35
The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

Embed Size (px)

Citation preview

Page 1: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

The Gravity Probe B Experiment: Data Analysis Journey

Michael Heifetz

On Behalf of GP-B Data Analysis Team

Page 2: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

2

MG12 Paris 12-18 July, 2009

Gravity Probe B Concept

Page 3: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

3

MG12 Paris 12-18 July, 2009

Science Signal

s

aberration

GuideStar

s

- spin axis direction

- roll axis direction

Apparent Guide Star

s

EWe NSe

GSe Measurement:

Spin-Roll Misalignment

Page 4: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

4

MG12 Paris 12-18 July, 2009

Science Signal

)sin()(

)cos()(

rEWEW

rNSNS

s

s

Science Signal Spectral Shift (Roll Frequency)

SQUID Readout System

SQUID Pick-up Loop Rolls with S/C

aberration

GuideStar

s

- spin axis direction

- roll axis direction

Apparent Guide Star

s

EWe NSe

GSe

Page 5: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

5

MG12 Paris 12-18 July, 2009

3 Sep 04

30 Mar 05

Science Signal

noisebias

s

sCZ

rEWEW

rNSNSgSQUID

)]sin()(

)cos()([

Apparent Guide Star

Aberration

Aberration -- Nature's calibrating signal for

gyro scale factor Cg

s

EWe NSe

GSe

GuideStar

Annual aberration

Readout Output

• Orbital motion:– Varying apparent position of star

(vorbit/c + special relativity)• Spacecraft around Earth:

- 5.1856 arcsec (97.5 min period)• Earth around Sun:

– 20.4958 acrsec (1 yr period)

Page 6: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

6

MG12 Paris 12-18 July, 2009

Pre-Flight Data Analysis Strategy

Constant - calibrated based on orbital and annual aberration

,gCSurprise A: variationsSurprise A: variationsgC

Gyro orientation trajectory and - straight lines )(tsNS

)(tsEW

Surprise B: Patch Effect TorqueSurprise B: Patch Effect Torque

noisebias

s

sCZ

rEWEW

rNSNSgSQUID

)]sin()(

)cos()([

Scale FactorScale Factor

Page 7: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

7

MG12 Paris 12-18 July, 2009

Expected Gyroscope Behavior

Geodetic effect(-6571 marcsec/yr)

Frame-dragging effect(-75 marcsec/yr)

Newton’s universe

Newton’s universe Includes Solar Geodetic and Guide Star Proper Motion

Page 8: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

8

MG12 Paris 12-18 July, 2009

Flight Data (Gyro 2)

Page 9: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

9

MG12 Paris 12-18 July, 2009

Three Pillars of GPB Data Analysis

InformationTheory

Filter Implementation: Numerical Estimation Techniques

Understanding of Gyroscope Motion: Trapped Flux Mapping (TFM)

Torque Models

UnderlyingPhysics

Readout Science Signal Structure: Measurement Models

UnderlyingPhysics,

Engineering

Page 10: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

10

MG12 Paris 12-18 July, 2009

Data Analysis Structure: ‘Two-Floor’ Processing

Torque Modeling

Gyro Orientation Time History

Data Analysis Building

SQUID Readout Processing First Floor

Second Floor

RelativityMeasurement

Full Information Matrix

Page 11: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

11

MG12 Paris 12-18 July, 2009

Structure of Two-Floor Analysis

SQUID Science Signal

(2 sec sampling rate)

1st Floor One Orbit Estimator

1st Floor

No Torque Modeling

Gyro Orientation Profiles (NS, EW) (1 point per orbit)

Gyro Scale Factor Estimates

Kalman Filter (Smoother)

Torque Model2nd Floor

Relativity Estimate

Torque coefficients Estimates

Gyro Orientation Profiles (NS, EW) (1 point per orbit)

Data Reduction

Page 12: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

12

MG12 Paris 12-18 July, 2009

1st Floor Challenges: How to Pull Out Gyro Orientation from SQUID Data

complete

Readout scale factor time-variations(“Cg Polhode modeling”)

