 0.00 6,94 0.25 9.42 0.69 11.60 1 28 12.91 0.993.14 0.02 7.18 0.94 9.56 0.66 11.67 1 24 12.96 0.993.29 0.02 7.30 0.50 9.66 0.65 11.75 1 20 12.97 0.993.45 0.03 7.35 0.55 9.86 0.65 11.83 1 15 13.02 1.003.66 0.04 7.41 0.56 9.95 0.67 11.94 1 11 13.05 1.003.88 0.05 7.52 0.60 10.13 0.75 12.02 1 08 13.10 1.034.09 0.05 7.62 0.63 10.24 0.85 12.08 1 05 13.13 1.054.30 0.05 7.74 0.65 10.34 0.98 12.15 1 02 13.17 1.074.45 0.07 7.93 0.66 10.47 1,10 12.22 1 00 13.23 1.134.72 0 .10 8.05 0.69 10.62 1.23 12.28 1 00 13.29 1.195.00 0.11 8.18 0.74 10.75 1.30 12.36 0 99 13.37 1.295.21 0.16 8.35 0.78 10.86 1.35 12.44 0 99 13.45 1.425.55 0.23 8.51 0.81 10.97 1.37 12.50 0 99 13.52 1.575.85 0.24 8.70 0.83 11.09 1.39 12.57 0 99 13.56 1.646.08 0.24 8.91 0.83 11.19 1.39 12.64 0 99 13.58 1,676.44 0.19 9.03 0.81 11.33 1.38 12.71 0 996.56 0.17 9.17 0.77 11.42 1.36 12.74 0 996.75 0.17 9.33 0.72 11.35 1.32 12.84 0 99

Page 136: The Hall Effect in Bismuth at High Magnetic Fields and Low

126Data 7/4/55: Field perp. trig, and bin.; P = 13 mm Hg.;Octal S; Hall (r+,b-); current (w+,g-) = 0.0200 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.54 0.08 5.72 0.63 8.922.60 0.08 6 .05 0.66 9.132.92 0.12 6.24 0.61 9.373.29 0.14 6.38 0.59 9.633.59 0.20 6.70 0.68 9.773.88 0.25 7.02 0,97 9.904.16 0.25 7.29 1.15 10.134.37 0.27 7.51 1.25 10.294.47 0.34 7.63 1.32 10.454.51 0.38 7.84 1.44 10.554.79 0.41 7.97 1.55 10.655.00 0.43 8.14 1.64 10,735.14 0.46 8.32 1.70 10.835.33 0.53 8.56 1.75 10.935.53 0.58 8.76 1.72 11.05

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.78 11.15 2.47 12.56 1,851.72 11.25 2.46 12.68 1.851.65 11.33 2.42 12.75 1.851.59 11.43 2.35 12.78 1.861.58 11.54 2.28 12.80 1.861.61 11.61 2.23 12.85 1,891.78 11.72 2.13 12.91 1.941.95 11.84 2.04 13.00 2.062.15 11.96 1.96 13.10 2.242.24 12.05 1.91 13.18 2.432.31 12.14 1.87 13.25 2.652.37 12.24 1.85 13.34 2.902.43 12.32 1.85 13.41 3,142.46 12.35 1.85 13.59 3.792.42 12.44 1.85

Page 137: The Hall Effect in Bismuth at High Magnetic Fields and Low

127Data 7/4/55: Field perp. trig, and bin.; P = 2.94 cm Oct-

oil S; Octal S; Hall (b+,r-); current (w+,g-) * 0.0200amp.ield Hall

m.v.Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.92 0.01 6*69 0.16 9.80 0.64 11.42 1 38 13.01 0.963.14 0.02 6.85 0.22 9.86 0.74 11.50 1 34 13.04 0.973.29 0.02 7.05 0.36 9.98 0.68 11.57 1 30 13.07 0.993.61 0.04 7.17 0.47 10.10 0.75 11,63 1 25 13.13 1.003.82 0.05 7.29 0.53 10.19 0.94 11.75 1 20 13.18 1.034.09 0.05 7.35 0.57 10.29 0.94 11.83 1 15 13.21 1.054.30 0.06 7.50 0.62 10.34 1.02 11.93 1 10 13.26 1.084.40 0.06 7.65 0.65 10.44 1.10 11.99 1 07 13.31 1.134.72 0.11 7.84 0.67 10.50 1.17 12.10 1 02 13.33 1.204.93 0.11 8.06 0.71 10.61 1.24 12.18 1 00 13.37 1.265.14 0.13 8.31 0.79 10.73 1.30 12,26 0 98 13.42 1.355.21 0.15 8.51 0.84 10.81 1.35 12.34 0 97 13.47 1,465.34 0.18 8.70 0.85 10.87 1.38 12.40 0 97 13.53 1.585,45 0.21 8.92 0.84 10.93 1.39 12.46 0 97 13.55 1.645.60 0.23 9.01 0.80 11.01 1.40 12.54 0 965.73 0.24 9.25 0.74 11.09 1.41 12.62 0 965.95 0.24 9.37 0.70 11.17 1.41 12.71 0 966.18 0.24 9.49 0.67 11.25 1.41 12.78 0 966.37 0.19 9.56 0.65 11.31 1.40 12.86 0 966.51 0.17 9.63 0.64 11.36 1.40 12,93 0 96

Page 138: The Hall Effect in Bismuth at High Magnetic Fields and Low

128Data 7/4/55: Field perp. trig, and bin.; P = 2.99 cm Oct-

oil S; Octal N; Hall (r+,b-); current (w+,g-) = 0.0200amp.

Field Hall Field Hall Field Hall Field Hall Field Hallk.-g. m.v. k.-g. m.v. k.-g. m V. k.-g. m.v. k . "*g. m.v.2.39 0.08 6.38 0.59 9.80 1 58 11.77 2.08 12.80 1.812.72 0.11 6.60 0.63 9.88 1 61 11.87 2.00 12.83 1.833.00 0.14 6.70 0.70 10.02 1 71 11.95 1.95 12,86 1.853.29 0.15 6.85 0.88 10.16 1 82 11.92 1.92 12.91 1.893.59 0.22 7.05 1.08 10.24 1 91 12.06 1.87 12.97 1.973.88 0.25 7.17 1.16 10.32 2 05. 12.12 1.85 13.03 2.044.02 0.25 7.30 1.24 10.40 2 15 12.16 1.84 13.10 2.204.30 0.27 7.62 1.34 10.54 2 30 12.21 1.83 13.13 2.284.44 0.35 7.95 1,55 10.73 2 44 12.25 1.83 13.17 2.374.70 0.40 8.10 1.66 10.93 2 50 12.30 1.83 13.23 2.544.86 0.43 8.26 1.74 11.13 2 50 12.34 1.83 13.27 2.645.14 0.44 8.56 1.79 11.27 2 49 12.37 1.83 13.38 3.055.27 0.54 8.83 1.80 11.36 2 44 12.46 1.82 13.47 3.395.40 0.57 8.92 1.79 11.43 2 39 12.50 1.81 13,54 3.565.53 0.60 9.05 1.75 11.54 2 29 12.54 1.805.66 0.65 9.18 1.70 11.60 2 24 12.62 1.805.85 0.67 9.49 1.59 11.60 2 19 12.70 1.806.18 0.60 9.77 1,57 11.70 2 13 12.78 1.80

Page 139: The Hall Effect in Bismuth at High Magnetic Fields and Low

129Data 7/4/55: Field perp. trig, and bin.; P = 763.4 mm Hg.;Octal N; Hall (w+,g-); current (b+.r-) = 0.0165 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.80 0.01 7.89 0.59 10.393.06 0.01 8.11 0.64 10,493.29 0.02 8.25 0.66 10.643.59 0.04 8.36 0.68 10.754,02 0.05 8.53 0.70 10.854.30 0.06 8.67 0.70 10.934.72 0,10 8.83 0.70 10.994.07 0.12 9.01 0.70 11.135.40 0.18 9.17 0.68 11.245.80 0.20 9.33 0.65 11.336.17 0.20 9.50 0.64 11.406.44 0.20 9.63 0.64 11.466.63 0.19 9.77 0.64 11.516.72 0.20 9.90 0.65 11.577.05 0.37 10.01 0.68 11.647.34 0.48 10.09 0.71 11.727.62 0.54 10.24 0.79 11.78

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

0.87 11.85 1.00 12.75 0.950.94 11.93 1.00 12.79 0.951.00 12.02 0.98 12.85 0.981,04 12.08 0.97 12.91 0.991.08 12.14 0.96 12.96 1.001.09 12.18 0.95 13.01 1.031.11 12.23 0.95 13.05 1.051.11 12.26 0.95 13.10 1.091.11 12.32 0.94 13.15 1.121.11 12.34 0.94 13.18 1.141.10 12,36 0.94 13.23 1.191.09 12.42 0.94 13.25 1.231.08 12.46 0.94 13.32 1.291.06 12.52 0.94 13.41 1.391.05 12.54 0.94 13.47 1.461.04 12.62 0.94 13.57 1.581.02 12.68 0.94 13,58 1.60

Page 140: The Hall Effect in Bismuth at High Magnetic Fields and Low

130Data 7/4/55: Field perp. trig, and bin.; P = 763.4 mm Hg.;Octal S; Hall (g+,w-); current (b+,r-) = 0.0165 amp.

Fieldk

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.39 0.04 7.05 0.75 9.863.21 0.09 7.17 0.81 10.013.44 0.13 7.29 0.86 10.193.74 0.15 7.40 0.91 10.293.81 0.16 7.57 0.97 10.394.09 0.18 7.73 1.01 10.494.37 0.20 7.90 1.07 10.614.72 0.28 8.06 1.12 10.734,86 0.30 8.21 1.18 10.775.14 0.36 8.36 1.21 10.835.40 0.40 8.46 1.25 10.935.53 0.43 8,65 1.28 11.055.73 0.45 8.75 1.29 11.175,92 0.45 8.92 1.29 11.276.18 0.45 9.10 1.29 11.366.44 0.48 9.33 1,27 11.426.75 0.55 9.45 1.25 11.476.93 0.65 9.70 1.25 11.51

Hallm.v.

Fieldk.iSi

Hallm.v.

Fieldk.-g.

Hallm.v.

1.28 11.57 1.78 12.71 1.681.34 11.64 1.76 12.77 1.701.43 11.72 1,75 12.83 1.731.50 11.80 1.72 12.91 1.751.58 11.86 1.71 12.92 1.791.64 11.93 1.70 12.97 1.811.71 12.00 1,69 13.03 1.871.75 12.06 1,67 13.10 1.931.77 12.12 1.66 13.15 1.981.80 12.16 1.65 13.20 2.031.82 12.24 1.65 13.25 2.091.84 12.30 1.65 13.31 2.151.84 12.34 1.65 13.39 2.251.84 12.40 1.65 13.44 2.351.84 12.46 1.65 13.49 2.451.83 12.53 1.65 13.55 2.551.80 12.60 1.65 13.58 2.631.80 12.65 1.66

Page 141: The Hall Effect in Bismuth at High Magnetic Fields and Low

131Data 7/4/55: Field perp. trig, and bin.; P = 451 mm Hg.;

Ootal N; Hall (w+,g-); current (b+,r-) * 0.0165 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldfc.Tr'S*

2.91 0.01 7.05 0.34 10.393.15 0.02 7.29 0.43 10.443.60 0.04 7.51 0.51 10.593.81 0.05 7.67 0.54 10.734.18 0.05 7.84 0.57 10.814.44 0.07 8.05 0.61 10.894.58 0.09 8,18 0.65 11.014.86 0.10 8.45 0.69 11.135.00 0.12 8.61 0.70 11.245.27 0.15 8.83 0,70 11.365.40 0.17 9.09 0.68 11.455.45 0.19 9.25 0.65 11.515.79 0.20 9.45 0.63 11.605.92 0.20 9.70 0.62 11.696.11 0.20 9.80 0.62 11.756.30 0.19 9.98 0.65 11.816.57 0.18 10.07 0.69 11.906.81 0.21 10.19 0.74 11.93

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

0.85 11.94 0.98 12.89 0.950.89 12.04 0.95 12.93 0.960.96 12.07 0.95 12.99 0.981.05 12.11 0.95 13.03 1.001.06 12.16 0.94 13.07 1.021.09 12.21 0.93 13.12 1.051.10 12.25 0.92 13.17 1.081.11 12.31 0.91 13.21 1.111.11 12.38 0.90 13.25 1.151.11 12.44 0.90 13.31 1.201.10 12,50 0.90 13.36 1.261.08 12.54 0.90 13.39 1.311.05 12.62 0.90 13.43 1.361.04 12.68 0.90 13.49 1.441.02 12.71 0.90 13.55 1.541.00 12.75 0.91 13.57 1.560.99 12.80 0.930.99 12.85 0.94

Page 142: The Hall Effect in Bismuth at High Magnetic Fields and Low

132Data 7/4/55: Field perp. trig, and bin.; P = 457 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0165 amp.’ield..-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field k . —g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.83 0.05 6.31 0 47 10.10 1.40 11.63 1.80 12.78 1.692.84 0.07 6.69 0 53 10.19 1.46 11.71 1.77 12.86 1.723.15 0.10 6.93 0 69 10.30 1.56 11.78 1.75 12.93 1.753.44 0.13 7.08 0 80 10.41 1.65 11,90 1.72 12.97 1.793.74 0.16 7.40 0 95 10.54 1.72 12.00 1.70 13.03 1,823.95 0.18 7.74 1 05 10.64 1.78 12.06 1,68 13.10 1.904.23 0.19 7.95 1 11 10,73 1.83 12.12 1.67 13.16 1.964.35 0.21 8.26 1 24 10.87 1.87 12.20 1.65 13.21 2.004.59 0.26 8.50 1 30 10.97 1.89 12.27 1.65 13.23 2.084.86 0.30 8.70 1 32 11.09 1.90 12.34 1.65 13.29 2.155.07 0.34 8.95 1 33 11.19 1.90 12.42 1.65 13.34 2.255.26 0.38 9.17 1 31 11,28 1.90 12.48 1.65 13.38 2.305.40 0.42 9.40 1 28 11.36 1.88 12.56 1.65 13.41 2.375.65 0.45 9.62 1 27 11,42 1,86 12.63 1.65 13.48 2.505.92 0.47 9.83 1 28 11.48 1.85 12.68 1.66 13.56 2.656.15 0.47 9.95 1 30 11,54 1.83 12.72 1.67 13.58 2.67

Page 143: The Hall Effect in Bismuth at High Magnetic Fields and Low

133Data 7/4/55; Field perp. trig, and bin.; P = 225 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0351 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field k . - g._

Hallm.v.

Fieldk.-g*.

Hallm.v.

2.40 0 01 5.92 0,45 9.52 1.28 11.52 2.25 12.52 1.842.54 0 01 6.05 0.43 9.63 1.26 11.57 2.23 12.58 1.842.69 0 02 6.18 0.40 9.77 1.26 11.61 2,20 12,64 1.842.84 0 03 6.30 0.39 9.88 1.29 11,66 2.16 12.68 1.843.00 0 05 6.31 0.37 9.95 1.34 11.68 2.15 12.72 1.853.30 0 05 6.51 0.35 10.08 1.45 11.72 2.14 12.73 1.853.45 0 07 6.69 0.38 10.26 1.65 11.78 2.09 12.77 1,863.60 0 10 6.80 0.95 10.39 1.84 11,86 2.05 12.82 1.883.80 0 11 6.93 0.59 10.49 1.98 11.90 2.02 12,89 1.913.90 0 11 7.05 0.77 10.61 2.12 11.96 2.00 12.94 1.954.10 0 12 7.35 1.00 10.73 2.23 12.04 1.95 12.97 1.994.15 0 13 7.56 1.10 10.93 2.34 12.12 1.92 13.01 2.054.44 0 15 7.73 1.18 11.05 2.37 12.18 1.89 13.10 2.154.57 0 18 7.88 1.24 11.10 2.37 12.24 1.86 13.17 2.304.72 0 20 8.18 1.39 11.17 2.38 12.26 1.86 13.25 2.464.80 0 23 8.28 1.45 11.27 2.38 12.28 1.85 13.27 2.495.00 0 24 8.56 1.50 11.30 2.37 12.31 1.85 13.33 2.655.07 0 25 8.83 1.50 11.31 2.36 12.34 1.85 13.36 2.735.15 0 30 8.94 1.48 11,33 2.35 12.36 1.85 13.39 2.845.40 0 36 9.09 1.43 11.37 2.34 12.38 1.85 13.47 3.075.45 0 40 9.25 1.38 11.40 2.32 12.42 1.84 13.53 3.275.68 0 44 9.35 1.33 11.46 2.29 12,48 1.84 13.56 3.39

Page 144: The Hall Effect in Bismuth at High Magnetic Fields and Low

134Data 7/4/55: Field perp. trig, and bin.; P = 225 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0351 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

2.39 0 13 6.45 1 03 9.56 2.74 11.60 3.91 12.55 3.502.54 0 14 6.63 1 11 9.63 2.73 11.66 3.85 12.62 3.502.08 0 16 6.78 1 42 9.71 2.73 11.69 3.82 12.67 3.512.84 0 20 6.99 1 63 9.83 2.77 11.78 3.75 12.68 3.513.07 0 23 7.05 1 77 9.95 2.88 11.87 3.68 12.71 3.533.21 0 25 7.26 1 97 10.10 3.04 11.94 3.64 12.73 3.543.50 0 31 7.30 2 08 10.29 3.25 11.99 3.60 12.78 3.563.74 0 38 7.51 2 20 10.34 3.43 12.04 3.58 12.82 3.583.58 0 41 7.62 2 28 10.39 3.56 12.08 3.55 12.84 3.604.09 0 43 7.84 2 35 10.45 3,65 12.11 3.55 12.89 3.694.30 0 45 7.95 2 48 10.56 3.80 12.13 3.54 12.92 3.664.51 0 56 8.05 2 60 10.69 3.98 12.16 3.53 12.94 3.734.82 0 69 8.17 2 69 10,81 4.08 12.20 3.52 12.99 3.874.93 0 72 8.36 2 80 10.89 4.12 12.23 3.51 13.07 5.965.14 0 77 8.46 2 86 11.01 4.16 12.27 3.51 13.20 4.055.27 0 85 8.65 2 91 11.08 4.76 12.30 3.50 13.28 4.515.40 0 95 8.79 2 93 11.21 4.16 12.34 3.50 13.35 4.785.66 1 03 9.01 2 92 11.26 4.16 12.36 3.505.82 1 06 9.10 2 89 11.35 4,10 12.38 3.506.05 1 07 9.21 2 84 11,42 4,05 12.42 3.506.20 1.04 9.37 2 78 11.50 4.00 12.48 3.50

Page 145: The Hall Effect in Bismuth at High Magnetic Fields and Low

135Data 7/4/55: Field perp. trig, and bin.; P = 90 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0250 amp.Field Hall Field Hall Field k.-g. m.v. k.-g. m.v. k.-g.2.84 0.00 6.67 0 25 10.412.92 0.02 6.69 0 26 10.593.14 0.03 6.81 0 32 10.693.44 0.03 6.90 0 37 10.743.52 0.04 6.99 0 46 10.853.74 0.06 7.17 0 60 10.954.02 0.07 7.29 0 68 11.054.30 0.08 7 .56 0 79 11.134.58 0.11 7.95 0 91 11.214.86 0.15 8.21 1 03 11.275.01 0.16 8.65 1 08 11.335.27 0.20 9.01 1 05 11.365.40 0.26 9.17 1 00 11.455.54 0.29 9.42 0 90 11.545.82 0.31 9.63 0 87 11.636,05 0.31 9.74 0 87 11.726.30 0.27 9.83 ) .87 11.816.40 0.26 9.89 0 88 11.906.44 0.25 10.02 0 94 11.966.47 0.25 10.13 1 02 12.026.57 0.25 10.29 1 21 12.10

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.35 12.14 1 33 12.78 1.281.50 12.18 1 31 12.80 1.281.58 12.20 1 31 12.84 1.291.61 12.21 1 30 12.86 1.291.68 12.22 1 30 12.89 1.301.70 12.24 1 30 12.94 1.311.72 12.26 1 30 12.99 1.341.72 12.28 1 29 13.03 1.361.72 12.30 1 29 13.07 1.401.72 12.34 1 28 13.11 1.441.70 12.37 1 28 13.15 1.501.69 12.40 1 27 13.20 1.561.65 12.42 1 27 13.27 1.691.60 12.47 1 28 13.34 1.841.56 12.52 1 28 13.41 2.001.51 12.56 1 28 13.42 2.151.47 12.60 1 28 13.55 2.341.43 12.64 1 281.40 12.68 1 281.38 12.71 1 281.34 12.75 1 28

Page 146: The Hall Effect in Bismuth at High Magnetic Fields and Low

136Data 7/4/55: Field perp. trig, and bin.; P = 90 ram Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0250 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hallm.v.

