12
The Generalized L p -mixed Volume and the Generalized L p -mixed Projection Body Tongyi Ma Abstract—In this paper, based on three classical concept of the mixed surface area measure, the mixed volumes and the mixed projection bodies, we introduce three new concepts of the generalized Lp-mixed surface area measure, the generalized Lp- mixed volumes and the generalized L p -mixed projection bodies of convex bodies. In addition, some important inequalities, such as, the Aleksandrov-Fenchel inequality for the generalized Lp-mixed volumes, the Aleksandrov-Fenchel inequality for the generalized L p -mixed projection bodies and the Brunn- Minkowski inequality for polar of L p -mixed projection bodies are established, respectively. We also give a generalization of Pythagorean inequality and Loomis-Whitney inequality for Lp- mixed volumes, respectively. Index Terms—Convex body, surface area measure; L p -mixed surface area measure, Lp-mixed volume; projection body, Lp- mixed projection body. I. I NTRODUCTION T HE mixed volume is a central part of the Brunn- Minkowski theory of convex bodies. The monograph by Schneider [80] introduced the mixed volume and closely re- lated mixed area measures, establish their fundamental prop- erties. In the early 1960s, Firey [25] defined the Minkowski- Firey L p -additions of convex bodies for each p 1 and also established the L p -Brunn-Minkowski inequality. Based on the L p -additions, Lutwak [51] defined the L p -mixed volume of two convex bodies and established the famous L p - Minkowski mixed volume inequality. In the mid 1990s, study on the volume of Minkowski-Firey L p -additions in [51] and [52] leads to an L p -Brunn-Minkowski theory. The rapidly developing L p -Brunn-Minkowski theory of convex bodies is a natural extension of the Brunn-Minkowski theory (see, e.g., [2], [3], [4], [6], [8], [14], [15], [16], [17], [18], [21], [22], [23], [30], [31], [32], [33], [35], [40], [41], [42], [43], [44], [51], [52], [56], [58], [59], [60], [61], [62], [63], [64], [65], [66], [67], [68], [69], [70], [72], [73], [74], [75], [76], [79], [83], [85], [87], [91]). The study of projection bodies or zonoids has a long history [36]. An article [10] first considered this problem, since then, considerable attention has been paid to the projection bodies [5], [11], [13], [19], [28], [46], [47], [71], [78], [80], [86], [89]. The related applications appeared in [86], [7], [81], [88]. The projection bodies topic has been focus on the intense study [1], [12], [20], [29], [45], [46], [47], [48], [49], [50], [77], [82]. Let K n denote the set of convex bodies (compact, convex subsets with non-empty interiors) in R n ; K n o , K n c denote the subset of K n containing the origin in their interiors and the Manuscript received September 3, 2018; revised January 29, 2019. This work was supported by the National Natural Science Foundation of China under Grant 11561020, 11161019 and 11371224. T. Y. Ma is with the College of Mathematics and Statistics, Hexi University, Zhangye, 734000, China. e-mail: [email protected]. subset of K n that contains the centered (centrally symmetric with respect to the origin) bodies, respectively. For K 1 , ··· ,K n ∈K n , Aleksandrov-Fenchel inequality [80] is V (K 1 , ··· ,K n ) r r j=1 V (K j ··· ,K j | {z } r ,K r+1 , ··· ,K n ), (1) the equality condition in the Aleksandrov-Fenchel inequality is not hold. The special case holds V (K ··· ,K | {z } n-j-1 ,B ··· ,B | {z } j ,L) n-j W j (K) n-j-1 W j (L), (2) with equality if and only if K and L are homothetic. If we take j =0 in (2), then Minkowski inequality for mixed volumes is V (K ··· ,K | {z } n-1 ,L) n V (K) n-1 V (L), (3) with equality if and only if K and L are homothetic. In 1993, the Aleksandrov-Fenchel inequality and Brunn- Minkowski inequality for the mixed projection bodies have been established by Lutwak [45]. If K, L ∈K n , then V (Π(K + L)) 1 n(n-1) V K) 1 n(n-1) + V L) 1 n(n-1) , (4) with equality if and only if K and L are homothetic. If K 1 , ··· ,K n-1 ∈K n , then V (Π(K 1 , ··· ,K n-1 )) r r j=1 V (Π(K j ··· ,K j | {z } r ,K r+1 , ··· ,K n-1 )). (5) In particular, taking K n-i = ··· = K n-1 = B (i = 0, 1, ··· ,n 2) in (5), and denotes Π i (K 1 , ··· ,K n-1-i ) = Π(K 1 , ··· ,K n-1-i ,B, ··· ,B | {z } i ). So, we have V i (K 1 , ··· ,K n-1-i )) r r j=1 V i (K j ··· ,K j | {z } r ,K r+1 , ··· ,K n-1-i )). (6) In 2004, Leng et al. [38] established the Aleksandrov- Fenchel inequality for the polar of projection bodies as follows V * (K 1 , ··· ,K n-1 )) r r j=1 V * (K j ··· ,K j | {z } r ,K r+1 , ··· ,K n-1 )), (7) IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01 (Advance online publication: 12 August 2019) ______________________________________________________________________________________

The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

The Generalized Lp-mixed Volume and theGeneralized Lp-mixed Projection Body

Tongyi Ma

Abstract—In this paper, based on three classical concept ofthe mixed surface area measure, the mixed volumes and themixed projection bodies, we introduce three new concepts of thegeneralized Lp-mixed surface area measure, the generalized Lp-mixed volumes and the generalized Lp-mixed projection bodiesof convex bodies. In addition, some important inequalities,such as, the Aleksandrov-Fenchel inequality for the generalizedLp-mixed volumes, the Aleksandrov-Fenchel inequality forthe generalized Lp-mixed projection bodies and the Brunn-Minkowski inequality for polar of Lp-mixed projection bodiesare established, respectively. We also give a generalization ofPythagorean inequality and Loomis-Whitney inequality for Lp-mixed volumes, respectively.