Pointing error compensation (“Gyro/Telescope scale factor matching”)

Data Grading (quality of inputs)

Bias modeling (e.g. polhode variations, bias jumps)

Electronic Control Unit noise elimination

Most Difficult ProblemsMost Difficult Problems

Page 13: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

13

MG12 Paris 12-18 July, 2009

Trapped Flux & Readout Scale Factor

Tra

pp

ed

mag

neti

c p

ote

nti

al (V

)

I2

I3

I1

6 Sept 200426 June 20054 Oct 200414 Nov 200420 Feb 200520 Dec 2004

Gyro 1body frame

polhode

ˆ

ˆ ˆ

s

s

sss

s

Page 14: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

14

MG12 Paris 12-18 July, 2009

Successes of Trapped Flux Mapping Parameter Error

Angular velocity, 10 nHz~ 10-10

Polhode phase, p ~ 1

Rotor orientation ~ 2

Trapped magnetic potential ~ 1%

Gyroscope scale factor, Cg ~ 10-4

I3

I2

Path of spin axis in gyro body

I1

I3

I2I1

Trapped magnetic potential

s

Rela

tive C

g vari

ati

ons

Page 15: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

15

MG12 Paris 12-18 July, 2009

Scale Factor Model

N

ngg CtC

0

10blue – an(t) and bn(t)

red - fit to ε(t)

0000

00

00

Harmonic expansion in polhode phase with coefficients that depend on polhode angleHarmonic expansion in polhode phase with coefficients that depend on polhode angle

Trapped Flux Mapping

Trapped Flux Mapping

- Polhode phase - Polhode phasep

- Polhode angle - Polhode angle

.2

)(tan,)()(,)()(

,))(sin()())(cos()(1)(

00

00

ttbtbtata

tnbtnag

Ctg

C

K

k

knk

nn

K

k

knk

nn

N

npnpn

Gyro principle axes of inertia and instant spin axis position

p

I3

I1

I2

p

Page 16: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

16

MG12 Paris 12-18 July, 2009

Gyroscope-Telescope Scale Factor Matching

Reduces coupling of vehicle motion to science signal from 20 to 0.1 marc-sec

SQ1 Signal PSD - Unmatched

Frequency (Hz)

1 2 3 4 5 6Roll ±Orbital

1 – Roll2 – 2xRoll3 – dither 14 – dither 25 – 3xRoll6 – 4xRoll

SQ1 Signal PSD - Matched

Matched Gyroscope (SQUID) DataMatched Gyroscope (SQUID) Data

Telescope DataTelescope Data

Spectrum of SQUID Signal:before and after matchingPointing error compensation

Page 17: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

17

MG12 Paris 12-18 July, 2009

SQUID DataSQUID Data

SQUID No-bias Signal

SQUID No-bias Signal

Nonlinear Least-Squares Estimator

(No Torque Modeling)

Nonlinear Least-Squares Estimator

(No Torque Modeling)

Roll PhaseData

Roll PhaseData

AberrationData

AberrationData

Data Grading

Data Grading

ττ

μμ

Batch length: 1orbit Batch length: 1orbit Bias

EstimatorBias

Estimator

Cg (tk*)CT (tk*) δφ(tk*)

Cg (tk*)CT (tk*) δφ(tk*)

ResidualsResiduals

Pointing/Misalignment Computation

Pointing/Misalignment Computation

TelescopeData

TelescopeData

Roll PhaseData

Roll PhaseData

AberrationData

AberrationData

OUTPUT:Pointing

OUTPUT:PointingGSV/GSIGSV/GSI

Polhode PhaseData

Polhode PhaseDataTrapped

Flux Mapping

Trapped Flux

Mapping Polhode AngleData

Polhode AngleData

Full Information Matrix

Full Information Matrix

Gyro Orientation(1 point/orbit)

Gyro Orientation(1 point/orbit)