2.65 0 .10 5.53 0 72 7.40 1.54 9.21 2 06 11.81 2 682.77 0 .13 5.55 0 73 7.46 1.58 9.42 1 99 11.94 2 603.00 0 15 5.60 0 75 7.52 1.60 9.59 1 95 12.06 2 563.15 0 17 5.67 0 76 7.58 1.64 9.78 2 00 12.14 2 513.37 0 19 5.85 0 78 7.63 1.65 9.89 2 10 12.20 2 503.44 0 21 6.05 0 79 7.73 1.66 10.02 2 54 12.34 2 503.46 0 24 6.12 0 78 7.84 1.71 10.38 2 54 12,46 2 503.60 0 25 6.19 0 76 7.95 1.75 10.53 2 73 12.80 2 503.75 0 28 6.32 0 79 7.97 1.80 10.71 2 90 12.86 2 513.90 0 30 6.57 0 74 8.06 1,85 10.77 2 98 12.91 2 544.05 0 30 6.63 0 76 8.09 1.90 10.79 2 99 12.95 2 584.23 0 32 6.69 0 80 8.16 1.94 10.85 3 01 12.99 2 634.30 0 34 6.74 0 86 8.21 1.99 10.91 3 04 13.04 2 704.44 0 37 6.80 0 92 8.27 2.02 10.99 3 05 13.11 2 814.58 0 42 6.90 1 00 8.36 2.05 11.07 3 06 13.18 2 954.72 0 47 6.94 1 09 8.41 2.08 11.13 3 06 13.23 3 104.86 0 50 7.04 1 16 8.51 2.11 11.21 5 06 13.31 3 325.14 0 54 7.05 1 24 8.61 2.14 11.26 3 06 13.37 3 505.27 0 60 7.11 1 29 8.70 2.15 11.31 3 03 13.44 3 715.29 0 65 7.17 1 36 8.84 2.15 11.40 2 98 13.49 3 815.40 0 68 7.23 1 51 8.97 2.15 11.51 2 90 13.53 4 025.47 0 70 7.29 1 48 9.02 2.13 11.64 2 80 13.58 4 205.48 0 72 7.35 1 51 9.13 2.10 11.72 2 74

Page 147: The Hall Effect in Bismuth at High Magnetic Fields and Low

137Data 7/4/55: Field perp. trig, and bin.; P = 41 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0200 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.90 0.00 6.95 0.30 10.36 0.98 12.05 1 05 12.91 0.993.14 0.02 7.29 0 ,51 10.47 1.08 12.10 1 03 12.95 1.003.44 0.02 7.62 0.60 10.55 1.15 12.16 1 01 12.99 1.013.60 0.04 7.90 0.68 10.67 1.21 12.19 1 00 13.04 1,043.88 0.05 8.16 0.77 10.78 1.27 12.24 0 99 13.07 1.064.16 0.05 8.36 0.83 10.91 1.31 12.26 0 99 13,12 1.104.35 0.05 8.74 0.84 10.99 1.34 12.29 0 99 13.15 1.144.58 0.07 8.92 0.83 11.11 1.35 12.33 0 99 13.20 1.194.75 0.11 9.10 0.80 11.21 1.35 12.38 0 98 13.25 1.255.00 0.11 9.34 0.74 11.30 1.35 12.43 0 98 13.33 1.355.27 0.15 9.54 0.70 11.35 1.33 12.47 0 98 13.37 1.435.40 0.19 9.63 0.67 11.43 1.31 12.51 0 98 13.41 1.505,68 0.22 9.76 0.66 11.54 1.26 12.57 0 98 13.46 1.615.98 0.24 9.86 0.66 11.61 1.24 12.64 0 98 13.52 1.756.18 0.22 9.89 0.67 11,70 1.19 12.69 0 98 13.54 1.796.31 0.20 9.99 0.70 11.80 1.15 12.75 0 986.55 0.18 10.07 0.75 11.87 1.11 12.82 0 986.81 0.19 10.24 0.86 11.97 1.08 12.87 0 98

Page 148: The Hall Effect in Bismuth at High Magnetic Fields and Low

138Data 7/4/55: Field perp. trig, and bin.; P = 41 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0200 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Kr .**.§

2.99 0.12 6.75 0.63 9.833.14 0.13 6.88 0.75 9,893.29 0.14 7.17 1.05 10.133.44 0.16 7.40 1.19 10.353.67 0.21 7.52 1.28 10.503.88 0.24 7.80 1.34 10.654.16 0.25 8.05 1.46 10.864.30 .0.26 8.35 1.64 _ 10.994.58 0.34 8.50 1.70 11.104.86 0.41 8.65 1.72 11.245.27 0.51 8.78 1.74 11.305.66 0.60 9.09 1.72 11.375.82 0.62 9.25 1.65 11.466.12 0.64 9,55 1.56 11.576.45 0.59 9.71 1.55 11.65

Hallm.v.

Fieldk.-g,

Hallm.v.

Field Hall k.-g. m.v.

1.55 11.72 2.20 12.97 2.011.58 11,78 2.15 13.00 2.061.78 11.90 2.10 13.07 2.142.00 12.00 2.05 13.12 2.20

2.20 12.10 2.01 13.17 2.302.32 12.16 2.00 13.23 2.412.44 12.20 1.99 13.27 2.482.46 12.28 1.99 13.37 2.742.47 12.35 1.98 13.47 3.012.46 12.43 1.98 13.56 3.242.45 12.52 1.98 13.62 3.422.43 12.60 1.972.32 12.68 1.962.31 12.82 1.962.25 12.89 1.96

Page 149: The Hall Effect in Bismuth at High Magnetic Fields and Low

139Data 7/4/55: Field perp. trig, and bin.; P = 13 mm Hg.;

Octal N;Fieldk.-g.

Hallm.v.

3.07 0.013.21 0.023.51 0.023.74 0.044.02 0.054.35 0.054.65 0.094.90 0.12

i—iin 0.125.40 0.183.65 0.235.95 0.256.17 0.246.31 0.216.50 0.19

Hall (w+,g-)Fieldk.-g.

Hallm.v.

6.69 0.186.81 0.217.05 0.417.29 0.517.48 0.607.97 0.738.43 0.858.74 0.869.01 0.859.25 0.779.49 0.709.70 0.669.90 0.659.98 0.68

10.10 0.76

; current (:Fieldk.-g.

Hallm.v.

10.29 0.9210.50 1.1210.70 1.2510.85 1.3311.11 1.3711.27 1.37

oto41—1 t—1 1.3711.36 1.3511.51 1.2911.66 1.2111.99 1.0612.09 1.0312.19 0.9912.28 0.9712.38 0.96

Fieldk.-g.

Hallm.v.

12.45 0.9612.52 0.9612.55 0.9612.60 0.9612.70 0.9612.78 0.9612.87 0.9612.96 0.9613.00 0.9913.05 1.0113.10 1.0513.18 1.1213.25 1.2013.33 1.3113.43 1.56

10 amp.Field Hall k.-g. m.v.13.51 1.7713.59 1.97

Page 150: The Hall Effect in Bismuth at High Magnetic Fields and Low

140Data 7/4/55: Field perp. trig, and bin.; P = 13 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0200 amp.Fieldk»“6L..

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.69 0.07 .6.57 0.58 9.662.84. 0.10 6.75 0.61 9.773.06 0.14 7.05 0.92 9.833.42 0.15 7.29 1.17 9.893.72 0.21 7.45 1.27 10.133.88 0.24 7.73 1.32 10.294.17 0.25 7.90 1.36 10.394.58 0.30 8.05 1.45 10.584.72 0.38 8.28 1.62 10.694.79 0.41 8.46 1.69 10.805.07 0.42 8.65 1.73 10.935.27 0.50 8.92 1.74 11.075.46 0.57 9.09 1.72 11.19'5.75 0.61 9.21 1.67 11.286.05 0.65 9.35 1.64 11.356.38 0.60 9.48 1.56 11.42

Hallm.v.

Fieldk r-£...

Hallm.v.

Fieldk.-g.

Hallm.v.

1.51 11.48 2.36 12.71 1.891.51 11.58 2.30 12.77 1.881.51 11.67 2.23 12.84 1.881.53 11.76 2.15 12.93 1.891.74 11.85 2.09 12.96 1.911.93 11.95 2.03 13.01 1.942.06 12.03 2.00 13.09 1.982.26 12.10 1.96 13.08 2.022.31 12.16 1.95 13.12 2.082.41 12.22 1.94 13.16 2.152.46 12.30 1.94 13.23 2.312.48 12.40 1.94 13.33 2.532.48 12.51 1.94 13.41 2.722.97 12.56 1.93 13.45 2.862.45 12.60 1.92 13.54 3.082.41 12.66 1.90

Page 151: The Hall Effect in Bismuth at High Magnetic Fields and Low

141Data 7/4/55: Field perp. trig, and bin.; P = 2.94 cm Oct-

oil'S; Octal N; Hall (w+,g-); current (bt-,r-) = 0.0200amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk

Hailm.v.

Fieldk

Hdllm.v.

Field Hallm.v.

3.29 0.01 6.36 0.20 8.51 0.87 10.93 1.38 12.61 0.943.59 0.03 6.44 0.19 8.74 0.87 11.05 1.40 12.69 0.943.89 0.05 6.57 0.18 8.95 0.86 11,21 1.40 12.73 0.934.31 0.05 6.69 0.16 9.09 0.84 11.31 1.39 12.82 0.934.75 0.11 6.75 0.16 9.17 0.81 11.41 1.35 12.87 0.934.90 0.12 6.82 0.19 9.34 0.74 11.48 1.32 12.96 0.935.10 0.12 6.93 0.25 9.56 0.67 11.58 1.27 13.03 0.955.14 0.15 7.00 0.30 9.69 0.65 11.75 1.17 13.09 0.975.24 0.15 7.11 0.38 9.eo 0.64 11.90 1.10 13.15 1.025.37 0.18 7.17 0.44 9.95 0.66 12,04 1.04 13.20 1.085..46 0.21 7.29 0.53 10.04 0.71 12.12 1.00 13.23 1.145.66 0,22 7.41 0.59 10.16 0.80 12.18 0.98 13.28 1.245.80 0.25 7.74 0.65 10.27 0.91 12.26 0.96 13.34 1.375.92 0.25 7.95 0.72 10.39 1.04 12.32 0.95 13.41 1.506.05 0.25 8.07 0.76 10.49 1.15‘ 12.36 0.95 13.50 1.726.18 0.25 8.16 0.80 10.64 1.25 12.94 0.94 13.58 1.946.25 0.23 8.27 0.83 10.81 1.34 12.52 0.94

Page 152: The Hall Effect in Bismuth at High Magnetic Fields and Low

142Data 7/4/55: Field perp. trig, and bin.; P = 2.94 cm Oct-

oil S; Octal S; Hall (g+,w-); current (b+,r-) = 0.0200Amp.

Fieldk.-g.

Hallm.v.

Field.k

Hallm.v.

Field Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

2.58 0.09 5.67 0.62 9.45 1.58 11.51 2.40 12.72 1.872.80 0.10 5.79 0.64 9.63 1.52 11.61 2,31 12.78 1.852.99 0.13 6.02 0.65 9.80 1.51 11.78 2.17 12.87 1.853,14 0.14 6.18 0.62 9.90 1.54 11.90 2.07 13.00 1.883.30 0.15 6.31 0.58 9.99 1.60 12.00 2.01 13.05 1.943.44 0.20 6.69 0.58 10.19 1.83 12.03 2.00 13.09 2.003.81 0.25 6.75 0.66 10.34 2.10 12.08 1.97 13.15 2.114.02 0.25 6.94 0.90 10.59 2.35 12.15 1.95 13.21 2.234.30 0.27 7.29 1.21 10.73 2.45 12.21 1.95 13.33 2.514.58 0.34 7.57 1.33 10.85 2.52 12.23 1.95 13.37 2.654.72 0.40 7.95 1.44 10.99 2.54 12.39 1.95 13.41 2.815.00 0.42 8.23 1.63 11.05 2.55 12.46 1.95 13.55 3.255.14 0.45 8.51 1.75 11.19 2.55 12.56 1.945.24 0.50 8.79 1.79 11.28 2.54 12.59. 1.935.40 0.56 9.15 1.75 11.33 2.51 12.64 1 -915.46 0.60 9.33 1.65 11.44 2.46 ,12.68 1.89

Page 153: The Hall Effect in Bismuth at High Magnetic Fields and Low

143Data 7/12/55; Field parallel binary axis; P = 757 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Field k . —g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

3.14 0.05 5.79 0.31 8.08 0 94 9.60 1.46 10.83 1.853.28 0.06 5.92 0.33 8.17 0 94 9.63 1.50 10.89 1.853.42 0.07 6.06 0.34 8.25 0 94 9.70 1.53 10.95 1.853.47 0.09 6.18 0.56 8.28 0 94 9.74 1.55 11.01 1.853.59 0.10 6.31 0.38 8.36 0 94 9.80 1.59 11.09 1.853.74 0.11 6.38 0.43 8.45 0 94 9.83 1.60 11.15 1.853.77 0.12 6.48 0.48 8.51 0 94 9.89 1.64 11.23 1.853.90 0.12 6.65 0.56 8.58 0 94 9.95 1.65 11.30 1.854.05 0.12 6.69 0.60 8.65 0 94 9.88 1.69 11.36 1.854.23 0.12 6.81 0.65 8.23 0 95 10.01 1.71 11.44 1.854.31 0.14 7.00 0.69 8.27 0 96 10.13 1.73 11.52 1.854.44 0.17 7.05 0.72 8.84 0 99 10.19 1.75 11.57 1.844.57 0.20 7.15 0.77 8.92 1 02 10.27 1.77 11.65 1.834.68 0.23 7.20 0.80 9.01 1 06 10.34 1.78 11.72 1.824.72 0.25 7.30 0,83 9.09 1 10 10.39 1.80 11.78 1.814.86 0.27 7.40 0.86 9.13 1 14 10.44 1.80 11.87 1.805.00 0.29 7.51 0.89 9.20 1 19 10.49 1.81 11.91 1.785.07 0.30 7.68. 0.90 9.25 1 22 10.54 1.82 12.02 1.765.15 0.31 7.80 0.92 9.33 1 27 10.59 1.83 12.08 1.755.27 0.31 7.85 0.93 9.37 1 31 10.64 1.83 12.14 1.755.40 0.31 7.92 0.94 9.45 1 35 10.69 1.84 12.20 1.755.47 0.31 7.98 0.94 9.49 1 39 10.75 1.85 12.26 1.755.60 0.31 8.05 0.94 9,56 1 43 10.77 1.85 12.32 1.75

Page 154: The Hall Effect in Bismuth at High Magnetic Fields and Low

144(Page 143 cont.)Field Hall Field Hall Field Hall Field Hall Fieldk. m.v. k.-g. m.v. kf-3.. m.v. k • m.v. k.»—S.T.12.42 1.75 12.70 1.79 12.99 1.87 13.21 2.03 13.4212.48 1.75 12,77 1.80 13.04 1.90 13.26 2.06 13.4512.52 1.76 12.82 1.82 13.09 1.93 13.29 2.1012.60 1.76 12.89 1.84 13.13 1.96 13.34 2.1412.65 1.78 12.94 1.85 13.17 1.99 13.39 2.18

Page 155: The Hall Effect in Bismuth at High Magnetic Fields and Low

145Data 7/12/55; Field parallel binary axis; p = 757 mm Hg.;

Octal N; Hall (r+,b-); current (w+,g-) ® 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.84 0 15 5.66 0.62 9.37 2.06 11.39 2.68 12.46 2.533.05 0 16 5.86 0.65 9.53 2.20 11.51 2.66 12.50 2.543.20 0 19 '6.11 0.70 9.70 2.35 11.60 2.65 12.58 2.553.40 0 22 6.44 0.82 9.85 2.48 11.67 2.63 12.60 2.563.49 0 25 6..69 0.91 9.98 2.56 11.75 2.61 12.65 2.573.59 0 27 6.85 1.12 10.13 2.63 11.81 2.59 12.71 2.593.74 0 28 7.17 1.26 10.24 2.66 11.90 2.57 12.73 2.603.88 0 29 7.40 1.33 10.29 2.69 11.98 2.56 12.78 2.634.02 0 29 7.55 1.36 10.39 2.70 12.02 2.55 12.87 2.654.16 0 31 7.63 1.38 10.49 2.71 12.06 2.54 12.92 2.674.30 0 34 7.84 1.40 10.59 2.73 12.10 2.53 13.00 2.714.33 0 39 7.96 1.40 10.70 2.74 12,15 2.52 13.07 2.564.51 0 44 8„17 1,40 10.77 2.74 12,18 2.52 13.17 2.844.58 0 46 8.40 1.40 10.85 2.74 12.24 2.52 13.28 2.944.72 0 50 8.52 1.43 10.97 2.74 12.29 2.51 13.34 3.014.86 0 54 8.65 1.48 11.07 2.73 12.32 2.51 13.41 3.095.14 0 57 8.83 1.58 11.13 2.72 12.35 2.51 13.47 3.165.27 0 58 9.01 1.70 11.24 2.71 12.39 2.51 13.53 3.255.47 0 59 9.21 1.90 11.33 2.70 12.42 2.52

Page 156: The Hall Effect in Bismuth at High Magnetic Fields and Low

146Data 7/12/55: Field parallel binary axis; P = 451 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Field Hallm.v.

Fieldk.-g..

3.14 0.05 7.06 0,75 9.353.58 0.06 7.18 0.80 9.413.60 0.09 7.29 0.82 9.563.81 0.11 7.40 0.85 9.724.02 0.12 7 ..45 0.88 9.954.25 0.12 7.53 0.90 9.984.47 0.17 7.60 0.92 10.074.72 0.22 7.70 0.94 10.164.86 0.26 7.75 0.95 10.205.12 0.30 7.85 0.96 10.265.30 0.32 7.95 0.96 10.305.53 0.32 8.06 0.96 10.375.78 0.32 8.15 0.96 10.445.93 0 .,34 8.26 0.95 10.506.20 0.36 8.38 0.95 10.596.52 0.42 8.56 0.94 10.736.65 0.50 8.74 0.95 10.796.70 0.56 8.85 0.99 10.876.81 0.63 9.03 1.05 10.956.99 0.70 9.21 1.18 11.05

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g...

Hallm.v.

1.30 11.11 1.90 12.34 1.741.35 11.27 1.90 12.38 1.741.43 11.32 1.90 12.42 1.741.56 11.38 1.90 12.48 1.751.70 11.45 1.90 12.54 1.751.72 11.48 1.89 12.55 1.751.75 11.53 1.88 12.59 1.761.79 11.57 1.87 12.65 1.761.82 11.62 1.86 12.73 1.781.83 11.66 1.85 12.82 1.801.85 11.78 1.82 12.91 1.821.86 11.90 1.80 13.05 1.891.87 12.04 1.77 13.17 1.951.88 12.06 1.76 13.25 2.011.89 12.10 1.75 13.35 2.111.90 12.15 1.75 13.44 2.231.90 12.19 1.75 13.56 2.371,90 12.22 1.75 13.57 2.391.90 12.25 1.751.90 12.28 1.75

Page 157: The Hall Effect in Bismuth at High Magnetic Fields and Low

147Data 7/12/55: Field parallel binary axis; P = 451 mm Hg.

Octal N; Hall (r+,b-); current (w+,g-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.70 0 14 5.30 0.59 8.50 1.42 10.49 2.78 12.15 2.522.84 0 15 5.40 0.59 8.60 1.44 10.59 2.79 12.17 2.523.10 0 17 5.60 0.60 8.65 1.45 10.73 2.80 12.22 2.513.30 0 21 5.78 0.61 8.75 1.51 10.77 2,80 12.25 2.503.52 0 25 5.85 0.63 8.92 1.59 10.83 2.80 12.38 2.503.74 0 29 5.94 0.66 9.02 1.69 10.90 2.80 12.50 2.523.88 0 30 6.18 0.70 9.17 1,85 11.05 2.79 12.62 2.564.00 0 30 6 .32 0.74 9.25 1.95 11.09 2.78 12.67 2.594.02 0 30 6.57 0.83 9.40 2.07 11.21 2.76 12.73 2.604.16 0 30 6.70 0.97 9.49 2.17 11.30 2.74 12.77 2.614.25 0 30 6.93 1.10 9.56 2.25 11.48 2.70 12.82 2.644.32 0 32 7.05 1.21 9.70 2.36 11.69 2.65 12.89 2.664.44 0 35 7.28 1.28 9.77 2.45 11.78 2.62 12.99 2.704.58 0 40 7.42 1.35 9.90 2.55 11.93 2.58 13.04 2.744.65 0 45 7.60 1.38 10.01 2.62 11.96 2.57 13.15 2.794.75 0 49 7.73 1.41 10.07 2.65 11.99 2.56 13,20 2.854.86 0 52 7 .95 1.43 10.16 2.69 12.02 2.55 13.30 2.954.95 0 55 8.16 1.44 10.24 2.72 12.04 2.55 13.37 3.035.02 0 56 8.36 1.43 10.29 2.74 12.09 2.54 13.48 3.185.27 0 58 8.46 1.42 10.39 2.76 12.12 2.54 13.52 3.24

Page 158: The Hall Effect in Bismuth at High Magnetic Fields and Low

148Data 7/12/55: Field parallel binary axis; P = 225 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0418 amp.Field k . ~ g .

Hallm.v.

Field k •

Hallm.v.

Fieldk.-g..

3.25 0.05 5.79 0.34 9.133.48 0.06 6.05 0.35 9.503.73 0.08 6.31 0.37 . 9.703.86 0.11 6.57 0.42 9.834.04 0.12 6.82 0.60 9.894.30 0.13 7 ;04 0.71 9.954.33 0,13 7.29 0.82 10.194.56 0.15 7.62 0.92 10.394.75 0.22 7.97 1.00 10.594.90 0.26 8.36 0.97 10.735.14 0.30 8.57 0.95 10.855.40 0.34 8.74 0.95 11.025.60 0.34 8.93 1.00 11.17

Hallm.v.

Field X . - § •.

Hallm.v.

Fieldk.-g,.

Hallm.v.

1.10 11.33 1.94 12.44 1.731.41 11.39 1.94 12.46 1.731.55 11.45 1.93 12.52 1.751.66 11.51 1.91 12.61 1.761.71 11.60 1.90 12.71 1.781.75 11.63 1.90 12.82 1,791.84 11.72 1.87 12.97 1.821.90 11.81 1.85 13.07 1.861,92 11.90 1.81 13.18 1.931.93 12.02 1.78 13.29 2.051.94 12.14 1.75 13.39 2.151.94 12.24 1.74 13.47 2.251.94 12.34 1.73 13.58 2.43

Page 159: The Hall Effect in Bismuth at High Magnetic Fields and Low

149Data 7/12/55: Field parallel binary axis; P = 225 mm Hg.;

Octal N; Hall (r+,b-); current (w+,g-) = 0.0418 amp.Field k • “ S •

Hallm.v.

Fieldk_,-g.

Hallm.v.

Fieldk.-g.

2.69 0.14 5.79 0.61 7.842.84 0.15 5.92 0.63 7.953.29 0.19 6.05 0.66 8.013.44 0.22 6.18 0.70 8.103.70 0.29 6.31 0.71 8.263.88 0.30 6 .44 0.75 8.364.10 0.30 6.57 0.81 8.464.30 0.30 6.70 0 .96 8.534.44 0.35 6.82 1.04 8.654.72 0.42 6.93 1.14 8.744.86 0.53 7.05 1.23 8.835.00 0.56 7.18 1.29 8.925.14 0.59 7.35 1.33 9.015.35 0.60 7.42 1.36 9.175.53 0.61 7.61 1.39 9.295.66 0.61 7.67 1.41 9.56

Hallm.v.

Fieldk.“S.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.43 9.65 2.43 12.10 2.491.45 10.50 2.68 12.31 2.481.45 10.34 2.81 12.43 2.481.45 10.50 2.85 12.46 2.491.45 10.59 2.85 12.54 2.511.44 10.69 2.85 12.64 2.551.43 10.85 2.85 12.74 2,581.43 10.95 2.85 12.86 2.611.43 10.01 2.85 13.04 2.691.46 11.11 2.83 13.21 2.811.51 11.24 2.80 13.31 2.911.56 11.39 2.76 13.37 3.001.66 11.60 2.70 13.51 3.211.80 11.78 2.64 13.55 3.301.96 11.95 2.58 13.58 3.362.25 12.10 2.52

Page 160: The Hall Effect in Bismuth at High Magnetic Fields and Low

150Data 7/12/55: Field parallel binary axis; P = 90 ram Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0418 amp.Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.55 0.02 6.18 0.35 8.372.70 0.03 6.44 0.38 8.512.99 0.05 6.57 0.45 8.653.28 0.06 6,81 0.61 8.743.51 0.09 6.99 0.71 8.873.87 0.13 7.11 0.79 9.014.02 0.14 7.29 0.83 9.094.43 0.14 7.40 0.86 9.334.61 0.20 7.51 0.90 9.554.86 0.25 7.62 0.95 9.675.14 0.31 7.73 0.99 9.865.40 0.35 7.95 1.01 10.035.66 0.35 8,06 1.01 10.226.05 0.35 8.21 1.00 10.34-

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

0.98 10.58 1.98 12.38 1.710.95 10.69 1.99 12.48 1.730.95 10.85 1.99 12.59 1.750.95 11.01 1.99 12.70 1.770.96 11.24 1.98 12.84 1.791.02 11.27 1.96 12.93 1.801.10 11.45 1.92 13.02 1.811.31 11.57 1.89 13.20 1.911.48 11.72 1.85 13.36 2.101.60 11.93 1.77 13.52 2.361.74 12.04 1.74 13.61 2.531.83 12.24 1.711.90 12.28 1.711.95 12.33 1.71

Page 161: The Hall Effect in Bismuth at High Magnetic Fields and Low

151Data 7/12/55: Field parallel binary axis; P = 90 mm Hg.;Octal N; Hall (r+,b-); current (w+,g-) = 0.0418 amp.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.69 0.12 6.06 0.70 8.262.85 0,15 6.31 0.72 8.373.29 0.19 6.45 0.77 8.553.83 0.30 6.69 0.91 8.644.02 0.30 6.81 1.08 8.774.32 0.30 6.93 1.22 8.924.58 0.44 7.11 1.30 9.054.86 0.54 7.29 1.36 9.175.09 0.59 7.45 1.40 9.255.29 0.62 7.62 1.44 9.375.53 0.62 7.73 1.46 9.495.72 0.62 7.96 1.48 9.805.90 0,65 8.15 1.48 9.92

Hallm.v.