Index Terms—Convex body, surface area measure; Lp-mixedsurface area measure, Lp-mixed volume; projection body, Lp-mixed projection body.

I. INTRODUCTION

THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by

Schneider [80] introduced the mixed volume and closely re-lated mixed area measures, establish their fundamental prop-erties. In the early 1960s, Firey [25] defined the Minkowski-Firey Lp-additions of convex bodies for each p ≥ 1 andalso established the Lp-Brunn-Minkowski inequality. Basedon the Lp-additions, Lutwak [51] defined the Lp-mixedvolume of two convex bodies and established the famous Lp-Minkowski mixed volume inequality. In the mid 1990s, studyon the volume of Minkowski-Firey Lp-additions in [51] and[52] leads to an Lp-Brunn-Minkowski theory. The rapidlydeveloping Lp-Brunn-Minkowski theory of convex bodies isa natural extension of the Brunn-Minkowski theory (see, e.g.,[2], [3], [4], [6], [8], [14], [15], [16], [17], [18], [21], [22],[23], [30], [31], [32], [33], [35], [40], [41], [42], [43], [44],[51], [52], [56], [58], [59], [60], [61], [62], [63], [64], [65],[66], [67], [68], [69], [70], [72], [73], [74], [75], [76], [79],[83], [85], [87], [91]).

The study of projection bodies or zonoids has a longhistory [36]. An article [10] first considered this problem,since then, considerable attention has been paid to theprojection bodies [5], [11], [13], [19], [28], [46], [47], [71],[78], [80], [86], [89]. The related applications appeared in[86], [7], [81], [88]. The projection bodies topic has beenfocus on the intense study [1], [12], [20], [29], [45], [46],[47], [48], [49], [50], [77], [82].

Let Kn denote the set of convex bodies (compact, convexsubsets with non-empty interiors) in Rn; Kn

o ,Knc denote the

subset of Kn containing the origin in their interiors and the

Manuscript received September 3, 2018; revised January 29, 2019. Thiswork was supported by the National Natural Science Foundation of Chinaunder Grant 11561020, 11161019 and 11371224.

T. Y. Ma is with the College of Mathematics and Statistics, HexiUniversity, Zhangye, 734000, China. e-mail: [email protected].

subset of Kn that contains the centered (centrally symmetricwith respect to the origin) bodies, respectively.

For K1, · · · ,Kn ∈ Kn, Aleksandrov-Fenchel inequality[80] is

V (K1, · · · ,Kn)r ≥

r∏j=1

V (Kj · · · ,Kj︸ ︷︷ ︸r

,Kr+1, · · · ,Kn), (1)

the equality condition in the Aleksandrov-Fenchel inequalityis not hold. The special case holds

V (K · · · ,K︸ ︷︷ ︸n−j−1

, B · · · , B︸ ︷︷ ︸j

, L)n−j ≥ Wj(K)n−j−1Wj(L), (2)

with equality if and only if K and L are homothetic.If we take j = 0 in (2), then Minkowski inequality for

mixed volumes is

V (K · · · ,K︸ ︷︷ ︸n−1

, L)n ≥ V (K)n−1V (L), (3)

with equality if and only if K and L are homothetic.In 1993, the Aleksandrov-Fenchel inequality and Brunn-

Minkowski inequality for the mixed projection bodies havebeen established by Lutwak [45]. If K,L ∈ Kn, then

V (Π(K + L))1

n(n−1) ≥ V (ΠK)1

n(n−1) + V (ΠL)1

n(n−1) , (4)

with equality if and only if K and L are homothetic.If K1, · · · ,Kn−1 ∈ Kn, then

V (Π(K1, · · · ,Kn−1))r

≥r∏

j=1

V (Π(Kj · · · ,Kj︸ ︷︷ ︸r

,Kr+1, · · · ,Kn−1)). (5)

In particular, taking Kn−i = · · · = Kn−1 = B (i =0, 1, · · · , n− 2) in (5), and denotes

Πi(K1, · · · ,Kn−1−i) = Π(K1, · · · ,Kn−1−i, B, · · · , B︸ ︷︷ ︸i

).

So, we have

V (Πi(K1, · · · ,Kn−1−i))r

≥r∏

j=1

V (Πi(Kj · · · ,Kj︸ ︷︷ ︸r

,Kr+1, · · · ,Kn−1−i)). (6)

In 2004, Leng et al. [38] established the Aleksandrov-Fenchel inequality for the polar of projection bodies asfollows

V (Π∗(K1, · · · ,Kn−1))r

≤r∏

j=1

V (Π∗(Kj · · · ,Kj︸ ︷︷ ︸r

,Kr+1, · · · ,Kn−1)), (7)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 2: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

with equality if K1, · · · ,Kn−1 are homothetic. In particular,taking Kn−i = · · · = Kn−1 = B (i = 0, 1, · · · , n − 2) in(7), and denotes

Π∗i (K1, · · · ,Kn−1−i) = Π∗(K1, · · · ,Kn−1−i, B, · · · , B︸ ︷︷ ︸

i

).