Full State Vector Estimates

Full State Vector Estimates

gC Gyro Scale Factor ModelGyro Scale Factor Model

Let’s look at the gyro

orientation profiles…

G/T MatchingG/T Matching

First Floor: SQUID Readout Data Processing

Page 18: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

18

MG12 Paris 12-18 July, 2009

1st Floor Output: Gyro Orientation (NS direction)

Seeing Strong Geodetic in ‘Raw’ Data

Page 19: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

19

MG12 Paris 12-18 July, 2009

1st Floor Output: Gyro Orientation (EW direction)

The Name of the Game – Frame-Dragging!

Page 20: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

20

MG12 Paris 12-18 July, 2009

Patch Effect & Pre-launch Investigations

rotor surface

housing surface

SEM image of rotor Nb film

• The patch effect• surface layer with variable electric dipole moment density

• Pre-launch investigation• Rotor electric dipole moment + field gradient from suspension• Kelvin probe measurements:

• Contact potentialdifferences ~ 100 mV

• Mitigated / eliminated by grainsize, < 1 μm << 30 μm gap

Page 21: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

21

MG12 Paris 12-18 July, 2009

Evidence for Patch Effect• Exhibit A: Gyroscope spin-down

Gyro Spin-down period (yr)

1 15,800

2 13,400

3 7,000

4 25,700

Polhode period vs elapsed time since January 1, 2004

Gyro

1,

Tp (

hr)

Gyro

4,

Tp (

hr)

Time (days) Time (days)

Blue: Worden Red: Santiago & Salomon

• Exhibit B: Changing polhode period

Page 22: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

22

MG12 Paris 12-18 July, 2009

More Evidence for Patch Effect• Exhibit C: Orbit determination

• Anomalous z-axis acceleration ~ 10-8 N, modulated at polhode frequency

• Exhibit D: Large misalignment torques

Mean East-West misalignment

Mean N

ort

h-S

outh

mis

alig

nm

ent Mean rate (marcsec/day) vs. mean misalignment (arcsec)

1000

2000

3000

4000

30

210

60

240

90

270

120

300

150

330

180 0

0 500 1000 1500 2000 2500 3000 3500 40000

0.5

1

1.5

2

2.5

3

3.5

4

Dri

ft r

ate

mag

nit

ud

e (

arc

sec/

day)

Mean misalignment (arcsec)

k = 2.5 arc sec/day/degree

Page 23: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

23

MG12 Paris 12-18 July, 2009

Misalignment Torque (Roll Averaged)

GuideStar

s

NS vs. EW misalignment,

-20 -10 0 10 20EW misalignment (arcsec)

Misalign-ment angle

Misalignment Phasey

Uniform Radial

Precession(Relativity)

Torque-induceddrift

RN

E

µ

NS

mis

alig

nm

ent

(arc

sec)

-15

-1

0 -5

0

5

1

0 1

5

NSNSEWEW

EWEWNSNS

stkrdt

ds

stkrdt

ds

)(

,)(

• Torque • Drift

• Torque coefficient: k(p)• Relativity fixed in inertial frame

Aberration spectrally shifts misalignment torque

2nd Floor Torque Model

(2006- 2007)

Page 24: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

24

MG12 Paris 12-18 July, 2009

Relativity Estimates (Misalignment Torque Modeling) 2007

Gyro 3

Gyro 4

Gyro 1

Gyros 1, 3, 4 combined

GR predictionGR prediction

Gyro 3

Gyro 4

Gyro 1

Gyros 1, 3, 4 combined

Page 25: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

25

MG12 Paris 12-18 July, 2009

Discovery of Roll-resonance Torque (non roll-average)

• Exhibit E: Roll-polhode resonance ‘jumps’– ‘Jumps’ occur when high harmonic of changing polhode

rate, mpolh , is coincident with roll rate, roll

Date (2005)