Fieldk.-g..

Hallm.v.

Fieldk.-g.

Hallm.v.

1.45 10.05 2.72 12.28 2.451.43 10.19 2,80 12.38 2.451.42 10.47 2.88 12.48 2.491.43 10.73 2.90 12.69 2.551.49 10.87 2,90 12.89 2.601.56 11,05 2.87 13.07 2.651.69 11.09 2.81 13.25 2.741.80 11.29 2.77 13.49 3.161.93 11.45 2.73 13.63 3.482.05 11.63 2.66 13.65 3.502.20 11.78 2.602.54 11.97 2.522.63 12,13 2.47

Page 162: The Hall Effect in Bismuth at High Magnetic Fields and Low

152Data 7/12/55: Field parallel binary axis; P = 41 mm Hg.;

Octal S; Hall (b+,r-); current (w+,g-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

3.07 0.04 5.79 0.34 8.263.37 0.06 5.86 0.34 8.413.70 0.11 6.05 0.35 8.563.88 0.13 6.20 0.36 8.744.02 0.13 6.45 0.40 8.884.43 0.14 6.69 0.54 8.974.57 0.13 6.81 0.66 9.094.72 0.16 6.93 0.75 9.294.79 0.22 7.17 0.81 9.425.00 0.22 7.29 0.86 9.635.14 0.29 7.46 0.92 9.705.27 0.34 7.61 0.96 9.805.39 0.35 7,84 1.01 10.015.52 0.35 8.00 1.04 10.035.65 0.35 8.15 1.04 10.24

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.01 10.29 1.95 12.30 1.690.98 10.37 1.96 12.42 1.700.94 10.50 1.97 12.52 1.720.93 10.71 1.99 12.64 1.750.95 10.81 1,99 12.73 1.760.98 10.91 1.99 12.84 1.761.06 11.09 1.99 12.93 1.761.23 11.27 1.99 13.01 1.761.35 11.42 1.98 13.10 1.781.54 11.46 1.95 13.17 1.831.63 11.60 1.90 13.23 1.891.69 11.75 1.85 13.31 1.971.83 11.91 1.79 13.37 2.081.87 12.06 1.73 13.43 2.191.91 12.18 1.70 13.50 2.31

Page 163: The Hall Effect in Bismuth at High Magnetic Fields and Low

153Data 7/12/55: Field parallel binary axis; P = 41 mm Hg.;

Octal N; Hall (r+,b-); current (w+,g-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g,.

Hallm.v.

Field Hall k.-g. m.v.

2.99 0.13 5.66 0.63 7.96 1.50 10.02 2 75 12.60 2.523.05 0.16 5.79 0.63 8.08 1.50 10.13 2 80 12,70 2.553.18 0.16 5.92 0.66 8.21 1.49 10.24 2 85 12.73 2.563.44 0.20 6.05 0.70 8.36 1.46 10.35 2 89 12.74 2.563.59 0.25 6.18 0.71 8.41 1.43 10.54 2 90 12.76 2.563.74 0.29 6.32 0.73 8.51 1.42 10.71 2 96 12.82 2.573.90 0.30 6.45 0.77 8.65 1.42 10.99 2 88 12.91 2.584.02 0.30 6.69 0.85 8.70 1.43 11.21 2 85 12.94 2.594.18 0.30 6.75 0.89 8.83 1.46 11.32 2 83 13.01 2.604.32 0.30 6.92 1.01 8.92 1.51 11.36 2 79 13.09 2.614.51 0.36 7.05 1.26 9.01 1.59 11.51 2 71 13.17 2.664.72 0.45 7.17 1.33 9.09 1.67 11.72 2 64 13.24 2.724,86 0.52 7.29 1.36 9.17 1.76 11.90 2 55 13.31 2.815.00 0.56 7.40 1.39 9.33 1.98 12.06 2 48 13.46 3.085.14 0.60 7.52 1.42 9.43 2.13 12.18 2 43 13.49 3.125.27 0.63 7.62 1.45 9.56 2,29 12.30 2 425.40 0,64 7.74 1.48 9.80 2.56 12.41 2 435.53 0.64 7.90 1.50 9.95 2.70 12.51 2 47

Page 164: The Hall Effect in Bismuth at High Magnetic Fields and Low

154Data 7/12/55: Field parallel binary axis; P = 20.9 cm Oct-

oil S; Octal S; Hall (b+,r-); current (w+,g-) = 0.0418amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

3.29 0 06 6.37 0.36 8.83 0.94 10.59 2 02 12.22 1.693,45 0 07 6.47 0.36 8.92 0.95 10.69 2 03 12,28 1.693.59 0 08 6,68 0.41 9.01 0.99 10.72 2 03 12.40 1.703.74 0 10 6.72 0.52 9.09 1.05 10.77 2 04 12.48 1.723.81 0 12 6.87 0.64 9.17 1.13 10.81 2 04 12.54 1.744.02 0 13 7.00 0.72 9.29 1.25 10.85 2 04 12.60 1.774.09 0 13 7.16 0.79 9.41 1.36 10.93 2 04 12.66 6.784.24 0 13 7.29 0.84 9.49 1.47 10.97 2 04 12.75 1.794.37 0 13 7.40 0.88 9.62 1.58 11.02 2 04 12.82 1.794.45 0 13 7.51 0.92 9.70 1.66 11.09 2 03 12,89 1.754.65 0 20 7.57 0.95 9.77 1.74 11.17 2 03 12.95 1.774.73 0 25 7.73 1,00 9.86 1.79 11.24 2 03 13.01 1.764.86 0 28 7.84 1.04 9.95 1.83 11.33 2 02 13,07 1.765.13 0 31 7.95 1.06 10.01 1.87 11.39 2 01 13.13 1.775.25 0 34 8.06 1.07 10.07 1.91 11.45 2 00 13.18 1.805.40 0 36 8.16 1.07 10.15 1.95 11.51 1 98 13.25 1.865.53 0 36 8.26 1.06 10.24 1.96 11.50 1 95 13.31 1.955.66 0 36 8.36 1.03 10.29 1.99 11.70 1 92 13.37 2.065.79 0 36 8.46 1.00 10.35 2.00 11.81 1 84 13.44 2.205.92 0 35 8.56 0.97 10.42 2.00 11.93 1 78 13.53 2.376.08 0 35 8.65 0.95 10.49 2.01 12.02 1 736.20 0. 36 8.74 0.94 10.54 2.01 12.14 1 70

Page 165: The Hall Effect in Bismuth at High Magnetic Fields and Low

155Data 7/12/55: Field parallel binary axis; P = 20.9 cm Oct-

oilamp

S; Octal N;•

Hall (r+,b-

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.84 0.15 6.05 0.70 8.462,99 0.16 6 _25 0.71 8.583.14 0.17 6.44 0.76 8.663.29 0.20 6.57 0.85 8.833.45 0.23 6.69 1.00 8.923.59 0.26 6.90 1.17 9.093.74 0.30 7.05 1.29 9.174.02 0.31 7..17 1.35 9.414.16 0.31 7.34 1.40 9.564.30 0.30 7.56 1.46 9.804.44 0.35 7 .73 1.52 10.014.72 0.49 7.85 1.55 10.245.10 0.60 7.96 1.55 10.395.28 0.64 8.12 1.52 10.565.55 0.63 8.21 1.50 10.735.92 0.67 8.36 1.46 10.83

; current (w+,g-) = 0.0418

Hallm.v.

Field k ._-g._

Hallm.v.

Fieldk.O£.-.

Hallm.v.

1.43 10.97 2.89 12.75 2.591.40 11.13 2.87 12.85 2.601.40 11.27 2.85 12.91 2.601.43 11.33 2.83 12.99 2,591.51 11,45 2.80 13.04 2.581.65 11.52 2.77 13.07 2.581.83 11,63 2.73 13.15 2.592,11 11.77 2.66 13.23 2.652.32 11.87 2.60 13.29 2.752.61 12.02 2.51 13.36 2.882.78 12.20 2.43 13.43 3.032.88 12.30 2.43 13.50 3.202.92 12.38 2.44 13.52 3.252.93 12.47 2.482.93 12,54 2.512.92 12.62 2.54

Page 166: The Hall Effect in Bismuth at High Magnetic Fields and Low

156Data 7/12/55: Field parallel binary axis; P = 3,3 cm Oct-

oil S; Octal S; Hall (b+,r-Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

3.14 0.05 6.57 0.40 9.053.45 0.06 6.70 0.53 9.133.60 0.09 6.82 0.49 9.253.74 0.11 6.94 0.73 9.334.00 0.14 7.11 0.80 9.494.16 0.14 7.29 0.85 9.604 .44 0.13 7.35 0.90 9,644.58 0.15 7.51 0.94 9.704.72 0.21 7.62 0.98 9.804.90 0.28 7.84 1.04 9.835.14 0.33 7.95 1.08 9.895.40 0.38 8.05 1.08 9.955.55 0.38 8.11 1.10 10.015.68 0.36 8.26 1.10 10.075.82 0.35 8.36 1.05 10.135.98 0.35 8..46 1,00 10.196.11 0.36 8.56 0.96 10.296.25 0.36 8.74 0.92 10.346.44 0.36 9.00 0.94 10.44

; current (w+,g-) = 0.418 amp.Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

0.99 10.49 2.03 12.34 1.661.06 10.64 2.04 12.41 1,701.16 10.73 2.05 12.50 1.731.26 10.81 2.05 12.58 1.751.44 11.01 2.04 12.67 1.771.56 11.09 2,05 12.78 1.781.64 11.21 2.04 12.86 1.761.69 11.30 2.04 12.95 1.751.75 11.39 2.03 12.97 1.721.79 11.51 2.01 13.05 1.701.83 11.61 1.98 13.12 1.691.85 11.72 1.93 13.18 1.701.88 11.81 1.88 13.23 1.741.91 11.90 1.81 13.31 1.841.94 12.02 1.75 13.37 1.981.97 12.07 1.70 13,44 2.152.00 12.12 1,67 13.50 2.342.03 12.20 1.65 13.53 2,402.03 12.26 1.65

Page 167: The Hall Effect in Bismuth at High Magnetic Fields and Low

157Data 7/12/55: Field parallel binary axis; F = 3.3 cm Oct-

oil S; Octal N; Hall (r+,b-); current (w+,g-) = 0.0418amp.

Field Hall k.-g. m.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g...

Hallm.v.

Fieldk.-g.

Hallm.v.

3.15 0 16 6.57 0 .78 9.17 1 73 11.15 2.85 12.60 2.523.30 0 19 6.70 0 92 9.25 1 85 11,24 2.84 12.69 2.553.59 0 24 6.92 1 10 9.33 1 95 11.30 2.83 12.75 2.583.95 0 31 6.99 1 21 9.41 2 10 11.39 2.82 12.83 2.584.23 0 31 7.11 1 31 9.49 2 21 11.45 2.80 12.89 2.584.37 0 30 7.29 1 36 9.56 2 33 11.54 2.77 12.93 2.574.58 0 37 7.40 1 40 9.70 2 47 11.60 2.76 12.97 2.564.72 0 48 7.51 1 43 9.77 2 58 11.63 2.75 13.02 2.534.87 0 55 7.62 1 48 9.89 2 69 11.66 2.74 13.08 2.525.02 0 58 7.73 1 51 9.98 2 75 11.72 2.70 13.12 2.515.27 0 63 7.96 1 56 10.10 2 82 11.81 2.64 13.18 2.515.40 0 65 8.10 1 56 10.24 2 90 11.87 2.59 13.21 2.535.54 0 65 8.26 1 53 10.29 2 92 12.02 2.48 13.25 2.585.66 0 63 8.36 1 46 10.38 2 9.3 12.11 2.41 13.29 2.655.79 0 62 8.46 1 42 10.58 2 95 12.22 2.37 13*35 2.755.93 0 67 8.60 1 39 10.73 2 95 12.30 2.37 13.49 3.096.18 0 71 8.92 1 43 10.85 2 95 12.38 2.386.30 0 71 9.00 1 51 10 *89 2 93 12.46 2.426.44 0 71 9.09 1 61 11.09 2 86 12.54 2.46

Page 168: The Hall Effect in Bismuth at High Magnetic Fields and Low

158Data 7/13/55: Field parallel binary axis; P = 757 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Field Hallm.v.

Field_-f .r.S.*.

3.00 0.05 6.32 0.43 9.013.29 0,08 6.51 0.49 9.253.45 0.10 6.69 0.59 9.413.70 0.13 6.87 0.69 9.604.01 0.14 7.05 0.76 9.834.32 0.15 7.37 0.88 10.074.52 0.20 7.62 0.95 10.214.72 0.25 7.95 0.98 10.325.00 0.30 8.11 0.98 10.465.21 0.33 8.36 0.98 10.595.53 0.34 8.57 0.98 10.695.79 0.35 8.70 1.00 10.816.07 0.38 8.83 1.05 10.93

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.13 11.11 1.95 12.49 1.851.27 11.29 1.95 12.56 1.851.41 11.42 1.95 12.62 1.861.52 11.57 1.95 12.68 1.881.68 11.65 1.94 12.80 1.901.79 11.75 1.91 12.92 1.931.84 11.81 1.90 13.02 1,971.86 11.90 1.90 13.15 2.051.90 12.02 1.87 13.27 2.141.91 12.14 1.85 13.35 2.211.92 12.17 1.85 13.43 2.291.94 12.28 1.84 13.51 2.371.95 12.40 1.85 13.57 2.45

Page 169: The Hall Effect in Bismuth at High Magnetic Fields and Low

159Data 7/13/55: Field parallel binary axis; P = 757 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0418 amp.Field Hall Field Hall lpieldk.-g. m.v. m.v. k.-g.3.00 0.15 6.47 0.88 9.413.00 0.17 6.69 0.99 9.493.35 0.31 6.87 1,13 9.563.51 0.36 7.17 1.39 9.673.88 0.30 7.51 1.36 9.834.17 0.30 7.70 1.41 10.014.37 0.38 8.03 1.43 10.344.58 0.46 8.45 1.45 10.394.77 0.53 8.65 1.50 10.365.01 0.57 8.84 1.63 10.595.40 0.60 9.03 1.75 10.775.66 0.61 9.16 1.88 10,976.05 0.69 9.35 1.99 11.09

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

3.11 11.30 3.74 13.58 3.513.19 11.30 3.75 13.66 3.643.37 11.47 3,73 13.75 3.693.36 11.63 3.68 13.87 3.743.53 11.73 3.65 13.99 3.793.64 11.84 3.63 13.13 3.893.73 13.03 3.59 13.30 3.963.75 13.15 3.56 13.30 3.073.78 13.36 3.56 .13.40 3.313.83 13.30 3.56 13.58 3.463.83 13.39 3.56

I—1CO•02 13.46 3.583.89 13.54 3.60

Page 170: The Hall Effect in Bismuth at High Magnetic Fields and Low

160Data 7/12/55: Field parallel binary axis; P = 451 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.99 0.05 5.95 0.35 9.103.28 0.06 6.10 0.36 9.373.55 0.10 6.40 0.40 9.563.75 0.13 6.69 0.50 9.634.00 0.14 6.81 0.63 9.704.05 0.14 7 .05 0.75 9.834.30 0.14 7.23 0.85 9.954.37 0.15 7.63 0.95 10.134.47 0.18 7.84 1.00 10.244.58 0.23 8.06 1.00 10.294.80 0.26 8.16 1.00 10.445.00 0.30 8.40 1.00 10.525.14 0.33 8.48 1.00 10.595.27 0.34 8.60 0.90 10.705.40 0.35 8.74 0.90 10.775.50 0.35 8 .83 1.01 10.865.79 0.35 8.98 1.06 10.97

Hallm.v.

Field Hallm.v.

Field Hallm.v.

1.14 11.01 1.99 12.47 1.831.35 11.09 1.99 12.59 1.841.50 11.13 1.99 12.66 1.851.57 11.21 1.99 12.74 1.861.64 11.27 1.99 12.83 1.861,70 11.33 1.99 12.87 1.891.78 11.45 1.99 12.94 1.911.85 11.51 1.98 13,04 1.951.89 11.60 1.96 13.13 2.011.90 11.68 1.95 13.23 2.091.94 11.81 1.91 13.31 2.181.95 11.96 1.88 13.41 2.291.96 12.04 1.86 13.52 2.411.97 12.11 1.85 13.58 2.491.98 12.20 1.841.98 12.28 1.831.98 12.30 1.83

Page 171: The Hall Effect in Bismuth at High Magnetic Fields and Low

161Data 7/12/55: Field parallel binary axis; P = 451 ram Hg.;Octal S; Hall (g+,w-); current (b+,r-) = 0.0418 amp.

Fieldk.“S_»_

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

FieldK.-.&r.

Hallm.v.

2.85 0.13 5.45 0.61 7.95 1.45 10.34 2.81 12.39 2.553.28 0.18 5.55 0.62 8.05 1.45 10.45 2.85 12.48 2.563.44 0.21 • 5.78 0.63 8.10 1.45 10.60 2.87 12.60 2.593.58 0.25 5.86 0.66 8.20 1.45 10.77 2.88 12.71 2.633.74 0.28 6.12 0.70 8.35 1.45 10.93 2.88 12.80 2.663,88 0.30 6.25 0.76 8.45 1.45 10.99 2.85 12.90 2.714.02 0.30 6.44 0.83 8.55 1.45 11.22 2.83 13.00 2.764.16 0.30 6.57 0.92 8.64 1.50 11.33 2.80 13.15 2.884.30 0.31 6.69 1.02 8.83 1.56 11.45 2.75 13.29 3.034.44 0.36 6.81 1.14 8.92 1.64 11.60 2.70 13.39 3.164.58 0.44 6.95 1.22 9.09 1.74 11.78 2.65 13.52 3.394.75 0.50 7.05 1,29 9.25 1.91 11.94 2.60 13.58 3.484.90 0.55 7.29 1.35 9.45 2.12 12.02 2.595.07 0.58 7.40 1.38 9.70 2.39 12.14 2.555.16 0.60 7.50 1.40 9.92 2.58 12.24 2.555.30 0.61 7.80 1.45 10.15 2.73 12.28 2.55

Page 172: The Hall Effect in Bismuth at High Magnetic Fields and Low

168Data 7/18/55: Field parallel binary axis; P = 825 mm Hg.;Octal N; Hall (w+,g-); current (b+,r-) = 0.0418 amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.84 0.05 5.20 0.35 7.582.86 0.05 5.40 0.36 7.733.27 0.07 5,53 0.36 7.853.31 0.08 5.66 0.36 7.973.45 0.09 5.79 0.36- 8.063.60 0.11 5.92 0.37 8.163.74 0.14 6.08 0.38 8.363.88 0.15 6.20 0.39 8.464.02 0.15 6.44 0.41 8.654.23 0.15 6.68 0.51 8.824.32 0.15 6.78 0.61 8.924.46 0.18 6,93 0.70 9.014.70 0.23 7.05 0.77 9.254.75 0.26 7.17 0.83 9.494.90 0.30 7.29 0.88 9.715.12 0.34 7.41 0.93 10.27

Hallm.v.

Field Hallm.v.

Field Hallm.v.

0.96 10.37 1.47 12.09 1.851.00 10.50 2.00 12.16 1.841.03 10.66 2.02 12.24 1.821.04 10,81 2.03 12.26 1.821.04 10.93 2.03 12.34 1.821.04 11.03 2.04 12.44 1.821.01 11.17 2.04 12.52 1.831.00 11.33 2.04 12 .58 1.841.00 11.42 2.03 12.69 1.851.00 11.52 2.01 12.82 1.881.03 11.62 2.00 13.00 1.931.09 11.72 1.96 13.12 1.981.25 11.84 1.93 13.21 2.051.46 11.95 1.90 13.29 2.131.66 11.99 1.89 13.45 2.351.95 12.05 1.86 13.56 2.52

Page 173: The Hall Effect in Bismuth at High Magnetic Fields and Low

163Data 7/12/55: Field parallel binary axis; P = 757 mm Hg.;

Octal S; Hall (g+,w-).; current (b+,r-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-gj.

Hallm.v.

Fieldk.-g.

2.84 0.14 5.00 0.59 7.852.85 0.15 5.15 0.61 8.153.10 0.18 5.39 0.63 8.263.29 0.20 5.53 0.63 8.473.45 0.24 5.66 0.63 8.653.70 0.29 5.85 0.66 8.843.90 0.31 6.05 0.71 9.094.20 0 „31 6.38 0.79 9.254.30 0.33 6.57 0.90 9.414.49 0.41 6.81 1.09 9.564.72 0.50 7.05 1.28 9.774,86 0.56 7.51 1.44 10.07

Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

1.48 10.29 2.86 12.32 2.511.48 10.49 2.93 12.44 2.521.47 10,77 2.94 12.54 2.561.46 10.97 2.93 12.68 2.611,50 11.18 2.89 12,76 2.651.59 11.35 2.84 13.02 2.751.76 11.57 2.75 13.13 2.831.97 11.60 2.70 13.29 3.002.15 11.78 2.63 13.40 3.282.29 11.93 2.59 13.60 3.562.50 11.99 2.56 13.62 3.592.78 12.16 2.52

Page 174: The Hall Effect in Bismuth at High Magnetic Fields and Low

164Data 7/12/55: Field parallel binary axis; P = 90 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0418 amp.Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

2.85 0.05 6.24 0.40 8.74 1.00 10.81 2.08 12.36 1.823.29 0.08 6.44 0.43 . 8.83 1.01 10.93 2.08 12.44 1.823.74 0.13 6.69 0.54 8.93 1.05 11.13 2.08 12.56 1.854.02 0.15 6.81 0.66 9.05 1.11 11.30 2.08 12.77 1.884.25 0.15 7.17 0.85 9.17 1.20 11.45 2.08 12.97 1.904.70 0.24 7.60 0.99 9.25 1.32 11.57 2.06 13.13 1.964.88 0.30 7.73 1.04 9.45 1.43 11.62 2.01 13.33 2.115.14 0.35 8.06 1.08 9.70 1.69 11.73 1.97 13.49 2.255.35 0.38 8.26 1,07 9.95 1.88 11.87 1.92 13.68 2.685.66 0.38 8.36 1.04 10.16 1.98 12.00 1.885.92 0.38 8.50 1.00 10.29 2.03 12.12 1.846.05 0.39 8.61 1.00 10.58 2.06 12.26 1.82

Page 175: The Hall Effect in Bismuth at High Magnetic Fields and Low

165Data 7/12/55: Field parallel binary axis; P = 90 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0418 amp.Field Hall

m.v.Field Hall

m.v.Fieldk.-g.