Therefore, we have

V (Π∗i (K1, · · · ,Kn−1−i))

r

≤r∏

j=1

V (Π∗i (Kj · · · ,Kj︸ ︷︷ ︸

r

,Kr+1, · · · ,Kn−1−i)), (8)

with equality if K1, · · · ,Kn−1 are homothetic n-balls.Based on the concepts of classical mixed surface area,

mixed volume and mixed projection body involving a plu-rality of convex bodies, the purpose of this paper first is tointroduce three notions of the generalized Lp-mixed surfacearea measure, generalized Lp-mixed volume and generalizedLp-mixed projection bodies, respectively. In addition, we willestablish the Aleksandrov-Fenchel inequality for the gen-eralized Lp-mixed volume, Aleksandrov-Fenchel inequalityfor the generalized Lp-mixed projection bodies and Brunn-Minkowski inequality for polars of Lp-mixed projectionbodies of convex bodies, respectively. Our findings furtherenrich the architecture of Lp-Brunn-Minkowski theory.

First at all, we introduce the abbreviation

(K1 · · · ,K1︸ ︷︷ ︸r1

, · · · ,Km · · · ,Km︸ ︷︷ ︸rm

) := (K1[r1], · · · ,Km[rm]).

The following is our main results.

Theorem 1. If p ≥ 1 and K1, · · · ,Kn ∈ Kno , then

Vp(K1, · · · ,Kn)r

≥r∏

j=1

V (Kj [r],Kr+1, · · · ,Kn)p

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(1−p)rn−1 . (9)

Theorem 2. If p ≥ 1 and K1, · · · ,Kn ∈ Kno , then

V (Πp(K1, · · · ,Kn−1))pn

≥ n1−pr∏

j=1

V (Π(Kj [r],Kr+1 · · · ,Kn−1))pnr

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 . (10)

Theorem 3. If p ≥ 1 and K1, · · · ,Kn ∈ Kno , then

V (Π∗p(K1, · · · ,Kn−1))

≤ n(p−1)n

p

r∏j=1

V (Π∗(Kj [r],Kr+1 · · · ,Kn−1))1r

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(p−1)n(n−1)p . (11)

with equality if and only if Ki is the line segment joining−λiu and λiu, where λi > 0 (i = 1, · · · , n− 1).

Theorem 4. If K,L,K2, · · · ,Kn−1 ∈ Kno , λ, µ ≥ 0 (not

both zero), p ≥ 1, i ∈ R and C = (K2, · · · ,Kn−1), then

4Vp,i(Π∗(λK + µL,C))

1n−i

≤ λVp,i(Π∗(K,C))

1n−i + µVp,i(Π

∗(L,C))1

n−i ,(12)

with equality if and only if Π(K,C) = Π(L,C).Next, we use the methods to give a generalization of

Pythagorean inequality for mixed volumes obtained by Firey[24].

Theorem 5. Let p > 0 and K1, · · · ,Kn−1 ∈ Kno . Assume

that u1, · · · , um is a sequence of unit vectors in Rn andc1, · · · , cm be a sequence of positive numbers satisfying

m∑i=1

ciui ⊗ ui = In, (13)

where In is the identity mapping on Rn. Then, for any u ∈Sn−1,

Vp(K1, · · · ,Kn−1, [u])2p

≤m∑i=1

ciVp(K1, · · · ,Kn−1, [ui])2p , (14)

where [u] denotes the unit segments in the direction u, withequality if and only if

|u · u1|Vp(K1, · · · ,Kn−1, [u1])

= · · · = |u · um|Vp(K1, · · · ,Kn−1, [um])

.

The classical Loomis-Whitney inequality [39] shows therelation between the volume of a convex body and thegeometric mean of its shadows. The Loomis-Whitney in-equality is one of the fundamental inequalities in convexgeometry and has been studied intensively. We generalizethe Loomis-Whitney inequality to the following form of Lp-mixed volume associated with John basis.

Theorem 6. Suppose that K1, · · · ,Kn−1 ∈ Kn, {ui}mi=1 isa sequence of unit vectors in Rn, and {ci}mi=1 is a sequenceof positive numbers such that

∑mi=1 ciui ⊗ ui = In. Then

for p ≥ 1,

m∏i=1

( n−2∏j=1

v(Kuij ,Kui

1 , · · · ,Kuin−2)

p−1p(n−2)

× vp(Kui1 , · · · ,Kui

n−1)1p

)ci

≥ nn(1−p)

n V ([K1, · · · ,Kn−1])n−1. (15)

Contents of the paper. For our studies, we state somerelevant knowledge for the convex geometric analysis inSection 2. In Section 3, we propose two new concepts forthe generalized Lp-mixed volumes and generalized Lp-mixedquermassintegrals, discuss some of their related properties.Simultaneously, we introduce a new concept for the Lp-mixed projection bodies. Section 4, we prove Theorems 1-6 which stated in the beginning of this paper, respectively.As an application, we give a generalization of Pythagoreaninequality for mixed volumes, which has been obtainedby Firey [24]. In addition, we established a generalizedinequality of Loomis-Whitney inequality.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 3: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

II. BACKGROUND MATERIAL

The setting for this paper is n-dimensional Euclideanspace Rn(n ≥ 2). Let u denotes unit vector, and B denotesunit ball centered at the origin, the surface of B is Sn−1. Foru ∈ Sn−1, let Eu denote the hyperplane, through the origin,that is orthogonal to u. We use Ku to denote the image ofK under an orthogonal projection onto the hyperplane Eu.[u] denotes the line segment joining {λu : |λ| ≤ 1

2}. LetV (K) denote the n-dimensional volume of a body K, andlet x · y denote the usual inner product for x and y in Rn.For x ∈ Rn\{o}, the notation x ⊗ x represents the linearoperator of the rank 1 on Rn that takes y to (x · y)x. LetGL(n) denote non-singular affine (or linear) transformationgroup, ϕt denotes the transpose of ϕ, and ϕ−t denotes theinverse of the transpose of ϕ

A. Support function, radial function, polar of convex bodyand Minkowski linear combination

Let h(K, ·) : Rn → (0,∞) denote the support functionof K ∈ Kn, defined by h(K,x) = max{x · y : y ∈ K}.If ϕ ∈ GL(n), then for the support function of the imageϕK = {ϕx : x ∈ K}, we easily have

hϕK(x) = hK(ϕtx). (16)

For K,L ∈ Kn, Hausdorff metric δ of K and L is definedby

δ(K,L) = sup{|hK(u)− hL(u)| : u ∈ Sn−1}.