Or Even More Evidence for Patch Effect

142 139140141145 144 143 138146

sEW

res. m

EW

ori

enta

tion,

s EW (

arc

sec) Gyro 2 flight data

)(tm pr

Page 26: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

26

MG12 Paris 12-18 July, 2009

Discovery of Roll-Polhode Resonance Torques

Resonance

Resonance

Page 27: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

27

MG12 Paris 12-18 July, 2009

Full Torque Model -Unknown (estimated) parameters-Unknown (estimated) parameters

)()()(

);()()(

0

0

tmtt

tmtt

rm

rm

Resonances: )(tm pr

- S/C roll axis direction),(EWNS

)](sin)()(cos)([)(0020

001

tmktmktkm

kM

mm

k

mnkN

nmn

mn

m

m Mmtk

k

k

k,...,1,0),(01

00

2

1

2

1

Trapped Flux

Mapping

Polhode Phase ( ),Polhode Angle ( )

00

)2/tan( 00

)](sin)(cos)(sin)(cos[))((

)](sin)(cos)(sin)(cos[))((

0 10

0 10

tatbtatbstkrdt

ds

tbtatbtastkrdt

ds

mmnmmnmmnmmn

Mc

m

Nc

n

n

NSNSEW

EW

mmnmmnmmnmmn

Mc

m

Nc

n

n

EWEWNS

NS

Roll-resonance torqueRelativity Misalignment torque

Page 28: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

28

MG12 Paris 12-18 July, 2009

2nd Floor Kalman Filter

Output:• Torque related variables:

- torque coefficients - modeled torque contributions

- Reconstructed “relativistic” trajectory

Kalman Filter / Smoother

Torque Contribution Subtraction

Relativity

Estimates

Gyro Orientation

Profiles

State vector: }{},{,,),(),( ckrrtstsxEWNSEWNS

)(),()( 11 kkkk txttFtx

kkk tHxtz )()( 1

Propagation Model:

Measurement Model:

“Measurements”

Page 29: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

29

MG12 Paris 12-18 July, 2009

Measured & Reconstructed Orientations

Page 30: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

30

MG12 Paris 12-18 July, 2009

Measured & Reconstructed Orientations (G4)

1st Floor Output

2nd Floor Output

Page 31: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

31

MG12 Paris 12-18 July, 2009

Measured & Reconstructed Orientations (G2)

Page 32: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

32

MG12 Paris 12-18 July, 2009

Current Results

Einstein’s prediction

NS: -65711 marcsec/yr

EW: -751 marcsec/yr

(includes solar GR effects and guide star proper motion)

Relativity estimates from 155-day analysis

• For the first time GR estimates agree among gyros• Statistical uncertainty: < 0.5% of geodetic effect

~ 14% of frame-dragging

4-gyro combined result

NS: -656512.3 marcsec/yr

EW: -80.45.4 marcsec/yr

(50% probability)

Page 33: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

33

MG12 Paris 12-18 July, 2009

Locking in the Final Results• Current (statistical) limit: ~14% of frame-

dragging• Fundamental limit from covariance analysis:

~ 5% of frame-dragging

• Reaching this fundamental limit requires:

1. Expanding analysis to full year of science data

2. Once-per-orbit averaging 2-sec processing Enabled by parallel computing

• A definitive result requires completing critical and detailed treatment of systematic effects

Page 34: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

34

MG12 Paris 12-18 July, 2009

One OrbitGyro Motion

Why 2-sec Filter?

Page 35: The Gravity Probe B Experiment: Data Analysis Journey Michael Heifetz On Behalf of GP-B Data Analysis Team

35

MG12 Paris 12-18 July, 2009

• Serial 2-sec processing (160 days) Aug ’09

• Complete transition to parallel processing Oct ’09

• Extension to full mission (353 days) Dec ’09

• Complete treatment of systematics Feb ’10

• Grand synthesis ~ 2 marcs/yr Jun ’10 4-gyro limit Final results to be announced at Fairbank Workshop on

Fundamental Physics & Innovative Engineering in SpaceAug ’10

Path to Completion