2.85 0.16 6.59 0.82 9.133.44 0.24 6.81 1.06 9.253.70 0.32 6,94 1.23 9.423.88 0.32 7.17 1.36 9.704.02 0.32 7.29 1.41 9.954.18 0.32 7.62 1.43 10.164.50 0.45 7.95 1.50 10.594.72 0.55 8.06 1.50 10.885.00 0.60 8.16 1.50 10.935.33 0.65 8.26 1.50 11.095.55 0.65 8.56 1.47 11.175.80 0.66 8.70 1.50 11.306.05 0.70 8.92 1.65 11.426.38 0.77 9.01 1,74 11.54

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.85 11.80 2.63 13.33 3.031.99 11.93 2.56 13.40 3.152.18 12.06 2.51 13.47 3.292.44 12.16 2.50 13.55 3.442.73 12.44 2.51 13.57 3.502.87 12.56 2.563.00 12.66 2,603.01 12.76 2.652.94 12.88 2.672.90 12.95 2.692.87 13.03 2.722.84 13.11 2.762.79 13.20 2.832.73 13.26 2.91

Page 176: The Hall Effect in Bismuth at High Magnetic Fields and Low

166Data 7/12/55: Field parallel binary axis; P = 41 mm Hg.;

Octal N; Hall (w+,g-); current (b+,r-) = 0.0418 amp.Field Hall

m.v.Fieldk.-g.

Hallm.v.

Fieldk.-g.

3.14 0.05 7.57 1,00 9.963.29 0.08 7.84 1.07 10.013.44 0.08 8.06 1.09 10,073.59 0.11 8.16 1.08 10.133.88 0.15 8.26 1.06 10.194.18 0.14 8.36 1.05 10.274.32 0.14 8.46 1.02 10.374.72 0.26 8.56 1.00 10.444.86 0.31 8,65 0.98 10.595.19 0.35 8.83 1.00 10.655.53 0.38 9.03 1.08 10.735.92 0.37 9.17 1.18 10.836.20 0.39 9.25 1.30 10.936.58 0.52 9.41 1.43 11.016.78 0.65 9.50 1.54 11.136.93 0.74 9.63 1.67 11.167.06 0.84 9.77 1.77 11.277.17 0.89 9.84 1.83 11.337.31 0.94 9.94 1.88 11.43

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.99 11.55 2.04 12.94 1.871,92 11.66 2.01 13.01 1.871.95 11.78- 1.96 13.04 1.871.98 11,90 1.90 13.07 1.872.00 12.01 1.85 13.10 1.872.02 12.10 1.82 13.13 1.892.05 12.16 1.80 13.17 1.902.06 12.26 1.79 13.20 1.932.07 12.31 1.79 13.22 1.952.08 12.34 1.79 13.25 1.962.09 12.39 1.79 13.28 1.992.09 12.44 1.80 13.31 2.032.09 12.48 1.80 13.36 2.102.09 12.54 1.82 13.43 2.222.09 12.58 1.832.09 12.64 1.842.09 12.73 1,852.08 12,82 1.862.07 12.89 1.87

Page 177: The Hall Effect in Bismuth at High Magnetic Fields and Low

167Data 7/12/55: Field parallel binary axis; P = 41 mm Hg.;

Octal S; Hall (g+,w-); current (b+,r-) = 0.0418 amp.Fieldk . - g .

Hallm.v.

Fieldk . - g .

Hallm.v.

FieldT

2.84 0.15 6.63 0.85 9.253.14 0.17 6.77 1.01 9.333.29 0.20 6.90 1.15 9.453.45 0.25 6.99 1.25 9.563.74 0.30 7.05 1.31 9.633.88 0.31 7.15 1.38 9.704.02 0.31 7.29 1.43 9.734,23 0.31 7.40 1.44 9.804.44 0.36 7.47 1.46 9.854.58 0,46 7.51 1.46 9.924.72 0.53 7.62 1.49 9.954.86 0.58 7.73 1.50 10.075.14 0.61 7.84 1.51 10.105.27 0.65 7.95 1.52 10.135.40 0.65 8.11 1.52 10.215.53 0.65 8.17 1.51 10,265.66 0.64 8.26 1.50 10 .295.79 0.64 8.36 1.47 10.345.92 0.66 8.46 1.46 10.406.05 0.71 8.65 1.46 10.496.15 0.73 8.67 1.48 10.546.31 0.75 8.83 1.55 10.796.44 0.77 9.01 1.71 10.85

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hall k.-g. m.v.

1.95 10.89 3.00 12.20 2.472.09 10.93 3.00 12,22 2.462.21 11.01 2.97 12.24 2.462.33 11.05 2.96 12.26 2.462,43 11.13 2.93 12.30 2.462.48 11.21 2,92 12.34 2.462.55 11.24 2.91 12.40 2.472.60 11.27 2.90 12.46 2.502.69 11.32 2.88 12.52 2.532.73 11.36 2.88 12.60 2.562.78 11.42 2.85 12.66 2.592.82 11.45 2.78 12.73 2.612.86 11.48 2,75 12.79 2.632.89 11.57 2.72 12.86 2,642.91 11.69 2.67 12.92 2.652.94 11.78 2.63 12.99 2.682.95 11.84 2.60 13.04 2.682.96 11.93 2.57 13.09 2.692.98 11.98 2.55 13.20 2.773.00 12.04 2.54 13.27 2.86

• o o 12.08 2.50 13.39 3.063.00 12.12 2.49 13.46 3.203.00 12.18 2.47 13.50 3.27

Page 178: The Hall Effect in Bismuth at High Magnetic Fields and Low

168Data 7/12/55: Field parallel binary axis; P = 20 cm Oct-

oil S; Octal N; Hall (w+,g-); current (b+,r-) = 0.0418Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

2.77 0.05 6.85 0.63 9.093.29 0.08 6.95 0.82 9.173.62 0.13 7.07 0.87 9.254.02 0.15 7.23 0.91 9.334.35 0.15 7.30 0.96 9.414.57 0.22 7.47 1.01 9.494.72 0.28 7.73 1.10 9.604.86 0.32 7.84 1.13 9.705.00 0.36 7.95 1.15 9.77

i—iID 0.38 8.06 1.15 9.835.27 0.40 8.17 1.11 9.955.40 0.40 8.27 1.08 10.025.55 0.39 8.36 1.05 10.105.78 0.38 8.51 1.01 10.16

. 5.91 0.38 8.61 0.99 10.296.05 0.40 8.73 0.98 10.406.18 0.40 8.83 0.99 10.566.38 0.41 8.92 1.00 10.706.57 0.50 9.00 1.05 10.77

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g...

Hallm.v.

1.11 10.89 2.11 12.56 1.851.20 10.97 2.11 12.62 1.861.30 11.13 2.13 12.68 1.881.40 11.30 2.15 12.73 1.851.48 11.33 2.15 12.78 1.891.57 11.52 2.13 12.91 1.881.69 11.72 2.05 12.96 1.871.77 11.81 2.00 13.02 1.861.82 11.90 1.94 13.10 1.861.88 11.90 1.89 13.16 1.861.93 12.04 1.85 13.20 1.881.99 12.12 1.82 13.28 1.962.02 12.16 1.80 13.36 2.072.05 12.22 1.80 13.42 2.202.08 12.30 1.80 13.49 2.352.10 12.35 1.80 13.52 2.402.11 12.40 1.802.11 12.46 1.832.11 12.50 1.83

Page 179: The Hall Effect in Bismuth at High Magnetic Fields and Low

169Data 7/12/55: ^ield parallel binary axis; P = 20 cm Oct-

oilamp,

S; Octal S;i

Hall (g+,w-) ; current (b+,r-) = 0.0418

Fieldk.-g.

Hallm.v.

Fieldk

Hallm.v.

Field Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

3.14 0.20 6.20 0.75 8.57 1,46 10.29 2,99 12.10 2.503.44 0.23 6.37 0.76 8.66 1.46 10.34 3.01 12.17 2.483.60 0.28 6.51 0.80 8.83 1,49 10.39 3,02 12.24 2.483.75 0.31 6.69 0.90 8.87 1.53 10,46 3.03 12.32 2.483.89 0.33 6.81 1.06 8.95 1,60 10.54 3.04 12.38 2.504.16 0.33 6.93 1.21 9.05 1.69 10.64 3.05 12.47 2.544.28 0.32 7.05 1.31 9.13 1.80 10.70 3.05 12.52 2.564.44 0.32 7.17 1.38 9.25 1.89 10.77 3.05 12.62 2.614.58 0.40 7.29 1.43 9.33 2.02 10.85 3.04 12.73 2.654.72 0.50 7.40 1.46 9.45 2.24 10.95 3.00 12.82 2.664.86 0.56 7.51 1.50 9.56 2.40 11.21 2.90 12.91 2.665.00 0.60 7.62 1.52 9.63 2.50 11.27 2.90 12.99 2.665.14 0.65 7.73 1.56 9.70 2.59 11.31 2.88 13.07 2.665.38 0..67 7.84 1,58 9.80 2,66 11.34 2.86 13.15 2.705.47 0.67 7.95 1.59 9.86 2.73 11.45 2.84 13.23 2.785.65 0.66 8.06 1.59 9.92 2.77 11.51 2,81 13.31 2.905.72 0.65 8.16 2.58 9.95 2.81 11.60 2.78 13.39 3.065.92 0.66 8.27 1.55 10.04 2.86 11.78 2.69 13.47 3.266.05 0.71 8.36 1.50 10.10 2.91 11.93 2.60 13.57 3.536.16 0.75 8.46 1.47 10.19 2.95 12.04 2.54

Page 180: The Hall Effect in Bismuth at High Magnetic Fields and Low

170Data 7/12/55: Field parallel binary axis; P = 2.8 cm Oct-

oil S; Octal N; Hall (w+,g- amp.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field

3.12 0.06 5.66 0.41 7.843.45 0.10 5.80 0.39 8.163.60 0.14 5.93 0.40 8.264,02 0.18 6.06 0.41 8.464,30 0.15 6.20 0.42 8.654.44 0.15 6.33 0.41 8.924.72 0.24 6.45 0.44 9.054.86 0.30 6.63 0.52 9.335.00 0.33 6.81 0.64 9.495.14 0.36 6.93 0.75 9.795.27 0.40 7.05 0.85 10.135.40 0.42 7.29 0.95 10.295.53 0.43 7.51 1.01 10.56

; current (b+,r-) = 0.0418

Hallm.v.

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

1.13 10.77 2.18 12.34 1.781.15 10.97 2.15 12.40 1 ,8o1.10 11.15 2.17 12.50 1.841.03 11.13 2.18 12.56 1.870.98 11.31 2.18 12.71 1.911.00 11.48 2.16 12.93 1.871.09 11.61 2.14 13.10 1.741.40 11.74 2.08 13.28 1.921.60 11.87 1.98 13.33 2.001.88 11.99 1.89 13.39 2.122.08 12.10 1.81 13.43 2.252.13 12.19 1.77 13.56 2.502.15 12.20 1.78 13.57 2.55

Page 181: The Hall Effect in Bismuth at High Magnetic Fields and Low

171Data 7/12/55: Field parallel binary axis; P = 2.8 om Oct-

oilamp

S; Octal S;•

Hall (g+,w-;); current (b+,r-) = 0.0418

Fieldk.-g.

Hallm.v.

Fieldk.-g.

Hallm.v.

Field Hallm.v.

Fieldk,z£*.

Hallm.v.

Fieldk._-£U.

Hallm.v.

3.14 0.19 5.92 0.66 7.95 1.60 10.13 2.94 12.48 2.533.44 0.22 6.11 0.74 8.16 1.61 10.31 3.07 12.71 2.653.76 0.31 6.44 0.75 8.36 1.53 10.61 3.08 12.92 2.654.02 0.34 6.63 0.82 8.79 1.48 10.85 3.09 13.07 2.604,44 0.33 6.81 0.99 8.95 1,58 11.09 3.01 13.32 2.864.51 0.44 6.93 1.08 9.09 1,73 11.24 2.98 13.49 3.334,86 0.54 7.11 1.34 9.25 1.90 11.26 2.91 13,62 3.765.07 0.63 7.29 1.42 9.33 2.05 11.54 2.805.32 0.67 7.44 1.47 9.63 2.49 11.97 2.565.67 0.66 7.62 1.53 9.89 2,78 12.23 2.40

Page 182: The Hall Effect in Bismuth at High Magnetic Fields and Low

APPENDIX IV

The Hall voltages, V, appearing in the following tables are the averages of the experimental values, V(H)/2 - V(-H). These numbers were taken directly from the graphs of the experimental data. Each has been corrected by the addition of 0.07 milli-volts (see Appendix I).

172

Page 183: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated data: Field parallel trigonal axis; Hall probes perpendicular to trigonal and binary axes. R = (7t)/(IH) x 106 ohm-cm./gauss; Y is corrected Hall voltage in milli­volts; T = 0.49 cm.; I = 0.0165 amp.iperature: L/H)xl03

l.:30k 1.82°K 2.;21 °K 2.!58°K 3.15°K 3t'71°K 2°KY R V R Y R V R Y R Y R Y R

0.333 0.13 1.29 0.13 1.29 0.12 1.19 0.13 1.29 0.13 1.29 0.13 1.29 0.12 1.190.323 0.13 1.28 0.14 1.34 0.13 1.25 0.14 1.34 0.13 1.25 0.14 1.34 0.13 1.250.313 0.14 1.30 0.15 1.39 0.14 1.30 0.15 1.39 0.14 1.30 0.15 1.39 0.13 1.210.303 0.15 1.35 0.16 1.44 0.15 1.35 0.15 1.35 0.15 1.35 0.15 1.35 0.14 1.260.294 0.16 1.40 0.17 1.49 0.15 1.31 0.16 1.40 0.15 1—I to •rH 0.16 1.40 0.15 1.310.286 0.17 1.44 0.17 1.44 0.16 1.36 0.17 1.44 0.16 1.36 0.17 1.44 0.15 1.270.278 0.18 1.49 0.18 1.49 0.17 1.40 0.18 1.49 0.17 1.40 0.18 1.49 0.16 1.320.270 0.19 1.52 0.19 1.52 0.18 1.44 0.19 1.52 0.18 1.44 0.19 1.52 0.17 1.360.263 0.20 1.56 0.21 1.64 0.19 1.48 0.20 1.56 0.19 1.48 0.20 1.56 0.18 1.410.256 0.21 1.60 0.22 1.67 0.20 1.52 0.21 1.60 0.21 1.60 0.21 1.60 0 .19 1.450.250 0.22 1.63 0.23 1.71 0.22 1.63 0.22 1.63 0.22 1.63 0.22 1.63 0.20 1.480.244 0.23 1.67 0.24 1.74 0.23 1.67 0.23 1.67 0.23 1.67 0.23 1.67 0.21 1.520.238 0.25 1.77 0.26 1.80 0.25 1.77 0.25 1.77 0.25 1.77 0.24 1.70 0.22 1.560.233 0.26 1.80 0.26 1.81 0.27 1.86 0.26 1.80 0.26 1.80 0.25 1.73 0.23 1.590.227. 0.28 1.89 0.28 1.89 0.28 1.89 0.28 1.89 0.28 1.89 0.27 1.82 0.25 1.69

173

Page 184: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature: 1.30k(1/H)xl05 _ V R

1,82°EV R

2.21°KV R

0.222 0.29 1-910.217 0.30 1.940.213 0.31 1.960.208 0.33 2.040.204 0.34 2.060.200 0.36 2.140.196 0.37 2.160.192 0.39 2.230.189 0.41 2.300.185 0.44 2.920.182 0.46 2.480.179 0.48 2.540.175 0.50 2.600.172 0.54 2.760.170 0.58 2.920.167 0.60 2.970.164 0.61 2.97

30 1.95 0.29 1.9132 2.05 0.31 2.0033' 2.06 0.32 2.0235 2.16 0.34 2.1037 2.23 0.35 2.1239 2.31 0.37 2.2041 2.41 0.38 2.2143 2.48 0.40 2.2845 2.54 0.42 2.3547 2.58 0.44 2.42

CD 2.62 0.47 2.5450 2.63 0.49 2.6052 2.73 0.50 2.6056 2.89 0.53 2.7159 2.97 0.55 2.7759 2.92 0.57 2.8260 2.92 0.62 3.02

00000000000000000

2.58°K 5.15°K 5.71°K 4.2°KV R V

0.29 1.91 0.290.31 2.00 0.310.33 2.08 0.320.34 2.10 0.330.36 2.18 0.350 .38 2.26 0.360.39 2.27 0.380.41 2.34 0.390.43 2.41 0.410.45 2.48 0.420.47 2.54 0.440.48 2.54 0.470.51 2.66 0.490.53 2.71 0.510.56 2.82 0.540.59 2.92 0.570.61 2.97 0.59

R V R1.91 0.28 1.852.00 0.29 1.872.02 0.31 1.962.04 0.32 1.982.12 0.34 2.062.14 0.35 2.082.21 0.38 2.212.23 0.39 2.232.30 0.41 2.302.31 0.43 2.362.48 0.45 2.432.49 0.48 2.542.55 0.50 2.602.61 0.52 2.662.72 0.54 2.722.82 0.55 2.722.87 0.58 2.82

V _R__0.26 1.720.27 1.740.29 1.830.31 1.920.32 1.940.34 2.020.35 2.040.37 2.110.39 2.180.41 2.260.42 2.270.44 2.330.46 2.400.48 2.460.50 2.52 0.52 2.57 0.54 2.63

174

Page 185: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature(1/H)xl03

: 1.30KY R

0.161 0.62 2.970.159 0.68 3.200.156 0.73 3.390.154 0.76- 3.470.152 0.76 3.420.149 0.74 3.280.147 0.73 3.190.145 0.79 3.400.143 0.91 3.840.141 0.97 4.060.139 1.00 4.120.137 0.99 4.030.135 0.96 3.850.133 0.94 3.720.132 0.95 3.710.130 1.10 4.250.128 1.24 4.72

1.82°K 2.21°KY R Y R

0.64 5.06 0.66 3.160.69 3.25 0.69 3.250.71 3.29 0.71 3.290.74 3.38 0.73 3.340.74 5.33 0.74 3.330.74 3.28 0.75 3.320.77 3.36 0.79 3.450.83 3.57 0.85 3.660.90 3.82 0.91 3.840.95 3.98 0.94 3.940.97 4.00 0.95 3.920.98 3.99 0.95 3.850.97 3.89 0.96 3.850.96 3.80 0.97 3.840.97 3.79 1.00 3.911.03 3.98 1.04 4.011.13 4.30 1.09 4.15

2.58°KV R

5.15°KV R

5.71°K V R

4.2°KV R

0.64 3.06 0.62 2.970.69 3.25 0.65 3.060.70 3.29 0.68 3.160.71 3.24 0.70 3.200.72 3.24 0.72 3.240.75 3.32 0.73 3.240.78 3.41 0.76 3.320.84 3.62 0.81 3.490.89 3.78 0.85 3.610.91 3.81 0.88 3.680.93 3.84 0.90 3.710.94 3.82 0.91 3.700.95 3.82 0.93 3.740.97 3.84 0.97 3.841.01 3.95 0.99 3.871.07 4.13 1.04 4.011.14 4.35 1.09 4.15

60 2.87 0.57 2.7363 2.97 0.59 2.7865 3.02 0.61 2.8367 3.06 0.63 2.8869 3.10 0.66 2.9771 3.14 0.68 3.0174 3.23 0.71 3.1077 3.31 0.75 3.2381 3.39 0.77 3.2784 3.52 0.80 3.3587 3.59 0.82 3.3890 3.66 0.85 3.4692 3.69 0.87 3.5795 3.76 0.92 3.6497 3.79 0.95 3.7102 3.94 0.97 3.7407 4.07 1.01 3.85

00000000000000011

175

Page 186: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature: 1.5°K(1/H)xl05 V R

1.82°K V R

2.21°K V R

0.127 1.30 4.890.125 1.34 4.970.123 1.35 4.950.122 1.33 4.810.121 1.30 4.650.119 1.25 4.410.118 1.21 4.200.116 1.22 4.210.115 1.31 4.450.114 1.42 4.790.112 1.58 5.270.111 1.74 5.750.110 1.80 5.870.109 1.83 5.910.108 1.84 5.880.106 1.82 5.750.105 1.79 5.60

13 4.25 1.20 4.5128 4.75 1.25 4.6431 4.80 1.27 4.6631 4.75 1.28 4.6429 4.61 1.28 4.5826 4.45 1.27 4.5024 4.33 1.27 4.4324 4.28 1.28 4.4229 4.41 1.34 4.5741 4.75 1.43 4.8254 5.14 1.53 5.1165 5.45 1.61 5.3173 5.65 1.70 5.5578 5.75 1.74 5.6280 5.75 1.77 5.6579 5.65 1.77 5.6076 5.50 1.76 5.50

11111111111111111

2.58°K 3.15°K 3.71°K 4.2°KY R Y R Y R Y R1.19 4.47 1.15 4.32 1.12 4.21 1.06 3.981.23 4.56 1.18 4.38 1.16 4.30 1.09 4.051.24 4.55 1.21 4.43 1.18 4.33 1.11 4.071.25 4.53 1.23 4.45 1.19 4.31 1.14 4.131.25 4.47 1.23 4.40 1.21 4.33 1.17 4.191.25 4.41 1.24 4.38 1.23 4.35 1.19 4.201.26 4.40 1.26 4.40 1.27 4.44 1.21 4.221.31 4.52 1.29 4.45 1.31 4.52 1.24 4.281.39 4.75 1.34 4.57 1.34 4.57 1.27 4.341.47 4.96 1.41 4.75 1.40 4.72 1.32 4.451.54 5.14 1.49 4.98 1.47 4.90 1.37 4.581.61 5.31 1.55 5.12 1.53 5.05 1.42 4.691.67 5.45 1.61 5.25 1.57 5.12 1.47 4.801.71 5.52 1.64 5.30 1.59 5.14 1.51 4.891.72 5.50 1.66 5.30 1.61 5.15 1.54 4.911.73 5.47 1.67 5.28 1.63 5.15 1.57 4.96 OJ1.72 5.38 1.67 5.21 1.63 5.09 1.58 4.94