For K ∈ Kn and a nonnegative scalar λ, λK = {λx : x ∈K}. For Ki ∈ Kn, λi ≥ 0(i = 1, · · · , r), Minkowski linearcombination

∑ri=1 λiKi ∈ Kn is defined by

r∑i=1

λiKi =

{ r∑i=1

λixi ∈ Kn : xi ∈ Ki, i = 1, · · · , r}.

It is trivial to verify that

h

( r∑i=1

λiKi, ·)

=

r∑i=1

λih(Ki, ·). (17)

For K,L ∈ Kno , p ≥ 1 and λ, µ ≥ 0 (not both zero), the

Firey Lp-combination λ ·K+p µ ·L ∈ Kno is defined by (see

[25])

h(λ ·K +p µ · L, ·)p = λh(K, ·)p + µh(L, ·)p. (18)

If K ∈ Kno , we define the polar body of K ∈ Kn

o , K∗ ={x ∈ Rn : x · y ≤ 1, for all y ∈ K}. Obviously, for ϕ ∈GL(n), (ϕK)∗ = ϕ−tK∗. If K ∈ Kn

o we have that K∗ ∈ Kno

and (K∗)∗ = K (see [80]).If K is a compact star-shaped (about the origin) in Rn,

its radial function, ρ(K, ·) : Rn\{o} → [0,∞) is defined byρ(K,x) = max{λ ≥ 0 : λx ∈ K}. If ρK is positive andcontinuous, then K is called a star body. Let Sn

o denote theset of star bodies (about the origin) in Rn. Obviously, forx = 0 and ϕ ∈ GL(n), ρϕK(x) = ρK(ϕ−1x).

Together the support function, the radial function withpolar body, it follows obviously that for K ∈ Kn

o

ρ(K, ·)−1 = h(K∗, ·) and h(K, ·)−1 = ρ(K∗·). (19)

B. Mixed volumes, Lp-mixed volumes, mixed surface areameasure and Lp-mixed quermassintegrals

If K1, · · · ,Kr ∈ Kn and λ1, · · · , λr are nonnegative realnumbers, then the volume of λ1K1 + · · · + λrKr is ahomogeneous polynomial in λ1, · · · , λr (see [80])

V (λ1K1 + · · ·+ λrKr) =∑

i1,···,in

λi1 · · ·λinVi1···in , (20)

where the sum is taken over all n-tuples (i1, · · · , in) ofpositive integers not exceeding r. The coefficient Vi1,···,independs only on the bodies Ki1 , · · · ,Kin and is uniquelydetermined by (20), it is called the mixed volume ofKi1 , · · · ,Kin and is written as V (Ki1 , · · · ,Kin).

Associated with K1, · · · ,Kn−1 ∈ Kn is Borel measure,S(K1, · · · ,Kn−1), on Sn−1, called the mixed surface areameasure of K1, · · · ,Kn−1, which has the property that foreach L ∈ Kn (see [37]),

V (K1, · · · ,Kn−1, L)

=1

n

∫Sn−1

h(L, u)dS(K1, · · · ,Kn−1;u). (21)

For λ, µ > 0, if K1 is replaced by λK1 + µL1, then wehave

S(λK1 + µL1, · · · ,Kn−1; ·)= λS(K1, · · · ,Kn−1; ·)

+µS(L1, · · · ,Kn−1; ·). (22)

An important fact [26] is∫Sn−1

udS(K1, · · · ,Kn−1;u) = 0.

We noted that the mixed area measure S(K1, · · · ,Kn−1; ·)also satisfies the hypothesis of Minkowski’s existence theo-rem. Thus, for K1, · · · ,Kn−1 ∈ Kn, there exists a convexbody denoted by [K1, · · · ,Kn−1], whose area function isS(K1, · · · ,Kn−1; ·), namely,

S([K1, · · · ,Kn−1], ·) = S(K1, · · · ,Kn−1; ·),

where [K, · · · ,K] = K.A direct consequence of (21) is following

V ([K1, · · · ,Kn−1][n− 1],Kn)

= V (K1, · · · ,Kn−1,Kn). (23)

Since

V ([K1, · · · ,Kn−1])

= V ([K1, · · · ,Kn−1][n− 1], [K1, · · · ,Kn−1]),

(23) implies that

V ([K1, · · · ,Kn−1])

= V (K1, · · · ,Kn−1, [K1, · · · ,Kn−1]), (24)

V (K1, · · · ,Ki, · · · ,Kj , · · · ,Kn)

= V (K1, · · · ,Kj , · · · ,Ki, · · · ,Kn). (25)

If K1 = · · · = Kn−i−1 = K and Kn−i = · · · =Kn−1 = B, then S(K1, · · · ,Kn−1, ·) is written as Si(K, ·),V (K1, · · · ,Kn−1, L) is written as Wi(K,L). If L = K,

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 4: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

Wi(K,K) is written as Wi(K) that is called ith quermass-integrals of convex body K; i.e.,

Wi(K) =1

n

∫Sn−1

h(K,u)dSi(K,u). (26)

We recall that W0(K) is V (K).In [37], Lutwak proved that if K1, · · · ,Kn ∈ Kn, and

ϕ ∈ GL(n), then

V (ϕK1, · · · , ϕKn) = |detϕ|V (K1, · · · ,Kn). (27)

Suppose K,L ∈ Kno , then for p ≥ 1, the Lp-mixed

volume, Vp(K,L), of K and L is defined by (see [51])

n

pVp(K,L) = lim

ε→0+

V (K +p ε · L)− V (K)

ε. (28)

For K ∈ Kno , there is a positive Borel measure, Sp(K, ·), on

Sn−1 such that (see [51])

Vp(K,Q) =1

n

∫Sn−1

h(Q, u)pdSp(K,u), (29)

for each Q ∈ Kno . The measure Sp(K, ·) is just the Lp-

surface area measure of K, which is absolutely continuouswith respect to classical surface area measure S(K, ·), andprocess Radon-Nikodym derivative

dSp(K, ·)dS(K, ·)

= h1−p(K, ·), (30)

it follows from (30) that S1(K, ·) is just S(K, ·).The Lp-Minkowski inequality was given by Lutwak [52].

