33
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The Grad-Shafranov Equations of Axisymmetric, Nonstationary Models of the Central Engine in an Active Galactic Nucleus Yoo Geun SONG Korea Astronomy and Space Science Institute, University of Science and Technology MARCH 23rd, 2016

The Grad-Shafranov Equations of Axisymmetric, Nonstationary Models …ust.kasi.re.kr/JC-ref/USTJC_ygsong_0323.pdf · 2016-06-24 · The Grad-Shafranov Equations of Axisymmetric, Nonstationary

Embed Size (px)

Citation preview

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

The Grad-Shafranov Equations of Axisymmetric,Nonstationary Models of the Central Engine in an

Active Galactic Nucleus

Yoo Geun SONG

Korea Astronomy and Space Science Institute,University of Science and Technology

MARCH 23rd, 2016

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

INTRODUCTION

CONTENTS

I. INTRODUCTION

II. BLACK HOLE ASTROPHYSICS

III. AXISYMMETRIC NONSTATIONARY BLACK HOLEMAGNETOSPHERES AND JETS

IV. CONCLUSION

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

INTRODUCTION

IINTRODUCTION

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

INTRODUCTION

I. INTRODUCTION

Black Hole Astrophysics−→ Black Hole Thermodynamics−→ Black Hole Electrodynamics

−→ Black Hole Magnetospheres & Jets−→ Axisymmetric, Stationary Cases−→ Axisymmetric, Nonstationary Cases

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

IIBLACK HOLE ASTROPHYSICS

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS I

In cylindrical coordinates (ϖ,φ, z),

Electric Field : E = Eϖeϖ + Eφeφ + Ezez

Magnetic Field : B = Bϖeϖ +Bφeφ +Bzez

Toroidal Components : ET = Eφeφ and BT = Bφeφ

Poloidal Components : EP = Eϖeϖ + Ezez and BP = Bϖeϖ +Bzez

where ϖ is the perpendicular distance separating the symmetry axis of anarbitrary FIDO (Fiducial Observer) and (eϖ, eφ, ez) are orthonormal unitvectors. (In Newtonian case, ϖ → R)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS II

In cylindrical coordinates (ϖ,φ, z),

Axisymmetric Conditions : ∂f∂φ = 0 and ∂f

∂φ = 0

Stationary Conditions : ∂f∂t = 0 and ∂f

∂t = 0

Nonstationary Conditions : ∂f∂t = 0 and ∂f

∂t = 0

f and f : any scalar and vector, resp..

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS III

We assume that the following highly conducting plasma condition issatisfied everywhere :

E +1

cvF × B ≃ 0 , (2.1)

while the force-free condition

ρeE +1

cj × B ≃ 0 (2.2)

is satisfied only in Region 1 (i.e., Relativistic).

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS IV

The cross section of an active galactic nucleus (AGN).

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS V

(Source: Internet Encyclopedia of Science)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS VI

Let us consider a FIDO (Fiducial Observer) that is fixed at a given pointnear a Kerr black hole. In this case, Maxwell’s equations, which satisfy theaxisymmetric condition, can be written as follows:

∇ · E = 4πρe, (2.3)∇ · B = 0, (2.4)

∇× (αE) = −1

c

[∂B∂t

− (B · ∇ω)m], (2.5)

and∇× (αB) =

1

c

[∂E∂t

− (E · ∇ω)m]+

4παjc

. (2.6)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS VII

α : the lapse function of the FIDO,

α ≡ ∆(proper time τ)

∆(coordinate time t)=

ρ

Σ

√∆ .

ω : the angular velocity of the FIDO,

ω =2aMr

Σ2.

ΩF : the angular velocity of the magnetic field line.M : the mass of a rotating Kerr black hole.a : the angular momentum per unit mass.

ρ2 ≡ r2+a2 cos2 θ , Σ2 ≡ (r2+a2)2−a2∆ sin2 θ , ∆ ≡ r2+a2−2Mr .

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS VIII

Define an m-loop ∂A, and any surface A bounded by ∂A which is notintersecting the event horizon of the black hole.

We also define the outward normal vector dS of an infinitesimal area on A.

Define :I : the total electric current passing downward through A,Ψ : the total magnetic flux passing upward through AΦ : the total electric flux passing upward through A

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS IX

Investigated by Macdonald & Thorne (1982, MT).

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS X

Region 1The Stationary, Relativistic Grad-Shafranov Equation[Macdonald & Thorne 1982]

∇ ·

ϖ2

1−

(ω − ΩF

αcϖ

)2∇Ψ

]− ω − ΩF

αc2∇ΩF · ∇Ψ

+16π2I

αc2ϖ2

dI

dΨ= 0 (2.7)

The Grad-Shafranov Equation : A second-order, non-linear partialdifferential equation that describes the relationship between the plasmaflow distribution and pressure in terms of magnetic flux function Ψ.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XI

Investigated by Park & Vishniac (1989, PV).