176

Page 187: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature: 1.3°K(1/H)xl05 _ V R

1 . 8 2 ° K 2 . 2 1 ° KV R Y R

0 . 1 0 4 1 . 7 2 5 . 3 3

0 . 1 0 3 1 . 6 3 5 . 0 0

0 . 1 0 2 1 . 5 9 4 . 8 1

0 . 1 0 1 1 . 5 9 4 . 7 8

0 . 1 0 0 1 . 6 5 4 . 9 0

0 . 0 9 9 1 . 7 9 5 . 2 6

0 . 0 9 8 2 . 0 2 5 . 8 9

0 . 0 9 7 2 .2 7 6 . 5 5

0 . 0 9 6 2 . 4 4 6 . 9 6

0 . 0 9 5 2 . 5 3 7 . 1 5

0 . 0 9 4 2 . 5 7 7 . 2 0

0 . 0 9 3 2 . 5 9 7 . 1 1

0 . 0 9 2 2 . 5 8 7 . 0 3

0 . 0 9 1 2 . 5 4 6 . 8 5

0 . 0 9 0 2 . 4 7 6 . 6 0

0 . 0 8 9 2 . 3 8 6 . 3 1

0 . 0 8 8 2 . 1 6 5 . 6 2

73 5 35 1 . 7 4 5 . 3 9

68 5 15 1 . 7 0 5 . 2 0

64 4 96 1 . 6 8 •5 .10

63 4 90 1 . 6 8 5 . 0 5

70 5 05 1 . 7 1 5 . 0 8

82 5 35 1 . 8 2 5 . 3 5

02 5 89 1 . 9 5 5 . 6 9

21 6 36 2 . 1 1 6 .0 9

35 6 70 2 . 2 5 6 . 4 2

45 6 94 2 . 3 6 6 . 6 7

51 7 04 2 . 4 4 6 . 8 4

55 7 01 2 . 5 0 6 . 8 6

53 6 89 2 . 5 0 6 . 8 1

51 6 76 2 . 4 9 6 . 5 3

45 6 55 2 . 4 5 6 . 5 5

39 6 34 2 . 4 6 6 . 5 1

22 5 79 2 . 2 8 5 . 9 4

11111122222222222

2.58°KY R

1 . 7 1 5 . 3 0

1 . 6 9 5 . 1 8

1 . 6 9 5 . 1 1

1 . 7 1 5 . 1 4

1 . 7 9 5 . 3 1

1 . 9 1 5 . 6 1

2 . 0 3 5 . 9 1

2 . 1 4 6 . 1 6

2 . 2 5 6 . 4 2

2 . 3 3 6 . 5 9

2 . 4 0 6 . 7 2

2 . 4 5 6 . 7 4

2 . 4 5 6 . 6 7

2 . 4 3 6 . 5 5

2 . 4 0 6 . 4 1

2 . 3 6 6 . 2 5

2 . 2 9 5 . 9 6

3.15°KY R

1 . 6 7 5 . 1 6

1 . 6 7 5 . 1 1

1 . 6 8 5 . 0 9

1 . 7 3 5 . 2 0

1 . 7 8 5 . 2 9

1 . 8 5 5 . 4 5

1 . 9 4 5 . 6 5

2 . 0 5 5 . 9 1

2 . 1 6 6 . 1 6

2 . 2 4 6 . 3 4

2 . 3 0 6 . 4 5

2 . 3 6 6 .4 9

2 .3 7 6 . 4 5

2 . 3 6 6 . 3 6

2 . 3 5 6 . 2 9

2 . 3 3 6 . 1 8

2 . 3 1 6 . 0 1

5.71°KY R

1 . 6 5 5 . 1 1

1 . 6 7 5 . 1 1

1 . 6 9 5 . 1 1

1 . 7 3 5 . 2 0

1 . 7 8 5 . 2 9

1 . 8 5 5 . 4 5

1 . 9 3 5 . 6 2

2 . 0 3 5 . 8 5

2 . 1 2 6 . 0 5

2 . 1 8 6 . 1 6

2 . 2 3 6 . 2 5

2 . 2 9 6 . 3 0

i—iwCV3 6 .2 9

2 . 3 1 6 . 2 3

2 . 3 2 6 . 2 0

2 . 3 2 6 . 1 5

2 . 3 2 6 . 0 4

4. 2°KY R

1 . 5 9 4 . 9 2

1 . 6 1 4 . 9 4

1 . 6 5 5 . 0 0

1 . 6 8 5 . 0 5

1 . 7 2 5 . 1 0

1 . 7 7 5 . 2 1

1 . 8 3 5 . 2 4

1 . 9 1 5 . 5 0

1 . 9 8 5 . 6 5

2 . 0 5 5 . 8 0

2 . 1 2 5 . 9 4

2 . 2 1 6 . 0 8

2 . 2 3 6 . 0 8

2 . 2 5 6 . 0 6

2 . 2 5 6 . 0 1

2 . 2 6 5 .9 9

2 . 3 2 6 . 0 4

177

Page 188: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature: (1/H)xl03

1.3°KV R

0.087 2.12 5.480.086 2.13 5.450.085 2.54 5.890.084 2.54 6.340.085 2.80 6.910.082 3.36 8.180.081 3.50 8.450.080 3.65 8.660.079 3.69 8.690.078 3.71 8.600.077 3.68 8.400.076 3.61 8.190.075 3.39 7.560.074 3.25 7.20

1.82°K 2.21°EV R V R2.18 5.64 2.26 5.832.IS 5.60 2.27 5.812.31 5.81 2.42 6.082.43 6.31 2.57 6.402.64 6.52 2.71 6.703.25 7.91 3.11 6.563.39 8.19 3.25 7.853.57 8.48 3.47 8.243.62 8.52 3.55 8.363.66 8.49 3.63 8.413.64 8.31 3.62 8.263.59 8.14 3.60 8.003.42 7.63 3.49 7.803.31 7.34 3.38 7.49

2.58°K 5.15°KV R V R2.30 5.94 2.31 5.962.32 5.94 2.35 6.012.46 6.20 2.47 6.212.56 6.39 2.57 6.412.69 6.65 2.68 6.623.07 7.46 3.01 7.323.25 7.85 3.15 7.603.46 8.21 3.35 7.933.52 8.29 3.39 7.993.57 8.28 3.45 8.003.53 8.06 3.44 7.853.48 7.80 3.41 7.723.35 7.48 3.33 7.443.30 7.31 3.29 7.29

5.71°K 4.2°EV R V R2.35 6.06 2.35 6.062.39 6.11 2.39 6.112.50 6.30 2.49 6.262.57 6.41 2.56 6.39.2.66 6.58 2.65 6.552.91 7.08 2.85 6.943.03 7.51 2.93 7.073.22 7.65 3.08 7.313.27 7.70 3.15 7.413.35 7.76 3.22 7.463.37 7.70 3.25 7.423.36 7.61 3.26 7.393.33 7.44 3.26 7.273.31 7.38 3.26 7.22

178

Page 189: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated data: Field parallel trigonal axis; Hall probes parallel to binary axis.R = (Vt)(lE) x 106 ohm-cm./gauss; Y is corrected Hall voltage in milli-volts; t = 0.49cm; 1 = 0

Temperature(l/H)xl03

.0165 amp. 1.30k 1.82°K 2.21°K 2.58°K 3.15°K 3.71°K 4.2°E

Y R Y R Y R V R Y R Y R Y R0.333 0.13 1.29 0.13 1.29 0.13 1.29 0.12 1.19 0.11 1.09 0.12 1.19 0.13 1.290.323 0.14 1.34 0.14 1.34 0.14 1.34 0.13 1.25 0.13 1.25 0.13 1.25 0.14 1.340.313 0.15 1.39 0.15 1.39 0.15 1.39 0.14 1.30 0.13 1.21 0.14 1.30 0.14 1.300.303 0.16 1.44 0.15 1.35 0.15 1.35 0.15 1.35 0.14 1.26 1—1 •o 1.26 0.15 1.350.294 0.17 1.48 0.16 1.40 0.16 1.40 0.15 1.31 0.15 1.31 0.15 1.31 0.15 1.310.286 0.18 1.53 0.17 1.44 0.17 1.44 0.16 1.36 0.16 1.36 0.16 1.36 0.16 1.360.278 0.19 1.57 0.18 1.48 0.18 1.48 0.17 1.40 0.18 1.48 0 .17 1.40 0.16 1.320.270 0.20 1.60 0.19 1.52 0.19 1.52 0.19 1.52 0.19 1.52 0.18 1.44 0.17 1.360.263 0.21 1.64 0.20 1.56 0.20 1.56 0.20 1.56 0.20 1.56 0.19 1.48 0.18 1.410.256 0.22 1.67 0.21 1.60 0.21 1.60 0.21 1.60 0.21 1.60 0.19 1.45 0.19 1.450.250 0.23 1.71 0.22 1.63 0.22 1.63 0.22 1.63 0.23 1.71 0.21 1.56 0.20 1.480.244 0.24 1.74 0.23 1.67 0.23 1.67 0.23 1.67 0.24 1.74 0.22 1.59 0.21 1.520.238 0.25 1.77 0.24 1.70 0.25 1.77 0.24 1.70 0.25 1.77 0.23 1.63 0.22 1.560.233 0.26 1.80 0.26 1.80 0.26 1.80 0.25 1.73 0.27 1.73 0.24 1.66 0.23 1.590.227 0.27 1.82 0.27 1.82 0.28 1.89 0.27 1.82 0.27 1.82 0.25 1.69 0.25 1.69

179

Page 190: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)xl03 _V R

1.82°KV R

2.21°KV R

0 . 2 2 2 0 . 2 9 1 . 9 1

0 . 2 1 7 0 . 3 1 2 . 0 0

0 . 2 1 3 0 . 3 3 2 . 0 8

0 . 2 0 8 0 . 3 5 2 . 1 6

0 . 2 0 4 0 . 3 6 2 . 1 8

0 . 2 0 0 0 . 3 9 2 . 3 2

0 . 1 9 6 0 . 4 1 2 . 3 9

0 . 1 9 2 0 . 4 3 2 . 4 6

0 . 1 8 9 0 . 4 5 2 . 5 2

0 . 1 8 5 0 . 4 7 2 . 5 8

0 . 1 8 2 0 . 4 8 2 .5 9

0 . 1 7 9 0 . 5 0 2 . 6 5

0 . 1 7 5 0 . 5 1 2 . 6 6

0 . 1 7 2 0 . 5 4 2 . 7 6

0 . 1 7 0 0 . 6 0 3 . 0 2

0 . 1 6 7 0 . 6 1 3 . 0 2

0 . 1 6 4 0 . 5 9 2 .8 7

28 1 . 8 5 0 . 2 9 1 . 9 1

29 1 . 8 7 0 . 3 1 2 . 0 0

31 1 . 9 6 0 . 3 3 2 . 0 8

32 1 . 9 8 0 . 3 4 2 . 1 0

34 2 . 0 6 0 . 3 6 2 . 1 8

36 2 . 1 4 0 . 3 7 2 . 2 0

38 2 . 2 1 0 . 4 0 2 . 3 3

40 2 . 2 8 0 . 4 1 2 . 3 4

42 2 . 3 5 0 . 4 3 2 . 4 7

44 2 . 4 2 0 . 4 5 2 . 4 7

46 2 . 4 8 0 . 4 7 2 . 5 4

49 2 . 6 0 0 . 5 0 2 . 6 5

52 2 . 7 1 0 . 5 2 2 . 7 1

55 2 . 8 2 0 . 5 5 2 . 8 2

57 2 .8 7 0 . 5 7 2 .8 7

60 2 .9 7 0 . 5 9 2 . 9 2

61 2 . 9 7 0 . 6 1 2 . 9 7

00000000000000000

2.58°KV R

0 . 2 8 1 . 8 5

0 . 2 9 1 . 8 7

0 . 3 1 1 . 9 6

0 . 3 3 2 . 0 4

0 . 3 5 2 . 1 2

0 . 3 6 2 . 1 4

0 . 3 8 2 . 2 3

0 . 4 0 2 . 2 8

0 . 4 2 2 . 3 5

0 . 4 4 2 . 4 2

0 . 4 6 2 . 4 8

0 . 4 8 2 . 5 4

0 . 5 0 2 . 6 0

0 . 5 2 2 . 6 6

0 . 5 5 2 . 7 7

0 . 5 7 2 . 8 2

0 . 5 9 2 . 8 7

5.15°KV R

0 . 2 9 1 . 9 1

0 . 3 0 1 . 9 4

0 . 3 1 1 . 9 6

0 . 3 3 2 . 0 4

0 . 3 4 2 . 0 6

0 . 3 5 2 . 0 8

0 . 3 7 2 . 1 6

0 . 3 9 2 . 2 2

0 . 4 1 2 . 3 0

0 . 4 3 2 . 3 6

0 . 4 5 2 . 4 3

0 . 4 7 2 . 4 9

0 . 4 9 2 . 5 5

0 . 5 1 2 . 6 1

0 . 5 4 2 . 7 2

0 . 5 6 2 . 7 7

0 . 5 8 2 . 7 7

5.71°KV R

0 . 2 6 1 . 7 2

0 . 2 8 1 . 8 1

0 . 2 9 1 . 8 3

0 . 3 1 1 . 9 2

0 . 3 3 2 . 0 0

0 . 3 4 2 . 0 2

0 . 3 6 2 . 1 0

0 . 3 8 2 .1 7

0 . 3 9 2 . 1 8

0 . 4 1 2 . 2 5

0 . 4 3 2 . 3 2

0 . 4 5 2 . 3 8

0 . 4 7 2 . 4 5

0 . 4 9 2 . 5 1

0 . 5 1 2 . 5 6

0 . 5 3 2 . 6 2

0 . 5 5 2 . 6 8

4.2°KV R

0 . 2 6 1 . 7 2

0 . 2 7 1 . 7 4

0 . 2 9 1 . 8 3

0 . 3 0 1 . 8 5

0 . 3 2 1 . 9 4

0 . 3 3 1 . 9 6

0 . 3 5 2 . 0 4

0 . 3 6 2 . 0 6

0 . 3 8 2 . 1 3

0 . 4 0 2 . 2 0

0 . 4 2 2 . 2 7

0 . 4 4 2 . 3 3

0 *46 2 . 4 0

0 . 4 8 2 . 4 6

0 . 4 9 2 . 4 7

0 . 5 1 2 . 5 2

0 . 5 4 2 . 6 3

180

Page 191: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.5°K(l/HjxlO^ V R

1.82°K Y R

2.2l°KV R

0.161 0.60 2.870.159 0.65 3.060.166 0.71 3.290.154 0.77 3.520.152 0.78 3.510.149 0.76 3.370.147 0.75 3.280.145 0.81 3.490.143 0.91 3.860.141 0.97 4.060.139 1.00 4.120.137 0.99 4.030.135 0.96 3.860.133 0.93 3.680.132 0.95 3.71

62 2.97 0.63 3.0763 2.97 0.67 3.1667 3.11 0.70 3.2571 3.24 0.73 3.3474 3.33 0.74 3.2874 3.28 0.73 3.2474 3.23 0.75 3.2877 3.31 0.81 3.4982 3.48 0.87 3.6990 3.77 0.91 3.8195 3.92 0.94 3.8896 3.91 0.95 3.8795 3.82 0.95 3.8294 3.72 0.97 3.8495 3.71 0.99 3.87

000000000000000

2.58°KY R0.62 2.970.65 3.060.67 3.110.70 3.200.73 3.280.75 3.320.78 3.400.81 3.490.84 3.560.87 3.640.90 3.710.93 3.790.95 3.820.97 3.840.99 3.87

5.150kV R0.61 2.920.63 2.970.66 3.060.69 3.150.71 3.190.74 3.280.77 3.360.80 3.490.83 3.520.86 3.600.89 3.670.92 3.740.95 3.820.97 3.841.01 3.95

5.71°KY R0.57 2.730.59 2.780.61 2.830.64 2.920.66 2.970.69 3.060.71 3.100.74 3.180.77 3.260.79 3.30'.82 3.380.85 3.460.88 3.530.91 3.600.94 3.68

4.2°KY R0.56 2.680.58 2.730.60 2.780.63 2.880.65 2.920.67 2.970.69 3.010.72 3.100.74 3.140.77 3.220.80 3.300.83 3.380.86 3.450.89 3.520.93 3.64 181

Page 192: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)xl05 _ Y R

1 . 8 2 ° KY R

2.21°KV R

0 . 1 3 0 1 . 0 2 3 . 9 4

0 . 1 2 8 1 . 1 6 4 . 4 1

0 .1 2 7 1 . 2 9 4 . 8 5

0 . 1 2 5 1 . 3 4 4 . 9 8

0 . 1 2 3 1 . 3 5 4 . 9 5

0 . 1 2 2 1 . 3 3 4 . 8 2

0 . 1 2 1 1 . 2 8 4 . 5 8

0 . 1 1 9 1 . 2 4 4 . 3 8

0 . 1 1 8 1 . 2 0 4 . 2 0

0 . 1 1 6 1 . 2 1 4 . 1 8

0 . 1 1 5 1 . 3 5 4 . 6 0

0 . 1 1 4 1 . 5 0 5 . 0 6

0 . 1 1 2 1 . 6 3 5 . 4 4

0 . 1 1 1 1 . 7 3 5 . 7 0

0 . 1 1 0 1 . 8 1 5 . 9 1

0 . 1 0 9 1 . 8 4 5 . 9 5

0 . 1 0 8 1 . 8 5 5 . 9 1

00 3 . 8 6 1 . 0 3 3 . 9 8

10 4 . 1 9 1 . 1 0 4 . 1 9

22 4 . 5 9 1 . 1 9 4 . 4 7

28 4 . 7 5 1 . 2 5 4 . 6 5

30 4 . 7 7 1 . 2 7 4 . 6 6

29 4 . 6 8 1 . 2 7 4 . 6 0

27 4 . 5 5 1 . 2 7 4 . 5 5

24 4 . 3 8 1 . 2 6 4 . 4 5

23 4 . 3 0 1 . 2 6 4 . 4 0

CO 4 . 2 8 1 . 2 8 4 . 4 2

30 4 . 4 3 1 . 3 4 4 . 5 7

42 4 . 8 0 1 . 4 4 ■4.86

56 5 . 2 0 1 . 5 5 5 .1 7

66 5 . 4 8 ' 1 . 6 5 5 . 4 5

74 5 . 6 8 1 . 7 1 5 . 5 9

78 5 . 7 5 1 . 7 3 5 . 5 9

79 5 . 7 2 1 . 7 5 5 . 6 0

11111111111111111

2.58°KY R

1 . 0 2 3 . 9 4

1 . 0 7 4 . 0 7

1 . 1 6 4 . 3 6

1 . 2 1 4 . 5 0

1 . 2 3 4 . 5 1

1 . 2 4 4 . 5 0

1 . 2 5 4 . 4 8

1 . 2 6 4 . 4 5

1 . 2 7 4 . 4 4

1 . 2 8 4 . 4 2

1 . 3 4 4 . 5 7

1 . 4 5 4 . 9 0

1 . 5 3 5 . 1 0

1 . 6 0 5 . 2 8

1 . 6 5 5 . 3 9

1 . 6 9 5 . 4 6

1 . 7 1 5 . 4 6

3.15°KY R

1 . 0 4 4 . 0 1

1 . 0 9 4 . 1 5

1 . 1 4 4 . 2 9

1 . 1 8 4 . 3 9

1 . 2 1 4 . 4 4

1 . 2 2 4 . 4 2

1 . 2 3 4 . 4 0

1 . 2 5 4 . 4 2

1 . 2 8 4 . 4 7

1 . 3 2 4 . 5 6

1 . 3 7 4 . 6 7

1 . 4 3 4 . 8 4

1 . 4 9 4 . 9 7

1 . 5 5 5 . 1 1

1 . 6 0 5 . 2 2

1 . 6 4 5 . 3 0

1 . 6 6 5 . 3 0

5.71°KY R

0 . 9 7 3 . 7 4

1 . 0 1 3 . 8 4

1 . 0 6 3 . 9 8

1 . 1 0 4 .09

1 . 1 3 4 . 1 5

1 . 1 6 4 . 2 0

1 . 1 9 4 . 2 6

1 . 2 1 4 . 2 8

1 . 2 4 4 . 3 3

1 . 2 7 4 . 3 9

1 . 3 0 4 . 4 4

1 . 3 5 4 . 5 5

1 . 3 9 4 . 6 4

1 . 4 6 4 . 8 1

1 . 5 2 4 . 9 6

1 . 5 6 5 . 0 4

1 . 5 9 5 . 0 8

4.2°KY R

0 . 9 7 3 . 7 4

1 . 0 1 3 . 8 4

1 . 0 5 3 . 9 4

1 . 0 8 4 . 0 1

1 . 1 1 4 . 0 7

1 . 1 4 4 . 1 3

1 . 1 6 4 . 1 5

1 . 1 9 4 . 2 1

1 . 2 2 4 . 2 6

1 . 2 5 4 . 3 1

1 . 2 9 4 . 4 0

1 . 3 2 4 . 4 5

1 . 3 6 4 . 5 4

1 . 4 1 4 . 6 5

1 . 4 6 4 . 7 7

1 . 5 0 4 . 8 5 |

1 . 5 3 4 . 8 9

182

Page 193: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1,50k(l/H)xlO _Y R

1.82°KY R

2.21°K V R

0.106 1.83 5.790.105 1.78 5.560.104 1.70 5.260.103 1.62 4.960.102 1.58 4.790.101 1.59 4.770.100 1.69 5.020.099 1.86 5.470.098 2.09 6.090.097 2.35 6.780.096 2.52 7.200.095 2.57 7.270.094 2.61 7.320.093 2.61 7.180.092 2.58 7.030.091 2.53 6.830.090 2.43 6.50

79 5.66 1.74 5.5075 5.47 1.73 5.4170 5.26 1.71 5.3064 5.02 1.69 5.1862 5.91 1.69 5.1263 4.89 1.70 5.1070 5.05 1.75 5.2084 5.41 1.85 5.4402 5.88 1.98 5.7620 6.35 2.14 6.1734 6.79 2.28 6.5146 6.95 2.38 6.7352 7.06 2.45 6.8755 7.02 2.49 6.8553 6.90 2.48 6.7547 6.67 2.45 6.62

1—1 6.45 2.42 6.47

11111111222222222

2.58°K 3.15°K 3.71°K 4.2°KV R Y R Y R Y R1.71 5.40 1.67 5.28 1.62 5.12 1.56 4.931.71 5.35 1.68 5.25 1.63 5.10 1.58 4.941.70 5.26 1.68 5.20 1.64 5.07 1.59 4.921.69 5.18 1.69 5.18 1.65 5.05 1.62 4.961.69 5.12 1.70 5.15 1.69 5.12 1.65 5.001.71 5.13 1.73 5.20 1.71 5.13 1.70 5.101.77 5.25 1.79 5.31 1.77 5.25 1.74 5.161.85 5.44 1.86 5.47 1.83 5.38 1.79 5.261.98 5.76 1.96 5.70 1.90 5.53 1.85 5.39'2.11 6.09 2.06 5.95 1.99 5.75 1.91 5.512.24 6.40 2.16 6.17 2.06 5.89 1.99 5.692.32 6.56 2.25 6.37 2.19 6.05 2.05 5.802.38 6.67 2.31 6.48 2.22 6.22 2.11 i5.922.44 6.71 2.35 6.47 2.29 6.30 2.18 6.002.43 6.62 2.37 6.46 2.31 6.30 2.21 6.022.42 6.53 2.37 6.40 2.31 6.24 2.22 6.002.39 6.40 2.36 6.31 2.31 6.18 2.24 6.00