If K,L ∈ Kno and p ≥ 1, then

Vp(K,L) ≥ V (K)n−pn V (L)

pn , (31)

with equality for p = 1 if and only if K and L arehomothetic, for p > 1 if and only if K and L are dilates.

For K,L ∈ Kno , ε > 0 and real p ≥ 1, the Lp-mixed

quermassintegrals, Wp,i(K,L)(i = 0, 1, . . . , n − 1), of Kand L is defined by (see [51])

n− i

pWp,i(K,L) = lim

ε→0+

Wi(K +p ε · L)−Wi(K)

ε. (32)

The Wp,0(K,L) is just Lp-mixed volume Vp(K,L), namelyWp,0(K,L) = Vp(K,L). In [51], Lutwak has shown that, forp ≥ 1and each K ∈ Kn

o , there exists a positive Borel measureSp,i(K, ·) (i = 0, 1, · · · , n − 1) on Sn−1, such that theLp-mixed quermassintegrals Wp,i(K,L) has the followingintegral representation

Wp,i(K,L) =1

n

∫Sn−1

hpL(v)dSp,i(K, v), (33)

for all L ∈ Kno . It turns out that the measure Sp,i(K, ·) (i =

0, 1, . . . , n−1) on Sn−1 is absolutely continuous with respectto Si(K, ·), and has the Radon-Nikodym derivative

dSp,i(K, ·)dSi(K, ·)

= h1−p(K, ·), (34)

where Si(K, ·) is a classical positive Borel measure on Sn−1

(see [51]). Obviously, Sp,0(K, ·) = Sp(K, ·). The Formula(34) has shown that, for p ≥ 1, i = 0, 1, · · · , n− 1, and eachK ∈ Kn

o , there exists a positive Borel measure on Sn−1, by(see [51])

Sp,i(K,ω) =

∫ω

h(K,u)1−pdSi(K,u), (35)

for each Borel ω ⊂ Sn−1.

C. Dual mixed volume

If Ki ∈ Sno (i = 1, · · · , n), then the dual mixed volume

of K1, · · · ,Kn is defined by (see [53])

V (K1, · · · ,Kn) =1

n

∫Sn−1

ρ(K1, u) · · · ρ(Kn, u)dS(u), (36)

where dS(u) denotes the area element of Sn−1 at u. Notethat Vi(K,L) = V (K[n − i], L[i]). Thus, if i is any real,then Vi(K,L) is said the dual mixed volume of K,L ∈ Sn

o ,and

Vi(K,L) =1

n

∫Sn−1

ρ(K,u)n−iρ(L, u)idS(u). (37)

In (37), let L = B and we write Vi(K,B) = Wi(K),together with ρ(B, u) = 1 for all u ∈ Sn−1, the definition ofdual quermassintegrals can be stated that: For K ∈ Sn

o , i ∈R, the dual quermassintegrals, Wi(K), of K is defined by(see [27])

Wi(K) =1

n

∫Sn−1

ρ(K,u)n−idS(u). (38)

We recall that the polar coordinate formula for volume ofK ∈ Kn is V (K) = W0(K).

III. THE MAIN CONCEPTS AND THEIR RELATEDPROPERTIES

A. Generalized Lp-mixed surface area and generalized Lp-mixed volumes

In this section, we first proposed the two concepts of thegeneralized Lp-mixed surface area and the generalized Lp-mixed volume. Motivated by (35), we introduce the followingdefinitions.Definition 7. For p > 0 and K1, · · · ,Kn−1 ∈ Kn

o , the Borelmeasure Sp(K1, · · · ,Kn−1; ·) on Sn−1 is defined by

Sp(K1, · · · ,Kn−1;ω)

=

∫ω

(h(K1, u) · · ·h(Kn−1, u))1−pn−1

×dS(K1, · · · ,Kn−1;u), (39)

for each Borel ω ⊂ Sn−1, where S(K1, · · · ,Kn−1; ·) is theclassical the mixed surface area measure of K1, · · · ,Kn−1.

From (39), we easily obtain that

dSp(K1, · · · ,Kn−1; ·)dS(K1, · · · ,Kn−1; ·)

= (h(K1, ·) · · ·h(Kn−1, ·))1−pn−1 . (40)

Associated with K1, · · · ,Kn−1 ∈ Kno is a Borel measure,

Sp(K1, · · · ,Kn−1; ·), on Sn−1, called the generalized Lp-mixed surface area measure of K1, · · · ,Kn−1.

Taking K1 = · · · = Kn−1 = K in (40), then (40) reducesto (30), where Sp(K, ·) := Sp(K, · · · ,K; ·) and S(K, ·) :=S(K, · · · ,K; ·).Definition 8. For p > 0 and K1, · · · ,Kn−1, L ∈ Kn

o ,the generalized Lp-mixed volume, Vp(K1, · · · ,Kn−1, L), isdefined by

Vp(K1, · · · ,Kn−1, L)

=1

n

∫Sn−1

h(L, u)pdSp(K1, · · · ,Kn−1;u), (41)

where the Borel measure Sp(K1, · · · ,Kn−1; ·) depends onlyon the bodies K1, · · · ,Kn−1, and is uniquely determined by(39).