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XII

Axisymmetric, Axisymmetric,Stationary Nonstationary

Electric Current I(r) ≡ −∫Aαj · dS I(t, r) ≡ −

∫Aαj · dS

Magnetic Flux Ψ(r) ≡∫A

B · dS Ψ(t, r) ≡∫A

B · dS

Electric Flux Φ(r) ≡∫A

E · dS Φ(t, r) ≡∫A

E · dS

Electric Field (Toroidal) ET = 0 ET = − 2αϖ

(Ψ4π

)eφ

Magnetic Field (Toroidal) BT = − 2Iαϖ

eφ BT = − 2αϖ

(I − Φ

)eφ

Electric Field (Poloidal) EP =∇Φ×eφ

2πϖEP = EP

Magnetic Field (Poloidal) BP =∇Ψ×eφ

2πϖBP =

∇Ψ×eφ

2πϖ

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XIII

Region 1Based on PV model, Song & Park induced the nonstationary, relativisticGrad-Shafranov Equation. [Song & Park 2016]

∇ ·

ϖ2

1−

(ω − ΩF

αcϖ

)2∇Ψ

]− ω − ΩF

αc2∇ΩF · ∇Ψ

+4πϖ

α2c3ϖ

(I − Φ

)∂ΩF∂z

+4π

c3∂

∂z

αϖ

ω − ΩFα

(I − Φ

)]

+1

αc2ϖ2

[(α

α+

ϖ

ϖ

)Ψ− Ψ

]+

φ

c2ϖ

ω − ΩFα

∂Ψ

∂ϖ

−16π2ξ

c2ϖ2

(I − Φ

)= 0 (2.8)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XIV

Region 2The Stationary, Newtonian Grad-Shafranov Equation(by setting α = 1, ω = 0, and ϖ = R in (2.7))[Goldreich & Julian 1969]

∇·

[1

R2

1−

(RΩFc

)2∇Ψ

]+ΩFc2

∇ΩF ·∇Ψ+16π2I

c2R2

dI

dΨ= 0 (2.9)

−→ The so-called “Pulsar Equation” investigated by Goldreich & Julian.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XV

Region 2The Nonstationary, Newtonian Grad-Shafranov Equation(by setting α = 1, ω = 0, and ϖ = R in (2.8))[Song & Park 2016]

∇ ·

[1

R2

1−

(RΩFc

)2∇Ψ

]+

ΩFc2

∇ΩF · ∇Ψ

+4πR

c3R

(I − Φ

)∂ΩF∂z

− 4π

c3∂

∂z

[RΩFR

(I − Φ

)]

+1

c2R2

(R

RΨ− Ψ

)− ΩFφ

c2R

∂Ψ

∂R− 16π2ξ

c2R2

(I − Φ

)= 0 (2.10)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XVI

Region 3In Newtonian acceleration region, we can define the Alfvenic Mach numberMA and the entropy s by

M2A ≡ 4πρκ2 ,

s ≡ kBΓ− 1

, (2.11)

where ρ is the density, κ is a scalar function of position, Γ is the adiabaticindex, and kB is the Boltzmann’s constant.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XVII

Region 3The Stationary Grad-Shafranov Equation[Okamoto 1975]

∇ ·

[1

R2

1−

(RΩFc

)2

−M2A

∇Ψ

]+

ΩFc2

∇ΩF · ∇Ψ

+1

R2

(∇M2

A −M2

∇κ

)· ∇Ψ+

16π2I

c2R2I ′

= −4π2M2

Aκ2

[ε′ − (ΩFL)

′ +RvTΩ′F]+

16π3ηBT

R(RvT)′

+16π3

kBPs′ (2.12)

where ( ′ ) ≡ d/dΨ.−→ The so-called “Jet Equation” investigated by Okamoto.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XVIII

Region 3The Nonstationary Grad-Shafranov Equation[Song & Park 2016]

∇ ·[

1

R2

1 −

(RΩF

c

)2

− M2A −

R2ΩFC

c2

∂Ψ

∂z

∇Ψ

]+

ΩF − C

c2∇ΩF · ∇Ψ

+1

R2

(∇M

2A −

M2Aκ

∇κ

)· ∇Ψ +

1

c2R2∇(R

2ΩFC

∂Ψ

∂z

)· ∇Ψ −

2ΩFC

c2R

∂Ψ

∂R

+1

c2R2

(R

RΨ − Ψ − RΩFφ

∂Ψ

∂R

)−

c3R

(ΩF + C

) ∂

∂z

[R

(I −

Φ

)]+

16π2

c2R2 |∇Ψ|2

(I −

Φ

)∇I · ∇Ψ

= −4π2M2

Aκ2 |∇Ψ|2

[∇ε − ∇(ΩFL) + Rv

T∇ΩF +2κ

cR2

(I −

Φ

)∇(Rv

T)