183

Page 194: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature(1/H)xl05

1 .3 0 K 1- .82°K 2 . 21°KV R V R Y R

0 . 0 8 9 2 . 3 2 6 . 1 5 2 . 3 4 6 . 2 0 2 .3 7 6 . 2 8

0 . 0 8 5 2 . 1 2 5 . 5 2 2 . 1 7 5 . 6 6 2 . 2 9 5 . 9 7

0 .0 8 7 2 . 1 0 5 . 4 2 2 . 1 5 5 . 5 5 2 . 2 8 5 . 8 9

0 . 0 8 6 2 . 1 1 5 . 4 3 2 . 1 6 5 . 5 3 2 . 2 9 5 . 9 7

0 . 0 8 5 2 . 3 3 5 .8 7 2 . 3 9 8 . 0 2 2 . 4 3 6 . 1 2

0 . 0 8 4 2 . 5 6 6 .3 9 2 . 5 6 6 .3 9 2 . 5 5 6 . 3 6

0 . 0 8 3 2 . 8 2 6 . 9 8 2 . 7 5 6 . 8 1 2 . 7 4 6 . 7 8

0 . 0 8 2 3 . 3 5 8 . 1 6 3 . 1 9 7 . 7 6 3 . 1 5 7 . 6 6

0 . 0 8 1 3 . 5 1 8 . 4 8 3 . 3 9 8 . 1 9 3 . 3 4 8 . 0 6

0 . 0 8 0 3 . 6 7 8 . 7 2 3 . 6 0 8_55 3 . 5 4 8 . 4 1

0 . 0 7 9 3 . 7 1 8 . 7 4 3 . 6 3 8 . 5 6 3 . 5 9 8 . 4 7

0 . 0 7 8 3 . 7 4 8 . 6 8 3 . 6 7 8 . 5 2 3 . 6 2 8 . 4 0

0 . 0 7 7 3 . 7 1 8 . 4 7 3 . 6 3 8 . 2 9 3 . 6 0 8 . 2 2

0 . 0 7 6 3 . 6 7 8 . 3 2 3 . 5 9 8 . 1 4 3 . 5 5 8 . 0 5

0 . 0 7 5 3 . 4 8 7 . 7 6 3 . 3 8 7 . 5 5 3 . 4 0 7 . 5 9

0 . 0 7 4 3 . 3 3 7 . 3 8 3 . 2 8 7 . 2 6 3 . 3 2 7 . 3 5

2.58°KV R

2 . 3 6 8 . 2 5

2 . 3 0 6 . 0 0

2 . 2 9 5 . 9 2

2 . 3 1 5 . 9 2

2 . 4 6 6 .2 0

2 . 5 8 6 . 4 4

2 . 7 5 6 . 8 1

3 . 1 3 7 . 6 2

3 . 2 7 7 . 9 0

3 . 4 6 8 . 2 2

3 . 5 1 8 . 2 7

3 . 5 4 8 . 2 1

3 , 5 2 8 . 0 5

3 . 4 6 7 . 8 5

3 . 3 4 7 . 4 5

3 .2 7 7 . 2 5

3.15°KY R

2 . 3 5 6 . 2 3

2 . 3 3 6 .0 7

2 . 3 5 6 .0 7

2 .3 7 6 .0 7

2 . 5 2 5 . 3 5

2 . 6 3 6 . 5 6

2 . 7 7 6 . 8 6

3 . 0 6 7 . 4 5

3 . 1 7 7 . 6 6

3 . 3 3 7 . 9 1

3 . 5 8 7 . 9 6

3 . 4 3 7 . 9 6

3 . 4 4 7 . 8 6

3 . 4 2 7 . 7 5

COCO•CO 7 . 4 4

3 . 3 1 7 . 3 3

5.71°KY R

2 . 3 2 6 . 1 5

2 . 3 6 6 . 1 5

2 .3 9 6 . 1 8

2 . 4 2 6 . 2 0

2 . 5 5 6 . 4 2

2 . 6 2 6 . 5 4

2 .7 o 6 . 7 1

2 . 9 3 7 . 1 3

3 . 0 4 7 . 3 5

3 . 2 2 7 . 6 5

3 . 2 7 7 . 7 1

3 . 3 4 7 . 7 5

3 . 3 5 7 . 6 6

3 . 3 5 7 . 6 0

3 . 3 3 7 . 4 3

3 . 3 2 7 . 3 5

4.2°KV R

2 . 2 5 5 .9 7

2 . 2 9 5 .9 7

2 . 3 1 5 .9 7

2 . 3 5 6 . 0 2

2 . 4 4 6 . 1 4

2 . 5 0 6 . 2 4

2 .5 9 6 . 4 1

2 . 7 8 6 . 7 6

2 . 8 8 6 . 9 5

3 . 0 6 7 . 2 7

3 . 1 2 7 . 3 5

3 . 2 0 7 . 4 5

3 . 2 4 7 . 4 0

3 . 2 5 7 . 3 7

3 . 2 5 7 . 2 6

3 . 2 5 7 . 2 1

184

Page 195: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated data: Field perpendicular to binary and trigonal axes; Hall probes parallel to trigonal axis. R = (Yt)/(IH) x 106 ohm.-cm./gauss; Y is corrected Hall voltage in milli­volts; t = 0.42 cm.

Cur. (amps) 0.0200 0.0200 0.0200 0.0250 0.0350 0.0165 0.0165Temperature 1.5°K 1.82°K 2.21°K 2.58°K 5.15°K 5.71°K 4.2°K

./HjxlO*3 V R Y R Y R Y R Y R Y R Y R0.333 0.15 1.05 0.15 1.05 0.14 0.98 0.16 0.90 0.21 0.84 0.12 1.02 0.12 1.020.323 0.16 1.08 0.15 1.02 0.15 1.02 0.17 0.95 0.22 0.85 0.13 1.07 0.13 1.070 .313 0.16 1.05 0.15 0.99 0.15 0.99 0.18 0.98 0.22 0.83 0.13 1.04 0.14 1.120.313 0.17 1.08 0.15 0.96 0.16 1.02 0.19 1.00 0.23 0.84 0.13 1.01 0.14 1.080.294 0.18 1.11 0.16 0.99 0.16 0.99 0.20 0.99 0.25 0.88 0.14 1.05 0.15 1.120.286 0.19 1.14 0.18 1.08 0.17 1.02 0.22 1.06 0.28 0.96 0.15 1.09 0.16 1.170.278 0.20 1.17 0.20 1.17 0.18 1.05 0.26 1.21 0.30 1.00 0.17 1.13 0.16 1.130.270 0.21 1.19 0.21 1.19 0.19 1.08 0.25 1.13 0.31 1.01 0.17 1.17 0.17 1.170.263 0.21 1.19 0.21 1.16 0.21 1.15 0.25 1.11 0.32 1.01 0.18 1.21 0.17 1.140.256 0.22 1.18 0.22 1.18 0.22 1.18 0.25 1.08 0.33 1.02 0.19 1.24 0.18 1.180.250 0.22 1.16 0.23 1.21 0.22 1.16 0.25 1.05 0.34 1.02 0.19 1.21 0.19 1.210.244 0.23 1.18 0.23 1.18 0.23 1.18 0.25 1.02 0.35 1.02 0.19 1.18 0.19 1.180.238 0.23 1.15 0.23 1.15 0.23 1.15 0.26 1.04 0.37 1.06 0.20 1.21 0.20 1.210.233 0.24 1.17 0.23 1.17 0.24 1.17 0.24 1.13 0.38 1.06 0.21 1.25 0.21 1.25

185

Page 196: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200 0.0200 0.0200Temperature 1.5°K 1.82°K 2.21°K(1/H)xl05 V R V R _V R_0.227 0.27 1.29 0.24 1.15 0.25 1.190.222 0.29 1.35 0.29 1.35 0.27 1.260.217 0.31 1.42 0.31 1.42 0.29 1.320.213 0.33 1.47 0.32 1.43 0.31 1.390.208 0.33 1.44 0.33 1.44 0.32 1.400.204 0.34 1.46 0.33 1.41 0.33 1.410.200 0.35 1.47 0.34 1.43 0.33 1.390.196 0.35 1.44 0.36 1.48 0.35 1.440.192 0.38 1.53 0.39 1.57 0.38 1.530.189 0.43 1.70 0.42 1.66 0.41 1.620.185 0.46 1.79 0.45 1.75 0.43 1.670.182 0.49 1.87 0.47 1.79 0.45 1.720.179 0.51 1.91 0.48 1.80 0.47 1.760.175 0.52 1.92 0.50 1.84 0.49 1.800.172 0.53 1.92 0.51 1.85 0.51 1.850.170 0.53 1.88 0.51 1.81 0.51 1.81

0.0250 0.03502.58°K 5.15°K

V R V R0.31 1.18 0.40 1.090.34 1.27 0.41 1.090.36 1.31 0.43 1.120.38 1.36 0.49 1.250.39 1.36 0.53 1.320.41 1.41 0.55 1.350.43 1.45 0.57 1.370.45 1.48 0.59 1.390.49 1.58 0.65 1.500.53 1.68 0.70 1.590.56 1.74 0.74 1.650.58 1.77 0.77 1.730.59 1.77 0.81 1.740.61 1.80 0.83 1.750.62 1.80 0.83 1.720.63 1.79 0.83 1.69

0.0165 0.01655.71°K 4.2°K

V R V R0.22 1.27 0.22 1.270.23 1.30 0.23 1.300.24 1.33 0.24 1.330.25 1.36 0.25 1.360.27 1,43 0.27 1.430.28 1.46 0.28 1.460.30 1.53 0.30 1.530.31 1.55 0.31 1.550.33 1.62 0.33 1.620.35 1.68 0.35 1.680.37 1.75 0.37 1.750.38 1.76 0.38 1.760.40 1.82 0.39 1.780.41 1.83 0.40 1.790.41 1.80 0.40 1.760.42 1.82 0.90 1.73

186

Page 197: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200Temperature 1.3°K(lTH)xlQg T R~0.167 0.52 1.820.164 0.51 1.760.161 0.4-9 1.660.159 0.48 1.680.156 0.47 1.540.154 0.46 1.490.152 0.47 1.500.149 0.51 1.600.147 0.59 1.820.145 0.68 2.070.143 0.76 2.280.141 0.83 2.450.139 0.90 2.620.137 0.95 2.730.135 1.00 2.840.133 1.04 2.91

0.1.

0200820K

0.2.

020021°K

Y R Y R0.51 1.78 0.51 1.780.51 1.76 0.51 1.760.50 1.69 0.50 1.690.48 1.60 0.48 1.600.46 1.51 0.47 1.540.45 1.45 0.46 1.490.46 1.46 0.46 1.460.50 1.47 0.48 1.500.55 1.70 0.52 1.610 .62 1.89 0.59 1.800.69 2.07 0.68 2.040.77 2.28 0.77 2.280.84 2.45 0.85 2.480.91 2.62 0.91 2.620.96 2.72 0.95 2.701.00 2.80 0.98 2.74

0.2.025058°K

0.03503.15°K

Y R Y R0.63 1.76 0.83 1.660.62 1.71 0.81 1.590.60 1.63 0.79 1.530.59 1.57 0.77 1.570.57 1.50 0.77 1.44'0.57 1.47 0.77 1.420.58 1.47 0.81 1.470.64 1.60 0.89 1.590.71 1.75 1.00 1.770.80 1.95 1.13 1.970.96 2.00 1.26 2.161.05 2.48 1.39 2.371.10 2.60 1.49 2.481.13 2.64 1.59 2.621.19 2.70 1.65 2.681.23 2.76 1.71 2.79

0.01653.71°K

0.0165 4.2°K

Y R Y R0.43 1.83 0.40 1.700.42 1.76 0.39 1.630.42 1.73 0.39 1.600.41 1.66 0.38 1.540.40 1.59 0.38 1.510.39 1.53 0.39 1.530.41 1.58 0.41 1.580.44 1.67 0.43 1.630.49 1.84 0.47 1.760.53 1.96 0.44 1.630.58 2.11 0.59 2.150.64 2.30 0.63 2.260.69 2.44 0.68 2.410.74 2.58 0.73 2.550.77 2.65 0.76 2.620.81 2.75 0.80 2.72

107

Page 198: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200Temperature 1.3°K(1/H)xl05 Y R0.132 1.07 2.960.130 1.09 2.970.128 1.13 3.040.127 1.16 3.080.125 1.21 3.180.123 1.25 3.240.122 1.29 3.300.121 1.34 3.390.119 1.37 3.420.118 1.38 3.410.116 1.39 3.390.115 1.39 3.360.114 1.39 3.310.112 1.38 3.260.111 1.36 3.170.110 1.33 3.07

0.0200 0.02001.82°K 2.21°K

V R Y R1.04 2.88 1.01 2.791.08 2.95 1.05 2.841.12 3.02 1.09 2.941.15 3.06 1.13 3.001.19 3.12 1.17 3.071.23 3.19 1.21 3.141.27 3.24 1.25 3.201.30 3.29 1.38 3.501.32 3.30 1.31 3.281.34 3.31 1.33 3.291.36 3.32 1.34 3.271.37 3.31 1.35 3.261.37 3.27 1.36 3.241.37 3.23 1.35 3.181.36 3.17 1.34 3.121.33 3.07 1.32 3.04

0.0250 0.03502.58°K 3.15°K

Y R Y R1.27 2.81 1.77 2.801.31 2.86 1.82 2.841.36 2.93 1.88 2.89

1.42 3.02 1.96 2.981.47 3.09 2.04 3.061.52 3.15 2.10 3.111.56 3.20 2.15 3.151.61 3.26 2.19 3.171.63 3.26 2.23 3.191.67 3.30 2.26 3.191.68 3.28 2.27 3.171.69 3.26 2.28 3.141.69 3.23 2.27 3.091.68 3.17 2.26 3.051.66 3.10 2.23 2.98

1.63 3.01 2.21 2.92

0.0165 0.01653.71°K 4.2°K

Y R V R0.84 2.82 0.85 2.850.87 2.88 0.87 2.880.90 2.94 0.90 2.940.93 3.00 0.93 3.000.96 3.06 0.95 3.030.99 3.12 0.97 3.051.01 3.14 1.00 3.111.02 3.13 1.02 3.131.04 3.16 1.03 3.131.05 3.15 1.05 3.151.07 3 .18 1.05 3.121.07 3.14 1.06 3.111.07 3.10 1.06 3.081.07 3.06 1.06 3.041.07 3.04 1.06 3.001.06 2.98 1.05 2.95

188

Page 199: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200 0.0200 0.0200Temperature 1.3°K 1.82&K 2.21°K(1/H)xl05 V R Y R _V R_0.109 1.30 2.97 1.30 2.97 1.30 2.970.108 1.26 2.85 1.26 2.85 1.27 2.870.106 1.23 2.75 1.24 2.77 1.24 2.770.105 1.20 2.65 1.22 2.70 1.22 2.700.104 1.18 2.58 1.20 2.62 1.19 2.600.103 1.17 2.53 1.18 2.56 1.17 2.530.102 1.19 2.55 1.18 2.53 1.18 2.530.101 1.20 2.54 1.20 2.54 1.21 2.570.100 1.25 2.62 1.26 2.64 1.26 2.640.099 1.32 2.74 1.32 2.74 1.32 2.740.098 1.42 2.92 1.41 2.90 1.41 2.900.097 1.55 3.16 1.51 2.08 1.52 3.100.096 1.68 3.40 1.63 3.29 1.63 3.290.095 1.77 3.54 1.73 3.46 1.73 3.460.094 1.86 3.68 1.81 3.58 1.80 3.560.093 1.97 3.83 1.94 3.77 1.92 3.73

0.02502.58°K

Y H1.59 2.911.55 2.801.53 2.741.51 2.671.49 2.611.49 2.581.50 2.571.55 2.631.62 2.721.71 2.831. 82 3.001.93 3.122.06 3.332.17 3.472.21 3.582.39 3.72

0.03503.15°K

Y R2.17 2.832.14 2.762.11 2.692.08 2.632.07 2.592.08 2.58

1—1 1—102 2.592.17 2.632.25 2.702.36 2.802.50 2.942.65 3.092.80 3.232.95 3.373.07 3.483.25 3.61

0.01653.71°K

V R1.05 2.911.03 2.831.02 2.771.01 2.711.01 2.681.01 2.661.03 2.681.06 2.741.09 2.781.11 2.801.19 2.981.26 3.121.33 3.261.39 3.381.45 3.491.52 3.59

0.01654 .2 0 K

Y R1.04 2.881.03 2.831.02 2.771.02 2.741.01 2.681.02 2.681.03 2.681.06 2.741.09 2.781.14 2.881.12 2.981.25 3.101.31 3.211.36 3.301.41 3.391.49 3.52

189

Page 200: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200Temperature 1.3°K(1/H)xl05 _ V R_0.092 2.01 5.870.091 2.03 3.890.090 2.03 3.840.089 2.03 3.810.088 1.97 5.620.087 1.91 3.490.086 1.84 3.330.085 1.69 3.000.084 1.62 2.860.083 1.56 2.730.082 1.49 2.560.081 1.48 2.530.080 1.46 2.450.079 1.45 2.420.078 1.45 2.380.077 1.55 2.50

0.0200 0.02001.82°K 2.21°K

Y R Y R1.99 3.83 1.95 5.762.00 3.82 1.97 3.762.01 3.80 1.98 3.742.00 3.75 1.98 3.721.95 3.59 1.92 3.541.89 3.45 1.87 3.421.83 3.31 1.82 3.291.69 3.00 1.70 5.021.63 2.88 1.65 2.911.58 2.76 1.61 2.821.51 2.60 1.54 2.651.50 2.56 1.52 2.601.48 2.49 1.51 2.541.48 2.47 1.51 2.521.50 2.46 1.54 2.521.60 2.58 1.66 2.68

0.0250 0.0350 0.0165 0.01652.58°K 3.15°E 5.71°K 4.2°K

V R Y R Y R V R2.43 3.74 3.31 3.642.45 3.74 3.33 3.632.46 3.72 3.34 3.612.46 3.69 3.33 3.572.41 3.55 3.25 3.422.34 3.42 3.17 3.312.27 3.29 3.10 3.212.13 3.03 2.93 2.982.07 2.92 2.87 2.902.02 2.82 2.80 2.801.95 2.68 2.71 2.671.92 2.62 2.69 2.631.91 2.56 1.68 2.571.92 2.56 2.70 2.571.95 2.56 2.81 2.632.12 2.74 3.07 2.85

1.54 3.60 1.52 3.561.56 3.62 1.54 3.471.57 3.60 1.55 3.561.57 3.57 1.55 3.531.54 3.44 1.52 3.401.52 3.37 1.50 3.331.49 3.28 1.48 3.261.43 3.09 1.43 3.091.40 3.00 1.41 3.021.38 2.93 1.39 2.961.34 2.80 1.36 2.841.33 2.76 1.35 2.801.32 2.69 1.35 2.751.33 2.69 1.36 2.751.37 2.73 1.41 2.81 i1.49 2.92 1.51

(2.96

190

Page 201: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200 0.0200 0.0200Temperature 1.3°K 1,.82°K 2.21°K(1/H)xl05 7 R _V R_ _ V R0.076 1.65 2.64 1.71 2.74 1.75 2.800.075 1.97 3.11 2.05 3.24 2.03 3.210.074 2.22' 3.48 2.28 3.58 2.22 3.48

0.02502.58°K

0.03503.15°K

0.01653.71°K

0.0165 4.2°K

V R V R V R 7 R2.27 2.78 3.28 3.00 1.56 3.04 1.58 3.082.67 3.37 3.82 3.44 1.79 3.43 1.80 3.452.93 3.67 4.20 3.76 1.95 3.71 1.94 3.69

191

Page 202: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated data: Field perpendicular to binary and trigonal axis; Hall probes parallel to binary axis. R = (Vt)/(IH) x 10° ohm-cm./gauss; V is corrected Hall voltage in milli­volts; t = 0.42 cm.