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 5: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

Some properties of Vp(K1, · · · ,Kn) are as follows(i) (Continuity) If Ki ∈ Kn

o (i = 1, · · · , n), thenVp(K1, · · · ,Kn) is continuous for p;

(ii) (Positive definite property) If Ki ∈ Kno (i =

1, · · · , n), then Vp(K1, · · · ,Kn) > 0;(iii) (Positive definite homogeneity) If λi > 0,Ki ∈

Kno (i = 1, · · · , n), then

Vp(λ1K1, · · · , λnKn)

= (λ1 · · ·λn−1)n−pn−1 λp

nVp(K1, · · · ,Kn);

(iv) (p-additivity) If Ki ∈ Kno (i = 1, · · · , n), L ∈ Kn

o ,and λ, µ ≥ 0(not both zero), then

Vp(K1, · · · ,Kn−1, λ ·Kn +p µ · L)= λVp(K1, · · · ,Kn−1,Kn)

+µVp(K1, · · · ,Kn−1, L);

(v) (Monotonicity) If Ki ∈ Kno (i = 1, · · · , n−1),K, L ∈

Kno , then

K ⊂ L ⇒ Vp(K1, · · · ,Kn−1,K)

≤ Vp(K1, · · · ,Kn−1, L),

with equality if and only if h(K,u) = h(L, u) for all u inthe support of the measure S(K1, · · · ,Kn−1; ·).Remark 9. The condition in (v) is in general not equivalentto K = L, since the support of S(K1, · · · ,Kn−1; ·) can bea proper closed subset of the unit sphere.

It will be helpful to introduce some additional notation.For x ∈ Rn, let ⟨x⟩ = x/|x|, whenever x = 0.

Definition 10. (see [56]) Given a measure dµ(u) on Sn−1, areal p > 0, and a ϕ ∈ GL(n), define the measure dµ(p)(ϕu)on Sn−1 by∫

Sn−1

f(u)dµ(p)(ϕu) =

∫Sn−1

|ϕ−1u|pf(⟨ϕ−1u⟩)dµ(u),

for each f ∈ C(Sn−1).First note that for any convex bodies K1, · · · ,Kn−1 and

each ϕ ∈ GL(n) for the classical mixed surface area measurewe have

dS(ϕK1, · · · , ϕKn−1;u)

= |detϕ|dS(1)(K1, · · · ,Kn−1;ϕtu). (42)

To see this note that for any convex bodies K1, · · · ,Kn−1 itfollow from Definition 10, the homogeneity of hQ, (16) and(27) that ∫

Sn−1

hQ(u)dS(1)(K1, · · · ,Kn−1;ϕ

tu)

=

∫Sn−1

|ϕ−tu|hQ(⟨ϕ−tu⟩)dS(K1, · · · ,Kn−1;u)

=

∫Sn−1

hQ(ϕ−tu)dS(K1, · · · ,Kn−1;u)

=

∫Sn−1

hϕ−1Q(u)dS(K1, · · · ,Kn−1;u)

= |detϕ−1|∫Sn−1

hQ(u)dS(ϕK1, · · · , ϕKn−1;u).

Proposition 11. If K1, · · · ,Kn−1 ∈ Kno and real p > 0,

then for ϕ ∈ GL(n),

dSp(ϕK1, · · · , ϕKn−1;u)

= |detϕ|dS(p)p (K1, · · · ,Kn−1;ϕ

tu).

Proof. If f ∈ C(Sn−1), then from Definition 7, (16),(42), Definition 10, the homogeneity of hK , (42) again, andDefinition 10 again, we have∫

Sn−1

f(u)dSp(ϕK1, · · · , ϕKn−1;u)

=

∫Sn−1

f(u)(hϕK1(u) · · ·hϕKn−1(u))1−pn−1

×dS(ϕK1, · · · , ϕKn−1;u)

= |detϕ|∫Sn−1

f(u)(hK1(ϕtu) · · ·hKn−1(ϕ

tu))1−pn−1

×dS(1)(K1, · · · ,Kn−1;ϕtu)

= |detϕ|∫Sn−1

|ϕ−tu|f(⟨ϕ−tu⟩)

×(hK1(ϕ

t⟨ϕ−tu⟩) · · ·hKn−1(ϕt⟨ϕ−tu⟩)

) 1−pn−1

×dS(K1, · · · ,Kn−1;u)

= |detϕ|∫Sn−1

|ϕ−tu|pf(⟨ϕ−tu⟩)

×(hK1(u) · · ·hKn−1(u)

) 1−pn−1 dS(K1, · · · ,Kn−1;u)

= |detϕ|∫Sn−1

|ϕ−tu|pf(⟨ϕ−tu⟩)

×dSp(K1, · · · ,Kn−1;u)

= |detϕ|∫Sn−1

f(u)dS(p)p (K1, · · · ,Kn−1;ϕ

tu).

An immediate result of Proposition 11 is:Corollary 12. If K1, · · · ,Kn−1, L ∈ Kn

o , real p > 0 andϕ ∈ GL(n), then

Vp(ϕK1, · · · , ϕKn−1, L)

= |detϕ|Vp(K1, · · · ,Kn−1, ϕ−1L). (43)

Proof. From Definition 8, Proposition 11, Definition 10,the homogeneity of the support function, (16), and finallyDefinition 8 again, we have

nVp(ϕK1, · · · , ϕKn−1, L)

=

∫Sn−1

h(L, u)pdSp(ϕK1, · · · , ϕKn−1;u)

= |detϕ|∫Sn−1

h(L, u)pdS(p)p (K1, · · · ,Kn−1;ϕ

tu)

= |detϕ|∫Sn−1

|ϕ−tu|ph(L, ⟨ϕ−tu⟩)p

×dSp(K1, · · · ,Kn−1;u)

= |detϕ|∫Sn−1

h(L, ϕ−tu)pdSp(K1, · · · ,Kn−1;u)

= |detϕ|∫Sn−1

h(ϕ−1L, u)pdSp(K1, · · · ,Kn−1;u)

= n| detϕ|Vp(K1, · · · ,Kn−1, ϕ−1L).