]· ∇Ψ

+4π2M2

AkBρκ2 |∇Ψ|2

[P ∇s + s ∇P −

kBP

ρ

(1 +

s

kB

)∇ρ

]· ∇Ψ

−4π2M2

Aκ2 |∇Ψ|2

[1

ρ(vR − v

Tφ)

∂Ψ

∂R+

vz

ρ

∂Ψ

∂z+ |∇Ψ| H

](2.13)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XIX

where

C ≡RM2

Acρκ2R |∇Ψ|2

(I − Φ

), (2.14)

and

H ≡ κ

2πR

[RD⊥

(∂Ψ

∂z

)+

1

|∇Ψ|∂Ψ

∂R

∂Ψ

∂z− ∂R

∂z

∂Ψ

∂R+

∂R

∂R

∂Ψ

∂z

]

2πR

∂Ψ

∂z

[D⊥R+

Ψ

R|∇Ψ|− 1

|∇Ψ|∂Ψ

∂R+

R

κD⊥κ

]

+RD⊥R+R

|∇Ψ|∂Ψ

∂R.

(2.15)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

BLACK HOLE ASTROPHYSICS

II. BLACK HOLE ASTROPHYSICS XVI

The TheRegions Physics Stationary Nonstationary

GSEs GSEs0 < α < 1,

Region 1 0 < ω < ΩH, (2.7) (2.8)M2

A = 0, s = 0

ϖ = RRegion 2 α = 1, ω = 0, (2.9) (2.10)

M2A = 0, s = 0

ϖ = RRegion 3 α = 1, ω = 0, (2.12) (2.13)

M2A = 0, s = 0

Table: The Grad-Shafranov Equations (GSEs)

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

IVCONCLUSION

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

IV. CONCLUSION I

Evidently, there are many nonstationary phenomena beyond the scope ofmy paper that can play important roles in a reallistic picture of a blackhole magnetosphere.

It is unfortunate that the GSEs for the nonstationary case in Regions 1, 2,and 3, (2.8), (2.10), and (2.13), seem to be too complicated to solvedirectly via analytic methods. If we can solve these GSEs numerically, thenwe will understand the axisymmetric, nonstationary black holemagnetosphere in more rigorous ways.

My future work may include the luminosity variability, the precession of thecentral black holes, the formation of the nodes in the middle of theastrophysical jets, and so on.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

Goldreich, P., & Julian, W. H. 1969, ApJ, 157, 869

Lovelace, R. V. E., Mehanian, C., Mobarry, C. M., & Sulkanen, M. E.1986, ApJS, 62, 1Macdonald, D. A., & Thorne, K. S. 1982, MNRAS, 198, 345

Okamoto, I. 1975, MNRAS, 173, 357

Song, Y. G., & Park, S. J. 2016, ApJ, in press.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

Thank You!

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

The Lapse Function

For non-inertial observers, and in general relativity, coordinate systems canbe chosen more freely. For a clock whose spatial coordinates are constant,the relationship between proper time τ and coordinate time t, i.e. therate of time dilation, is given by

dt=

√−g00

where g00 is a component of the metric tensor, which incorporatesgravitational time dilation (under the convention that the zerothcomponent is timelike).

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

Coordinate Time

In the theory of relativity, it is convenient to express results in terms of aspacetime coordinate system relative to an implied observer. In many (butnot all) coordinate systems, an event is specified by one time coordinateand three spatial coordinates. The time specified by the time coordinate isreferred to as coordinate time to distinguish it from proper time.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

Proper Time

In relativity, proper time along a timelike world line is defined as the timeas measured by a clock following that line. It is thus independent ofcoordinates, and a Lorentz scalar. This is the quantity of interest, sinceproper time itself is fixed only up to an arbitrary additive constant, namelythe setting of the clock at some event along the world line. The propertime between two events depends not only on the events but also theworld line connecting them, and hence on the motion of the clock betweenthe events. It is expressed as an integral over the world line. Anaccelerated clock will measure a smaller elapsed time between two eventsthan that measured by a non-accelerated (inertial) clock between the sametwo events. The twin paradox is an example of this effect.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

...

.

CONCLUSION

Force Free Condition

A force-free magnetic field is a magnetic field that arises when the plasmapressure is so small, relative to the magnetic pressure, that the plasmapressure may be ignored, and so only the magnetic pressure is considered.For a force free field, the electric current density is either zero or parallel tothe magnetic field. The name ”force-free” comes from being able toneglect the force from the plasma.