Cur. (amps) 0.0200Temperature 1.3°K

( 1 / H ) x 1 Q 5 V R__0.333 0.13 0.910.323 0.14 0.950.313 0.15 0.980.303 0.16 1.020.294 0.17 1.050.286 0.19 1.140.278 0.20 1.160.270 0.21 1.190.263 0.22 1.210.256 0.23 1.240.250 0.23 1.210.244 0.23 1.180.238 0.23 1.150.233 0.23 1.12

0.0200 0.02001.82°K 2.2l°K

7 R V R0.14 0.98 0.13 0.910.15 1.02 0.14 0.950.15 0.98 0.15 0.980.15 0.95 0.15 0.950.16 0.99 0.16 0.990.17 1.02 0.17 1.020.18 1.05 0.19 1.120.20 1.14 0.20 1.140.21 1.16 0.21 1.160.22 1.18 0.22 1.180.23 1.21 0.22 1.150.23 1.18 0.23 1.180.23 1.15 0.23 1.150.23 1.12 0.23 1.12

0.0250 0.03502.58°K 5.15PK

V R V R0.16 0.90 0.20 0.800.17 0.92 0.21 0.810.17 0.89 0.21 0.790.18 0.92 0.23 0.840.19 0.94 0.25 0.880.21 1.01 0.26 0.890.22 1.03 0.29 0.960.24 1.09 0.31 1.010.25 1.11 0.32 1.010.26 1.12 0.33 1.020.27 1.13 0.34 1.020.27 1.11 0.35 1.020.27 1.08 0.36 1.030 ,28 1.09 0.37 1.03

0.0165 0.01655.71°K 4.2°K

V R V R0.12 1.02 0.11 0.930.13 1.07 0.12 0.990.14 1.15 0.12 0.960.14 1.08 0.13 1.000.15 1.12 0.14 1.050.16 1.17 0.15 1.090.17 1.20 0.16 1.130.17 1.17 0.17 1.170.18 1.21 0.17 1.140.18 1.18 0.18 1.180.19 1.21 0.19 1.210 .19 1.18 0.19 1.180.20 1.21 0.19 1.150.21 1.25 0.20 1.19

192

Page 203: The Hall Effect in Bismuth at High Magnetic Fields and Low

Gur. (amps) O.OEOO 0.0200 0.0S00Temnerature 0.3°K 1.82°K 2.21°K

( i 7h ) x ! 0 5 V R Y R V R0.SS7 0.34 1.150. SEE 0.36 1.310.217 0.30 1.370.S13 0.33 1.430.S08 0.33 1.440.304 0.35 1.41O.SOO 0.34 1.430.196 0.35 1.440.19S 0.38 1.540.189 0.41 1.630.185 0.45 1.750.18S 0.47 1.800.179 0.46 1.840.175 0.51 1.880.17S 0.53 1.880.170 0.53 1.89

.24 1.15 0.35 1.19

.25 1.17 0.37 1.26

.27 1.23 0.29 1.32

.30 1.34 0.31 1.38

.33 1.44 0.33 1.44

.35 1.50 0.34 1.46

.35 1.47 0.35 1.47

.35 1.44 0.36 1.48

.37 1.49 0.39 1.58

.40 1.58 0.41 1.62

.43 1.67 0.44 1.71

.46 1.76 0.45 1.72

.48 1.80 0.47 1.76

.50 1.84 0.49 1.81.51 1.85 0.50 1.81.53 1.85 0.51 1.81

0000000000000000

0.0350 0.0350 0.0165 0.0165E.58°K 3.15°K 3.71°K 4.2°K

V R V R Y R Y R0.30 1.14 0.39 1.060.32 1.19 0.43 1.150.35 1.28 0.47 1.230.37 1.32 0.50 1.280.39 1.36 0.53 1.520.40 1.37 0.55 1.350.41 1.38 0.57 1.370.43 1.42 0.59 1.390.46 1.49 0.61 1.410.50 1.59 0.67 1.520.55 1.71 0.72 1.600.57 1.74 0.77 1.680.59 1.77 0.80 1.720.61 1.80 0.81 1.710.62 1.80 0.83 1.720.63 1.79 0.83 1.69

22 1.28 0.21 1.2224 1.36 0.22 1.2525 1.39 0.24 1.3326 1.41 0.26 1.4127 1.44 0.27 1.4429 1.46 0.29 1.4630 1.53 0.30 1.5332 1.60 0.31 1.3534 1.67 0.33 1.6236 1.73 0.35 1.6857 1.75 0.36 1.7039 1.81 0.37 1.7239 1.78 0.39 1.7841 1.84 0.39 1.7541 1.80 0.40 1.7641 1.77 0.40 1.73

0000000000000000

193

Page 204: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200 0.0200 0.0200Temperature 1.3°K 1.82°K 2.21°E(1/H) xlO5 V R Y R Y R

0 . 1 5 7 0 . 5 3 1 . 8 5

0 . 1 6 4 0 . 5 2 1 . 7 9

0 . 1 6 1 0 . 5 0 1 . 6 9

0 . 1 5 9 0 . 4 7 1 .5 7

0 . 1 5 6 0 . 4 5 1 . 4 8

0 . 1 5 4 0 . 4 4 1 . 4 2

0 . 1 5 2 0 . 4 3 1 .3 7

0 . 1 4 9 0 . 4 5 1 . 4 1

0 . 1 4 7 0 . 5 1 1 . 5 7

0 . 1 4 5 0 . 6 0 1 . 8 3

0 . 1 4 3 0 . 7 0 2 .1 0

0 . 1 4 1 0 . 7 9 2 . 3 4

0 . 1 3 9 0 . 8 7 2 . 5 4

0 . 1 3 7 0 . 9 4 2 . 7 0

0 . 1 3 5 0 . 9 9 2 . 8 1

0 . 1 3 3 1 . 0 3 2 . 8 8

52 1 . 8 2 0 . 5 1 1 . 7 8

52 1 . 7 9 0 . 5 0 1 . 7 2

51 1 . 7 3 0 . 4 9 1 . 6 6

49 1 . 6 3 0 . 4 8 1 . 6 0

47 1 . 5 4 0 . 4 7 1 . 5 4

46 1 . 4 8 0 . 4 6 1 . 4 8

45 1 . 4 3 0 . 4 5 1 . 4 3

46 1 . 4 4 0 . 4 7 1 . 4 7

49 1 . 5 1 0 . 5 1 1 .5 7

55 1 . 6 7 0 . 5 9 1 . 8 0

66 1 . 9 8 0 . 6 9 2 .0 7

78 2 . 3 1 0 . 7 7 2 . 2 8

76 2 . 2 2 0 . 8 4 2 . 4 5

93 2 . 6 8 0 . 9 0 2 . 5 9

98 2 . 7 8 0 . 9 5 2 . 7 0

1—1 o

2 . 8 3 1 . 0 0 2 . 8 0

0000000000000001

0.02502.56°KY R

0 . 6 3 1 . 7 6

0 . 6 2 1 . 7 1

0 . 6 0 1 . 6 3

0 . 5 7 1 . 5 2

0 . 5 6 1 .4 7

0 , 5 6 1 . 4 5

0 . 5 7 1 . 4 5

0 . 6 1 1 . 5 3

0 . 6 9 1 . 7 0

0 . 7 8 1 . 9 0

0 . 8 8 2 . 1 1

0 . 9 9 2 . 3 4

1 . 0 9 2 . 5 4

1 . 1 5 2 . 6 5

1 . 2 1 2 . 7 5

1 . 2 5 2 .8 0

0.03505.15°KY R

0 . 8 3 1 . 6 6

0 . 8 2 1 . 6 1

0 . 7 9 1 . 5 3

0 . 7 9 1 . 5 1

0 . 7 8 1 . 4 6

0 . 7 7 1 . 4 2

0 . 7 9 1 . 4 4

0 . 8 5 1 . 5 2

0 . 9 5 1 . 6 8

1 . 0 8 1 . 8 8

1 . 2 5 2 . 1 4

1 . 3 8 2 . 3 3

1 . 5 0 2 . 5 0

1 . 5 9 2 . 6 2

1 . 6 5 2 . 6 8

1 . 7 1 2 . 7 4

0.01655.71°KY ' R

0 . 4 1 1 . 7 4

0 . 4 1 1 . 7 1

0 . 4 1 1 . 6 9

0 . 4 0 1 . 6 2

0 . 4 0 1 . 5 9

0 . 4 1 1 . 6 1

0 . 4 2 1 . 6 2

0 . 4 5 1 . 7 1

0 . 4 8 1 . 8 0

0 . 5 4 2 . 0 0

0 . 6 1 2 . 2 2

0 . 6 6 2 .3 7

0 . 7 2 2 . 5 5

0 . 7 5 2 . 6 2

0 . 7 9 2 . 7 2

0 . 8 2 2 . 7 8

0.01654.2°KY R

0 . 4 0 1 . 7 0

0 . 4 0 1 . 6 7

0 . 4 0 1 . 6 4

0 . 4 0 1 . 6 2

1—f•O

1 . 6 3

0 . 4 1 1 . 6 1

0 . 4 3 1 . 6 6

0 . 4 4 1 . 6 7

0 . 4 6 1 . 7 3

0 . 5 0 1 . 8 5

0 . 5 5 2 . 0 0

0 . 6 1 2 .1 9

0 . 6 6 2 . 3 4

0 . 7 1 2 . 4 8

0 . 7 7 2 . 6 5

0 . 8 0 2 . 7 2

194

Page 205: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200Temperature 1.3°K(1/H)x1Q3 V R0.132 1.07 2.960.130 1.09 2.970.128 1.11 2.990.127 ' 1.13 3.000.125 1.17 3.070.123 1.23 3.190.122 1.28 3.300.121 1.32 3.340.119 1.35 3.380.118 1.38 3.410.116 1.39 3.400.115 1.40 3.380.114 1.40 3.340.112 1.40 3.300.111 1.39 3.240.110 1.37 3.16

0.0200 0.02001.82°K 2.21QK

V R V R1.04 2.88 1.03 2.851.06 2.89 1.05 2.861.08 2.91 1.07 2.881.11 2.95 1.09 2.901.15 3.02 1.15 3.021.21 3.14 1.20 3.111.25 3.20 1.24 3.181.31 3.32 1.28 3.241.34 3.35 1.31 3.281.35 3.35 1.34 3.311.37 3.34 1.35 3.301.37 3.30 1.36 3.281.37 3.27 1.36 3.251.36 3.21 1.36 3.211.35 3.15 1.35 3.151.33 3.07 1.33 3.07

0.0250 0.0350 0.0165 0.01652.58°K 3.15°K 3.71°K 4.2°K

V R V R V R V R1.29 2.85 1.77 2.801.31 2.86 1.81 2.821.35 2.91 1.84 2.831.39 2.96 1.89 2.871.45 3.05 1.98 2.971.51 3.13 2.06 3.051.57 3.22 2.13 3.121.61 3.26 2.19 3.171.64 3.28 2.23 3.191.67 3.30 2.26 3.191.68 3.28 2.28 3.181.69 3.26 2.29 3.161.69 3.23 2.29 3.121.68 3.19 2.28 3.081.66 3.10 2.27 3.031.63 3.01 2.23 2.94

0.85 2.85 0.83 2.780.87 2.88 0.85 2.810.89 2.91 0.87 2.840.91 2.94 0.90 2.900.93 2.96 0.93 2.960.97 5.05 0.96 3.021.01 3.14 0.99 3.081.04 3.20 1.01 3.111.06 3.22 1.03 3.131.07 3.21 1.05 3.151.08 3.20 1.06 3.141.09 5.20 1.07 3.141.09 3.16 1.07 3.101.09 3.12 1.07 3.071.08 3.06 1.07 3.031.07 3.00 1.06 2.97

195

Page 206: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amp) 0.0200Temperature 1.3°E(1/H)xl05 _Y R0.109 1.34 3.060.108 1.30 2.940.106 1.25 2.790.105 1.21 2.680.104 1.17 2.560.103 1.15 2.490.102 1.15 2.460.101 1.17 2.480.100 1.21 2.540.099 1.29 2.680.098 1.41 2.900.097 1.55 -3.160.096 1.69 3.410.095 1.79 3.580.094 1.87 3.700.093 1.98 3.85

0.1.

020082°K

0.2f

0200 21 °K

Y R Y R1.31 2.99 1.30 2.971.27 2.87 1.27 2.871.23 2.75 1.23 2.751.20 2.65 1.20 2.651.17 2.56 1.18 2.561.16 2.51 1.17 2.531.15 2.46 1.17 2.511.17 2.48 1.20 2.551.21 2.54 1.25 2.621.30 2.70 1.53 2.761.40 2.88 1.42 2.921.51 3.08 1.51 3.081.62 3.27 1.64 3.311.71 3.42 1.74 3.481.80 3.56 1.81 3.581.93 3.75 1.91 3.72

0.0250 0.0350 0.0165 0.01652.58°K 3.15°IC 3.71°K 4.2°K

Y R Y R Y R Y R1.61 2.94 2.19 2.861.57 2.84 2.15 2.771.53 2.74 2.11 2.691.51 2.67 2.09 2.651.49 2.61 2.07 2.591.49 2.58 2.07 2.561.51 2.59 2.07 2.541.57 2.67 2.13 2.581.65 2.77 2.21 2.651.73 2.88 2.31 2.751.84 3.03 2.44 2.871.94 3.16 2.59 3.012.05 3.31 2.76 3.182.15 3.44 2.92 3.342.25 3.57 3.06 3.462.40 3.73 3.25 3.61

1.06 2.94 1.05 2.911.04 2.85 1.04 2.851.03 2.80 1.03 2.801.02 2.74 1.03 2.771.01 2.68 1.02 2.711.02 2.68 1.02 2.681.02 2.66 1.03 2.681.05 2.71 1.05 2.711.08 2.75 1.09 2.781.13 2.86 1.13 2.861.19 2.98 1.19 2.981.25 3.10 1.25 3.101.33 3.26 1.31 3.211.39 3.38 1.37 3.381.45 3.49 1.42 3.421.53 3.61 1.49 3.52

196

Page 207: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amp) 0.0200 0.0200 0.0200Temperature 1.3°K 1.82°K 2.21°K(1/H)x1Q5 V R V R _V R_0.092 2.01 3.88 1.97 3.80 1.95 3.0.091 2.04 3.90 1.99 3.80 1.97 3.0 .090 2.05 3.88 1.99 3.78 1.99 3.0.089 2.05 3.84 2.00 3.75 1.98 3.0.088 1.99 3.66 1.96 3.61 1.94 3.0.087 1.94 3.54 1.90 3.47 1.88 3.0.086 1.87 3.38 1.84 3.33 1.83 3.0.085 1.73 3.08 1.71 3.04 1.72 3.0.084 1.66 2.93 1.65 2.91 1.67 2.0.083 1.61 2.82 1.61 2.82 1.63 2.0.082 1.54 2.65 1.54 2.65 1.57 2.0.081 1.52 2.60 1.53 2.61 1.56 2.0.080 1.51 2.54 1.51 2.54 1.54 2.0.079 1.51 2.52 1.50 2.50 1.53 2.0.078 1.46 2.40 1.49 2.44 1.53 2.0.077 1.49 2.40 1.52 2.46 1.61 2.

76767871574432069585706659555160

0.02502.580K

Y R2.44 3.762.46 3.762.47 3.742.46 3.692.40 3.542.34 3.422.27 3.292.15 3.062.09 2.952.04 2.861.98 2.731.97 2.691.95 2.621.95 2.601.97 2.592.09 2.70

0.03503.15°K

Y R3.30 3.633.33 3.633.34 3.613.34 3.593.27 3.443.19 3.333.14 3.252.97 3.022.92 2.942.86 2.862.77 2.722.75 2.682.74 2.632.74 2.612.79 2.622.97 2.74

0.01653.719K

Y R1.56 3.661.57 3.641.58 3.631.58 3.601.55 3.471.53 3.391.51 3.321.45 3.241.43 3.061.41 3.001.37 2.861.35 2.801.35 2.751.35 2.731.39 2.771.47 2.88

0.01654.2°K

Y R1.53 3.581.54 3.571.55 3.561.56 3.551.53 3.421.52 3.371.49 3.281.44 3.111.42 3.041.40 2.971.37 2.861.37 2.841.37 2.791.38 2.791.41 2.811.51 2.96

197

Page 208: The Hall Effect in Bismuth at High Magnetic Fields and Low

Cur. (amps) 0.0200 0.0200 0.0200Temperature 1.3°K 1.82°K 2.21°K(1/H)xl05 Y R Y R Y R0.0760.0750.074

1.571.932.17

2.523.053.40

1.631.912.10

2.613.023.29

1.712.002.18

2.743.163.42

0.0250 0.03502.58°K 5.15°K

Y R Y R2.20 2.82 3.13 2.872.54 3.21 3.63 3.282.80 3.51 3.91 3.50

0.0165 0.01655.71°K 4.20°g

Y R Y R1.55 3.01 1.58 3.071.75 3.35 1.77 3.391.89 3.60 1.89 3.60

198

Page 209: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated data: Field parallel binary, Hall probes perpendicular to trigonal and binary axes. R = (Vt)/(IH) x 10® ohm-cm./gauss; V is corrected Hall voltage in milli-volts,t = 0.56 cm.; I = 0.

Temperature 1.3°E (1/H)xl05 Y _R__0.333 0.17 0.760.323 0.18 0.780.313 0.19 0.800.303 0.20 0.820.294 0.21 0.830.286 0.22 0.840.278 0.23 0.860.270 0.26 0.950.263 0.28 0.990.256 0.29 1.000.250 0.30 1.010.244 0.30 0.980.238 0.29 0.930.233 0.29 0.910.227 0.29 0.89

amp.1.82°K 2.21°K

Y R V R0.17 0.76 0.17 0.760.18 0.78 0.17 0.740.19 0.80 0.17 0.720.20 0.82 0.19 0.780.21 0.83 0.20 0.790.23 0.88 0.23 0.880.25 0.93 0.25 0.930.27 0.98 0.27 0.980.28 0.99 0.28 0.990.29 1.00 0.29 1 .000.29 0.98 0.29 0.980.29 0.95 0.29 0.950.29 0.93 0.29 0.930.29 0.91 0.29 0.910.29 0.89 0.29 0.89

2.58°K 3.15°KV R Y R0.18 0.81 1.70 0.760.19 0.83 1.80 0.780.19 0.80 1.90 0.800.20 0.82 2.00 0.820.22 0.87 2.10 0.830.25 0.96 2.20 0.840.26 0.97 2.40 0.900.28 1.02 2.00 0.910.29 1.02 2.70 0.950.29 1.00 2.80 0.970.29 0.98 2.90 0.980.29 0.95 2.90 0 .950.29 0.93 2.90 0.930.29 0.91 2.90 0.910.31 0.95 2.90 0.89

5.71°K 4.3°E:Y R Y R0.17 0.76 0.18 0.810.18 0.78 0.19 0.830 .19 0.80 0.20 0.850.21 0.86 0.21 0.860.23 0.91 0.22 0.870.24 0.92 0.25 0.960.25 0.93 0.20 0.970.27 0.98 0.27 0.980 .28 0.99 0.28 0.990.28 0.97 0.28 0.970.28 0.94 0.28 0.940.28 0.92 0.28 0.920.28 0.90 0.28 0.900.30 0.94 0.31 0.970.32 0.98 0.35 1.07

199

Page 210: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(l/H)xlO5 _ V R

1.82°K 2.21°KV R V R

0.222 0 .51 0.930.217 0.33 0.470.213 0.40 1.140.208 0.45 1.260.204 0.49 1.340.200 0.51 1.370.196 0.53 1.400.192 0.55 1.420.189 0.57 1.450.185 0.59 1.470.162 0.59 1.440.179 0.58 1.390.175 0.56 1.320.172 0.56 1.300.170 0.58 1.320.167 0.60 1.340.164 0.61 1.34

.32 0.96 0.31 0.93

.37 1.05 0.32 0.94

.43 1.23 0.37 1.06

.47 1.32 0.41 1.15

.49 1.34 0.45 1.23

.51 1.37 .0.49 1.32

.53 1.40 0.51 1.34

.55 1.42 0.54 1.40

.56 1.42 0.56 1.42

.57 1.42 0.57 1.42

.57 1.39 0.57 1.39

.57 1.37 0.37 0.55

.57 1.34 0.56 1.32

.57 1.32 0.56 1.30

.58 1.32 0.57 1.30

.59 1.32 0.59 1.32

.60 1.32 0.60 1.32

00000000000000000

2.58°KV R0.35 1.040.39 1.140.45 1.230.46 1.290.48 1.320.51 1.370.53 1.400.54 1.400.55 1.400.55 1.370.55 1.340.55 1.320.56 1.320.57 1.320.58 1.320.59 1,320.59 1.30

5.15°KV R0.31 0.930.35 1.020.39 1.120.43 1.210.47 1.290.49 1.320.51 1.340.53 1.370.54 1.370.54 1.340.55 1.340.55 1.320.55 1.300.55 1.270.56 1.280.58 1.300.59 1.30

5.71°KV R0.35 1.040.38 1.110.41 1.170 ..45 1.260.47 1.290.49 1.320.50 1.320.51 1.320.52 1.320.53 1.320.53 1.290.53 1.270.53 1.250.55 1.270.57 1.300.58 1.300.59 1.30

4.2°KV R0.39 1.160.41 1.200.44 1.260.46 1.290.48 1.320.50 1.340.51 1.340.52 1.340.53 1.340.53 1.320.53 1.290.53 1.270.53 1.250.55 1.270.56 1.280.58 1.300.60 1.32

200

Page 211: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)x1Q5 v R 1.88°KV R

2.21°KV R

0.161 0.61 1.320.159 0.61 1.300.156 0.61 1.280.154 0.63 1.300.152 0.69 1.410.149 0.78 1.570.147 0.89 1.760.145 0.99 1.930.143 1.06 2.040.141 1.11 2.100.139 1.15 2.150.137 1.19 2.190.135 1.23 2.240.133 1.26 2.260.132 1.30 2.300.130 1.33 2.320.128 1.35 2.31

60 1.30 0.61 1.3261 1.30 0.63 1.3462 1.30 0.65 1.3665 1.34 0.67 1.3970 1.43 0.71 1.4579 1.58 0.77 1.5590 1.78 0.89 1.7699 1.93 0.99 1.9305 2.02 1.07 2.0611 2.10 1.12 2.1215 2.15 1.16 2.1619 2.19 1.19 2.1921 2.20 1.22 2.2225 2.24 1.25 2.2428 2.26 1.28 2.2632 2.30 1.30 2.2735 2.31 1.32 2.28

00000000111111111

2.58°KV R

3.15°EV R

3.71°EV R

4.2 °KV R

0.60 1.30 0.60 1.300.62 1.32 0.61 1.300.64 1.34 0.63 1.320.67 1.39 0.65 1.300.71 1.45 0.70 1.430.79 1.58 0.79 1.580.90 1.78 0.89 1.761.00 1.95 0.96 1.871.07 2.06 1.03 1.981.12 2.12 1.08 2.041.15 2.15 1.10 2.071.17 2.16 !.14 2.101.20 2.18 1.16 2.111.24 2.22 1.19 3.141.27 2.25 1.23 2.181.30 2.27 1.26 2.201.31 2.26 1.28 2.21

61 1.32 0.63 1.3762 1.32 0.65 1.3965 1.36 0.69 1.4569 1.43 0.73 1.5175 1.55 0.79 1.6183 1.67 0.85 1.7189 1.76 0.94 1.8696 1.87 1.00 1.9502 1.47 1.04 2.0106 2.01 1.08 2.0410 2.06 1.11 2.0713 1.90 1.14 2.1017 2.12 1.17 2.1221 2.17 1.19 2.1422 2.16 1.21 2.14.24 2.16 1.22 2.1325 2.15 1.23 2.12

00000000111111111

201

Page 212: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)x1Q5 _V r1.82°K

V R2.21°K

Y R0.127 1.38 2.35 1.37 2.33 1.33 2.260.125 1.39 2.34 1.38 2.32 1.35 2.270.123 1.40 2.32 1.37 2.28 1.34 2.220.122 1.39 2.28 1.36 2.23 1.34 2.200.121 1.37 2.22 1.34 2.17 1.33 2.160.119 1.32 2.11 1.30 2.08 1.29 2.060.118 1.28 2.02 1 ..27 2.01 1,27 2.010.116 1.25 1.95 1.24 1.95 1.25 1.950.115 1.24 1.92 1.25 1.93 1.25 1.930.114 1.23 1.88 1.25 1.91 1.27 1.940.112 1.25 1.89 1.28 1.94 1.30 1.970.111 1.30 1.94 1.34 2.00 1.35 2.020.110 1.38 2.04 1.43 2.11 1.43 2.110.109 1.49 2.18 1.55 2.26 1.52 2.220.108 1.63 2.36 1.68 2.43 1.63 2.360.106 1.77 2.53 1.80 2.58 1.75 2.500.105 1.90 2.69 1.93 2.73 1.89 2.68

2.58°KV R

5.15°KY R

5.71°KV R 4.2°K

Y R1.32 2.24 1.29 2.201.32 2.22 1.30 2.181.32 2.12 1.30 2.161.31 2.15 1.29- 2.121.29 2.09 1.28 2.081.27 2.03 1.27 2.031.26 1.99 1.26 1.991.26 1.97 1.26 1.971.27 1.96 1.28 1.981.30 1.99 1.30 1.991.35 2.04 1.34 2.021.43 2.14 1.41 2.101.51 2.23 1.48 2.191.62 2.37 1.58 2.311.72 2.49 1.67 2.421.82 2.60 1.78 2.541.93 2.73 1.88 2.66