Corollary 12 shows that for K1, · · · ,Kn are convex bodiesthat contain the origin in their interiors, real p > 0, andϕ ∈ GL(n),

Vp(ϕK1, · · · , ϕKn) = |detϕ|Vp(K1, · · · ,Kn). (44)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 6: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

B. Generalized ith Lp-mixed surface area and generalizedith Lp-mixed quermassintegrals

Definition 13. Let p > 0, and K1 = · · · = Kn−1−i ∈Kn

o ,Kn−i = · · · = Kn−1 = B (i = 0, 1, · · · , n − 2), definethe Borel measure Sp,i(K1, · · · ,Kn−1−i; ·) on Sn−1, by

Sp,i(K1, · · · ,Kn−1−i;ω)

=

∫ω

(h(K1, u) · · ·h(Kn−1−i, u))1−p

n−1−i

×dSi(K1, · · · ,Kn−1−i;u), (45)

for each Borel ω ⊂ Sn−1, where we denote

Si(K1, · · · ,Kn−1−i; ·) := S(K1, · · · ,Kn−1−i, B[i]; ·),

Sp,i(K1, · · · ,Kn−1−i; ·) := Sp(K1, · · · ,Kn−1−i, B[i]; ·).

From (45), it is easily to obtain that

dSp,i(K1, · · · ,Kn−1−i; ·)dSi(K1, · · · ,Kn−1−i; ·)

=(h(K1, ·) · · ·h(Kn−1−i, ·)

) 1−pn−1−i . (46)

Taking K1 = · · · = Kn−1−i = K in (46), then (46)reduces to (34).

Let K1 = · · · = Kn−1−i = K and Kn−i = · · · =Kn−1 = B, and introducing the abbreviation

Wp,i(K1, · · · ,Kn−1−i, L) := Vp(K1, · · · ,Kn−1−i, B[i], L).

Definition 14. For p > 0, and K1, · · · ,Kn−1−i, L ∈ Kno

(i = 0, 1, · · · , n − 2), we define the generalized Lp-mixedquermassintegrals, Wp,i(K1, · · · ,Kn−1−i, L), by

Wp,i(K1, · · · ,Kn−1−i, L)

=1

n

∫Sn−1

h(L, u)pdSp,i(K1, · · · ,Kn−1−i;u), (47)

where the Borel measure Sp,i(K1, · · · ,Kn−1−i; ·) dependsonly on the bodies K1, · · · ,Kn−1−i, and is uniquely de-termined by (45), it is called the generalized ith Lp-mixedsurface area measure of K1, · · · ,Kn−1−i.Remark 15. By Definition 14 with that (47), we can deducethat the Definition 8 with that (41) but not vice versa.Therefore, Definition 14 with that (47) extend some knownones in the sense of the Definition 8 with that (41).

C. Generalized Lp-mixed projection bodies

In this section, we first introduce the concept of general-ized Lp-mixed projection body.Definition 16. If p > 0 and Ki ∈ Kn

o (i = 1, · · · , n −1), then for u ∈ Sn−1, the generalized Lp-mixed projectionbody,Πp(K1, · · · ,Kn−1), of Ki(i = 1, · · · , n− 1) is definedby

h(Πp(K1, · · · ,Kn−1), u)p

=1

2p

∫Sn−1

|u · v|pdSp(K1, · · · ,Kn−1; v), (48)

where Sp(K1, · · · ,Kn−1, ·) depends only on the bodiesK1, · · · ,Kn−1, and is uniquely determined by (40).

When p = 1, then (48) reduces to the following definitionof mixed projection bodies introduced by Lutwak [57]:

h(Π(K1, · · · ,Kn−1), u)

=1

2

∫Sn−1

|u · v|dS(K1, · · · ,Kn−1; v). (49)

This is equivalent to

v(Ku1 , · · · ,Ku

n−1) = nV (K1, · · · ,Kn−1, [u]). (50)

Additional, it follow from (41) and (49) that

h(Πp(K1, · · · ,Kn−1), u)p = nVp(K1, · · · ,Kn−1, [u]). (51)

Remark 17. If p = 1, it follows that

vp(Ku1 , · · · ,Ku

n−1) = nVp(K1, · · · ,Kn−1, [u]).

In fact, a function of K1, the right-hand side is (underdilatation) homogeneous of degree n−p

n−1 , while the left-handside is homogeneous of degree n−1−p

n−2 . Further, a functionof Kn−1, the right-hand side is homogeneous of degreen−pn−1 , while the left-hand side is homogeneous of degree p.However, from (40), (41) and Holder’s inequality (58) in theback, we have that for p ≥ 1

vp(Ku1 , · · · ,Ku

n−1)

≥ nV (K1, · · · ,Kn−1, [u])p

×n−2∏j=1

V (Kj ,K1, · · · ,Kn−2, [u])1−pn−2 , (52)

for 0 < p ≤ 1, the inequality (52) is reversed. Equality holdsin either if and only if p = 1.

We use Π∗p(K1, · · · ,Kn−1) to denote the polar body of

Πp(K1, · · · ,Kn−1) called the polar of generalized Lp-mixedprojection body of K1, · · · ,Kn−1.