1.26 2.14 1.23 2.091.27 2.14 1.24 2.081.27 2.11 1.24 2.061.26 2.07 1.24 2.041.26 2.04 1.24 2.011.25 2.00 1.24 1.981.25 1.98 1.25 1.981.26 1.97 1.27 1.981.28 1.98 1.29 1.991.31 2.00 1.33 2.031.37 2.07 1.39 2.101.43 2.14 1.45 2.161.51 2.23 1.53 2.261.60 2.34 1.61 2.361.69 2.44 1.70 2.461.79 2.56 1.78 2.541.87 2.65 1.87 2.65

202

Page 213: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K 1.82°K(1/H)xl05 V R T R_

2^21°KY R

0.104 2.02 2.820.103 2.14 2.960.102 2.23 3.060.101 2.32 3.150.100 2.39 3.210.099 2.45 3.260.098 2.50 3.330.097 2.55 3.330.096 2.55 3.330.095 2.56 3.280.094 2.57 3.260.093 2.57 3.200.092 2.56 3.160.091 2.55 3.120.090 2.53 3.060.089 2.51 3.010.088 2.49 2.93

03 2.84 2.02 2.8216 2.86 2.13 2.9525 3.09 2.23 3.0634 3.18 2.31 3.1440 3.22 2.36 3.1745 3.26 2.41 3.20

CD 3.27 2.45 3.2351 3.28 2.48 3.2453 3.27 2.50 3.2353 3.25 2.51 3.2155 3.24 2.52 3.2055 3.17 2.53 3.1555 3.15 2.53 3.1254 3.10 2.52 3.0853 3.06 2.51 3.0452 3.02 2.49 2.9949 2.93 2.45 2.89

22222222222222222

2.58°KY R2.02 2.822.11 2.922.21 3.032.27 3.082.33 3.132.39 3.182.43 3.202.46 3.212.49 3.222.50 3.202.51 3.182.51 3.122.51 3.102.50 3.052.49 3.012.47 2.962.92 2.85

5.15°KV R1.98 2.772.07 2.872.16 2.962.23 3.032.29 3.082.33 3.102.38 3.142.41 3.152.43 3.142.45 3.132.46 3*. 122.47 3.082.47 3.052.47 3.022.46 2.982.45 2.942.42 2.85

5.71°KY R1.95 2.752.05 2.842.12 2.912.19 2.982.25 3.022.29 3 .052.31 3.042.37 3.092.39 3.092.41 3.082.41 3.062.42 3.012.42 2.982.42 2.962.41 2.922.40 2.882.38 2.80

4.2°KY R1.95 2.732.02 2.802.09 2.872.15 2.922.20 2.962.25 3.002.28 3.002.31 3.012.33 3.012.34 3.002.35 2.982.36 2.942.37 2.922.37 2.402.36 2.862.35 2.822.34 2.76

203

Page 214: The Hall Effect in Bismuth at High Magnetic Fields and Low

smperature1/H)xl03 1.53°K 1.82°E 2.; 1—1CV7

V R Y R V R0.087 2.47 2.89 2.46 2.88 2.42 2.830.086 2.44 2.83 2.42 2.80 2.39 2.770.085 2.34 2.66 2.33 2.65 2.30 2.620.084 2.28 2.58 2.27 2.57 2.25 2.540.083 2.19 2.45 2.21 2.48 2.21 2.480.082 2.09 2.30 2.13 2.35 2.13 2.350.081 2.09 2.29 2.13 2.33 2.13 2.330.080 2.15 2.31 2.19 2.35 2.17 2.330.079 2.21 2.36 2.23 2.38 2.21 2.360.078 2.25 2.36 2.26 2.37 2.24 2.350.077 2.21 2.29 2.24 2.32 2.25 2.330.076 2.17 2.23 2.24 2.30 2.28 2.340.075 2.31 2.34 2.41 2.44 2.44 2.460.074 2.55 2.56 2.60 2.61 2.59 2.60

2.58°KY R2.38 2.782.38 2.722.27 2.592.23 2.522.20 2.462.15 2.372.15 2.352.19 2.352.21 2.362.26 2.372.29 2.372.32 2.382.49 2.522.64 2.65

5 .150KV R2.40 2.802.37 2.752.31 2.632.27 2.572.24 2.512.19 2.412.18 2.382.19 2.352.20 2.342.27 2.382.31 2.392.38 2.442.55 2.582.67 2.68

5.71°KY R2.36 2.762.34 2.712.29 2.612.26 2.552.24 2.512.19 2.412.19 2.392.21 2.312.23 2.382.31 2.432.36 2.442.41 2.472.57 2.602.69 2.70

4.2°KV R2.33 2.722.31 2.682.27 2.592.25 2.542.23 2.502.20 2.422.20 2.402.22 2.382.23 2.382.29 2.402.37 2.452.43 2.502.62 2.652.72 2.74

204

Page 215: The Hall Effect in Bismuth at High Magnetic Fields and Low

Calculated Data: Field parallel to binary; Hall probes parallel to trigonal axis. R = (Yt)/(IH} x 106 ohm-cm./gauss; Y is corrected Hall voltage in milli-volts; t = 0.56 cm.; I = 0.0417 amp.aneratureL?H)x 103 13 . °K 1.82°K 2.21°K 2.!58°K 3.15°K: 3.71°K 4.2°IC

V R Y R Y R V R V R Y R Y R0.533 0.19 0.85 0.19 0.85 0.17 0.76 0.19 0.85 0.18 0.51 0.17 0.76 0.19 0.850.325 0.20 0.87 0.20 0.87 0.18 0.78 0.20 0.87 0.19 0.83 0.18 0.78 0.20 0.870.313 0.21 0.88 0.21 0.88 0.19 0.80 0.21 0.88 0.21 0.88 0.19 0.80 0.21 0.880.303 0.22 0.90 0.22 0.90 0.21 0.86 0.22 0.90 0.22 0.90 0.20 0.82 0.22 0.900.294 0.23 0.91 0.24 0.95 0.24 0.95 0.24 0.95 0.24 0.95 0.22 0.87 0.23 0.910.286 0.25 0.96 0.27 1.04 0.25 0.96 0.26 1.00 0.26 1.00 0.24 0.92 0.25 0.960.278 0.27 1.01 0.29 1.08 0.27 1.01 0.28 1.04 0.27 1.01 0.26 0.97 0.27 1.010.270 0.29 1.05 0.30 1.09 0.29 1.05 0.29 1.05 0.29 1.05 0.27 0.98 0.28 1.020.203 0.31 1.10 0.31 1.10 0.30 1.06 0.30 1.06 0.30 1.06 0.29 1.03 0.29 1.030.S56 0.31 1.10 0.31 1.07 0.30 1.03 0.31 1.07 0.31 1.07 0.29 1.00 0.29 1.000.250 0.33 1.11 0.32 1.08 0.50 1.01 0.31 1.04 0.31 1.04 0.29 0.98 0.29 0.980. 244 0.33 1.08 0.32 1.05 0.30 0.98 0.31 1.02 0.31 1.02 0.30 0.98 0.30 0.980.238 0.33 1.06 0.32 1.02 0.29 0 .93 0.31 0.99 0.30 0.96 0.29 0.93 0.31 0.990.233 0.34 1.06 0.31 0.97 0.30 0.94 0.33 1.03 0.31 0.97 0.30 0.94 0.33 1.030.227 0.31 0.95 0.31 0.95 0.32 0.98 0.36 1.10 0.33 1.01 0.33 1.01 0.36 1.10

205

Page 216: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(l/l-pxlO5 _V R

1.82°KY R

2.21°EY R

0.222 0.34 1.010.217 0.39 1.140.213 0.43 1.230.208 0.47 1.320.204 0.51 1.400.200 0.54 1.450.196 0.57 1.500.192 0.60 1.550.189 0.61 1.550.185 0.62 1.540.182 0.62 1.510.179 0.61 1.460.175 0.60 1.410.172 0.59 1.370.170 0.59 1.340.167 0.52 1.390.164 0.65 1.43

34 1.01 0.35 1.0440 1.17 0.40 1.1745 1.29 0.45 1.2950 1.40 0.49 1.3753 1.45 0.53 1.4556 1.51 0.55 1.4859 1.55 0.56 1.4760 1.55 0.57 1.4761 1.55 0.58 1.4951 1.52 0.59 1.4761 1.49 0.59 1.4460 1.44 0.59 1.4159 1.39 0.59 1.3958 1.34 0.59 1.3759 1.34 0.59 1.3462 1.39 0.60 1.3464 1.41 0.63 1.39

00000000000000000

2.58°K 3.15°K 3.71°K 4.2°KY R Y R Y R V R0.40 1.19 0.37 1.10 0.37 1.10 0.39 1.160.44 1.28 0.41 1.20 0.41 1.20 0.42 1.230.48 1.37 0.44 1.26 0.44 1.26 0.45 1.290.50 1.40 0.48 1.34 0.47 1.32 0.47 1.320.53 1.45 0.51 1.40 0.49 1.34 0.49 1.340.54 1.45 0.53 1.42 0.51 1.37 0.51 1.370.55 1.45 0.55 1.45 0.53 1.40 0.52 1.370.57 1.42 0.56 1.45 0.54 1.39 0.53 1.370.58 1.47 0.57 1.45 0.55 1.39 0.54 1.370.59 1.47 0.57 1.42 0.55 1.37 0.54 1.340.59 1.44 0.57 1.39 0.55 1.34 0.55 1.340.59 1.41 0.57 1.37 0.55 1.32 0.55 1.320.59 1,39 0.51 1.34 0.55 1.30 0.56 1.320.59 1.37 0.59 1.37 0.56 1.29 0.57 1.320.60 1.37 0.60 1.37 0.58 1.32 0.59 1.340.61 1.37 0.61 1.37 0.59 1.32 0.60 1.340.62 1.37 0.63 1.39 0.61 1.34 0.61 1.34

206

Page 217: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)xl03 V R

1.82°KV R

2.21°KV R

0.161 0.65 »—1•1—1

0.159 0..66 1.410.156 0.66 .1.380.154 0.69 to•I—1

0.152 0.73 1.490.149 0.79 1.580.147 0.88 1.740.145 1.00 1.950.143 1.10 2.110.141 1.17 2.210.139 1.22 2.280.137 1.27 2.340.135 1.30 2.360.133 1.33 2.380.132 1.36 2.390.130 1.40 2.440.128 11.43 2.46

65 1.41 0.65 1.4165 1.36 0.66 1.4167 1.41 0.67 1.4170 1.45 0.71 1.4775 1.53 0.74 1.5183 1.66 0.81 1.6293 1.83 0.91 1.8003 2.00 1.01 1.9711 2.13 1.09 2.0917 2.21 1.16 2.2022 2.28 1.21 2.2625 2.30 1.21 2.2329 2.36 1.27 2.3133 2.38 1.30 2.3336 2.39 1.33 2.3439 2.42 1.35 2.3542 2.44 1.36 2.34

00000001111111111

2.58°K 5.15°KV R V R0.63 1.36 0.64 1.390.65 1.39 0.66 1.410.69 1.45 0.69 1.450.70 1.45 0.72 1.490.74 1.51 0.76 1.550.80 1.60 0.74 1.680.90 1.78 0.93 1.841.01 1.97 1.00 1.951.08 2.07 1.06 2.031.15 2.18 1.12 2.121.19 2.22 1.17 2.181.23 2.26 1.21 2.231.25 2.27 1.24 2.251.27 2.27 1.27 2.271.29 2.27 1.29 2.271.31 2.28 1.31 2.281.33 2.29 1.32 2.27

5.71°K 4.2°%V R V R0.63 1.86 0.63 1.060.66 1.41 0.66 1.410.69 1.45 0.70 1.470.71 1.47 0.74 1.530.79 1.61 0.81 1.650.85 1.70 0.87 1.740.91 1.80 0.93 1.840.98 1.91 1.00 1.951.04 2.00 1.05 2.011.11 2.10 1.09 2.061.15 2..14 1.13 2.111.19 2.19 1.16 2.141.23 2.24 1.19 2.161.25 2.24 1.21 2.171.27 2.24 1.24 2.181.28 2.23 1.26 2.201.29 2.22 1.27 2.19

207

Page 218: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)xl03 _V R

1.82°KV R

2.21°EV R

0 .1 2 7 1 . 4 5 2 .4 7

0 .125 1 . 4 5 2 . 4 4

0 . 1 2 3 1 . 4 5 2 . 4 0

0 . 1 2 2 1 . 4 5 2 . 3 8

0 . 1 2 1 1 . 4 2 2 . 3 0

0 . 1 1 9 1 . 3 8 2 . 2 1

0 . 1 1 8 1 . 3 4 2 . 1 2

0 . 1 1 6 1 . 3 1 2 . 0 5

0 . 1 1 5 1 . 2 9 1 . 9 9

0 . 1 1 4 1 . 2 9 1 . 9 7

0 . 1 1 2 1 . 3 1 1 . 9 8

0 . 1 1 1 1 . 3 6 2 . 0 3

0 . 1 1 0 1 . 4 7 2 . 1 7

0 . 1 0 9 1 . 5 2 2 . 2 2

0 . 1 0 8 1 . 7 6 2 . 5 4

0 . 1 0 6 1 . 9 0 2 . 7 2

0 . 1 0 5 2 . 0 2 2 . 8 6

44 2 . 4 6 1 . 3 7 2 . 3 3

44 2 . 4 2 1 . 3 7 2 . 3 0

44 2 . 3 9 1 .3 7 2 .2 7

41 2 . 3 1 1 .3 7 2 . 2 5

38 2 . 2 4 1 . 3 5 2 . 1 9

34 2 . 1 4 1 . 3 3 2 . 1 3

31 2 . 0 7 1 . 3 1 2 . 0 7

30 2 . 0 3 1 . 3 0 2 . 0 3

29 1 . 9 9 1 . 3 1 2 . 0 2

30 1 . 4 9 1 . 3 3 2 . 0 3

34 2 . 0 2 1 . 3 8 2 . 0 8

41 2 . 1 1 1 . 4 4 2 . 1 5

49 2 . 2 0 1 . 5 2 2 . 2 4

60 2 . 3 4 1 . 6 1 2 . 3 9

74 2 . 5 2 1 . 7 3 2 . 5 0

88 2 .6 9 1 . 8 4 2 . 6 3

02 2 . 8 6 1 . 9 6 2 .7 7

11111111111111112

2.58°K 3.15°K 3.71°E 4.2°%V R Y R V R V R

1 . 3 5 2 . 3 0 1 . 3 3 2 . 2 6 1 . 2 9 2 .1 9 1 . 2 8 2 . 1 8

1 . 3 6 2 . 2 8 1 . 3 3 2 . 2 4 1 . 3 0 2 . 1 8 1 . 2 8 2 . 1 5

1 . 3 7 2 .2 7 1 . 3 3 2 . 2 1 1 . 3 0 2 . 1 6 1 . 2 8 2 . 1 2

1 . 3 6 2 . 2 3 1 . 3 3 2 . 1 8 1 . 3 0 2 . 1 3 1 . 2 8 2 . 1 0

1 . 3 5 2 . 1 9 1 . 3 2 2 . 1 4 1 . 3 0 2: .1 1 1 . 2 8 21.07

1 . 3 3 2 . 1 3 1 . 3 1 2 . 1 0 1 . 3 0 2 . 0 8 1 . 2 9 2 . 0 6

1 . 3 1 2 . 0 7 1 . 3 1 2 . 0 7 1 . 3 0 2 . 0 6 1 . 3 0 2 .06

1 . 3 1 2 . 0 5 1 . 3 1 2 . 0 5 1 . 3 1 2 . 0 5 1 . 3 1 2 . 0 5

1 . 3 3 2 . 0 5 1 . 3 3 2 . 0 5 1 . 3 2 2 . 0 4 1 . 3 5 2 . 0 8

1 . 3 6 2 . 0 3 1 . 3 6 2 . 0 8 1 . 3 5 2 . 0 6 1 . 3 9 2 . 1 2

1 . 4 1 2 . 1 3 1 . 4 1 2 . 1 3 1 . 3 9 2 . 1 0 1 . 4 3 2 . 1 6

1 . 4 6 2 . 1 8 1 .4 7 2 . 2 0 1 . 4 5 2 . 1 6 1 . 4 9 2 . 2 2

1 . 5 4 2 . 2 8 1 . 5 4 2 . 2 8 1 . 5 2 2 . 2 4 1 . 5 7 2 . 3 2

1 . 6 2 2 .3 7 1 . 6 3 2 . 3 8 1 .6 0 i 2 . 3 4 1 . 6 5 i 2.4L

1 . 7 2 2 . 4 9 1 . 7 3 2 . 5 0 1 . 6 9 2 . 4 4 1 .7 4 2 . 5 2

1 . 8 3 2 . 6 2 1 . 8 4 2 . 6 3 1 . 7 9 2 . 5 6 1 . 8 3 2 . 6 2

1 . 9 5 2 . 7 6 1 . 9 4 2 . 7 4 1 . 8 8 2 . 6 6 1 . 9 2 2 . 7 2

Page 219: The Hall Effect in Bismuth at High Magnetic Fields and Low

oTemperature 1.5 K (1/H)xl05 V R

1.82°EY R

2.21°K Y R

0.104 2.15 3.00 2.14 2.98 2.07 2.880.103 2.27 3.15 2.25 3.12 2.19 3.040.102 2.36 3.21 2.34 3.21 2.28 3.130.101 2.45 3.33 2.42 3.29 2.37 3.220.100 2.52 3.38 2.49 3.34 2.43 3.260.099 2.58 3.43 2.54 3.38 2.48 3.300.098 2.62 3.42 2.58 3.40 2.52 3.320.097 2.66 3.47 2.61 3.40 2.56 3.340.096 2.68 3.42 2.65 3.40 2.59 3.350.095 2.69 3.44 2.64 3.38 2.61 3.340.094 2.70 3.42 2. 65 3.33 2.63 3.320.093 2.69 3.37 2.65 3.30 2.63 3.270.092 2.68 3.30 2.64 3.26 2.62 3.230.091 2.67 3.26 2.63 3.21 2.61 3.190.090 2.65 3.22 2.62 3.17 2.60 3.150.069 2.65 3.18 2.61 3.13 2.58 3.100.088 2.61 3.08 2.58 3.04 2.53 2.98

2.158 °K 3.15°K o3.71 K 4J2°KY R V R Y R V R2.06 2.87 2.05 2.86 1.98 2.76 2.00 2.782.17 3.01 2.16 2.99 2.07 2.87 2.09 2.902.26 3.10 2.24 3.07 2.15 2.95 2.15 2.952.34 3.18 2.30 3.12 2.23 3.03 2.22 3.022.41 3.24 2.36 3.17 2.29 3.08 2.27 3.052.47 3.29 2.41 5.21 2.34 3.11 2.31 3.082.52 3.32 2.45 3.23 2.38 3.13 2.35 3.102.55 3.33 2.49 3.25 2.42 5.16 2.39 3.122.58 3.33 2.52 3.26 2.45 3.17 2.41 3.112.59 3.31 2.53 3.24 2.47 3.16 2.43 3.11:.61 !3.31 2.55 I5.23 2.49 21.16 2.44 3.092.60 3.24 2.57 3.20 2.50 3.11 2.45 3.052.69 3.32 2.56 3.16 2.50 3.08 2.45 3.022.58 3.15 2.56 3.12 2.50 3.05 2.45 2.992.57 3.11 2.55 3.09 2.49 3.01 2.45 2.972.55 3.06 2.54 3.06 2.48 2.95 2.44 2.932.51 2.96 2.99 2.94 2.45 2.89 2.41 2.84

209

Page 220: The Hall Effect in Bismuth at High Magnetic Fields and Low

Temperature 1.3°K(1/H)xl05 V R 1.82°K

V R2.21°e;

V R

0.087 2 .5 8 5 .0 2 2 .55 2 .9 8 2 .5 0 2.92

0.085 2.54 2.94 2.51 2.91 2.45 2.890.085 2.43 2.77 2.41 2.75 2.37 2.700.084 2.35 2.65 2.35 2.65 2.32 2.620.083 2.27 2.54 2.30 2.58 2.27 2.540.082 2.16 2.38 2.21 2.43 2.21 2.430.081 2.17 2.37 2.21 2.41 2.20 2.400.060 2.26 2.43 2.27 2.44 2.24 2.410.079 2.31 2.46 2.31 2.47 2.27 2.420.078 2.36 2.48 2.35 2.47 2.32 2.490.077 2.30 2.38 2.33 2.41 2.34 2.420.076 2.25 2.31 2.34 2.40 2.35 2.410.075 2.45 2.48 2.49 2.51 2.55 2.560.074 2.702.71 2.66 2.67 2.68 2.69

2.58°KV R

5.15°KV R

5.71°KV R

4.2°kV R

2.47 2.89 2.47 2.89

2.43 2.81 2.43 2.812.36 2.64 2.36 2.692.31 2.61 2.33 2.632.28 2.55 2.30 2.582.24 2.46 2.24 2.462.23 2.44 2.23 2.442.26 2.43 2.25 2.422.29 2.44 2.28 2.432.35 2.47 2.35 2.472.39 2.47 2.41 2.492.43 2.49 2.46 2.522.59 2.62 2.64 2.672.72 2.73 2.78 2.79

2 .43 2 .8 4 2.40 2 .80

2.41 2.79 2.38 2.762.35 2.68 2.35 2.682.32 2.62 2.35 2.632.30 2.58 2.31 2.592.27 2.50 2.27 2.502.26 2.47 2.27 2.482.28 2.45 2.29 2.482.29 2.44 2.31 2.472.35 2.47 2.37 2.492.43 2.51 2.46 2.542.50 2.56 2.52 2.582.68 2.71 2.68 2.712.80 2.81 2.78 2.79

210

Page 221: The Hall Effect in Bismuth at High Magnetic Fields and Low

AUTOBIOGRAPHY

Theodore Edward Leinhardt was born September 5, 1921, in Gretna, Louisiana, He attended public schools in this town, graduating from Gretna High School in 1938, After serving four years in the United States Army Signal Corps, he enrolled in the School of Engineering at Louisiana Polytechnic Institute in 1946. He received the Bachelor of Science degree in Physics from this institute in 1950. Then he entered the Graduate School of Louisiana State University and received the Master of Science degree in Physics in 1952. At the present he is a candidate for the degree of Doctor of Philosophy in the Department of Physios.

211

Page 222: The Hall Effect in Bismuth at High Magnetic Fields and Low

EXAMINATION AND THESIS REPORT

Candidate: Theodore Edward Leinhardt

Major Field: Physics

Title of Thesis: The Hall Effect in Bismuth at High Magnetic Fields and Low Temperatures

Approved:

'Major Pm£(3s£or andy6hairman

E"tfie (Graduate School

EXAMINING COMMITTEE:

X h > ^ a ._______

D ate of Examination: J u l y 16> 1956