D. Generalized ith Lp-mixed projection bodies

Definition 18. If p > 0,K1, · · · ,Kn−1−i ∈ Kno (i =

0, 1, · · · , n − 2), then the generalized ith Lp-mixed projec-tion body of Kj (j = 1, · · · , n − 1 − i) is defined byΠp,i(K1, · · · ,Kn−1−i), and whose support function is given,for u ∈ Sn−1, by

h(Πp,i(K1, · · · ,Kn−1−i), u)p =

1

2p

∫Sn−1

|u · v|p

×dSp,i(K1, · · · ,Kn−1−i; v), u ∈ Sn−1, (53)

where Sp,i(K1, · · · ,Kn−1−i; ·) is uniquely determined by(46).

From Definition 14 and Definition 18, it follows that

h(Πp,i(K1, · · · ,Kn−1−i), u)p

= nWp,i(K1, · · · ,Kn−1−i, [u]). (54)

If K1 = · · · = Kn−2−i = K and Kn−1−i = L, thenΠp,i(K1, · · · ,Kn−1−i) will be written as Πp,i(K,L). If L =B, then Πp,i(K,B) is called the ith Lp-mixed projectionbody of K and denoted by Πp,iK. We write Πp,0K as ΠpK.It easily to see that

h(Πp,i(K,L), u)p =1

2p

∫Sn−1

|u · v|pdSp,i(K,L, v) (55)

and

h(Πp,iK,u)p =1

2p

∫Sn−1

|u · v|pdSp,i(K, v). (56)

The following property will be used later. If K,L ∈Kn

o ,K2, · · · ,Kn−1 ∈ Kno and C = (K2, · · · ,Kn−1), then

Π(λK + µL,C) = λΠ(K,C) + µΠ(L,C). (57)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 7: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

IV. THE MAIN RESULTS AND THEIR PROOFS

A. The Aleksandrov-Fenchel inequality for the generalizedLp-mixed volume of convex bodies

In this section, we prove the Aleksandrov-Fenchel inequal-ity for the generalized Lp-mixed volume of convex bodiesstated in the beginning of this paper.

Proof of Theorem 1. For p = 1, Theorem 1 is just inequality(1) stated in the beginning of this paper, its proof wascompleted by Schneider (see [80], p.401).

For p > 1, we use Holder’s inequality (see [34], p.140)to complete the proof.

Suppose that fi ∈ Lαiω (E), 1 < αi < ∞ (i = 0, 1, · · · ,m)

are nonnegative functions, αi satisfies1

α1+ · · ·+ 1

αm= 1.

Then∏m

i=1 fi ∈ L1ω(E), and∫

E

m∏i=1

fi(x)ω(x)dµ(x) ≤m∏i=1

||fi||αi,ω

=

m∏i=1

(∫E

(fi(x))αiω(x)dµ(x)

) 1αi, (58)

with equality if and only if there exist positive constantsλ1, · · · , λm such that λ1f1(x)

α1 = · · · = λmfm(x)αm forx ∈ E.

If 0 < α1 < 1 and α2 < 0, · · · , αm < 0, then inequality(58) is reverse (the conditions of the reverse inequality of(58) is given by the author of this article).

For p > 1, the reverse Holder’s inequality, together with(41), (40) and (21), yields

Vp(K1, · · · ,Kn)

=1

n

∫Sn−1

h(Kn, u)pdSp(K1, · · · ,Kn−1;u)

=1

n

∫Sn−1

h(Kn, u)p(h(K1, u) · · ·h(Kn−1, u)

) 1−pn−1

×dS(K1, · · · ,Kn−1;u)

≥(1

n

∫Sn−1

h(Kn, u)dS(K1, · · · ,Kn−1;u)

)p

×n−1∏j=1

(1

n

∫Sn−1

h(Kj , u)dS(K1, · · · ,Kn−1;u)

) 1−pn−1

= V (K1, · · · ,Kn)pn−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 .

Using the Aleksandrov-Fenchel inequality (1), we have

Vp(K1, · · · ,Kn) ≥r∏

j=1

V (Kj [r],Kr+1, · · · ,Kn)pr

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 .

Similarly, we can prove the reverse inequality.Taking r = n− 1 in (9), we obtain

Corollary 19. If p ≥ 1,Ki ∈ Kno (i = 1, · · · , n), then

Vp(K1, · · · ,Kn)n−1 ≥

n−1∏j=1

V (Kj [n− 1],Kn)p

×V (K1, · · · ,Kn−1,Kj)1−p. (59)

Taking r = n in (9), we obtainCorollary 20. If p ≥ 1,Ki ∈ Kn

o (i = 1, · · · , n), then

Vp(K1, · · · ,Kn)n ≥

n∏i=1

V (Ki)p

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(1−p)nn−1 . (60)

Remark 21. In particular, when p = 1 in (60), the resulthas proved by Lutwak [57]: If Ki ∈ Kn

o (i = 1, · · · , n), then

V (K1, · · · ,Kn)n ≥ V (K1) · · ·V (Kn), (61)

with equality if and only if K1, · · · ,Kn are homothetic.Using the same argument as in Theorem 1, we immedi-

ately can get the following theorem.Theorem 22. If p ≥ 1, and K1, · · · ,Kn−1−i ∈ Kn

o (i =0, 1, · · · , n− 1), Kn ∈ Kn

o , then

Wp,i(K1, · · · ,Kn−1−i,Kn)r

≥r∏

j=1

Wi(Kj [r],Kr+1, · · · ,Kn−1−i,Kn)p

×n−1−i∏j=1

Wi(K1, · · · ,Kn−1−i,Kj)(1−p)rn−1−i . (62)

Taking r = n− 1− i in (62), we obtain thatCorollary 23. If p ≥ 1,K1, · · · ,Kn−1−i,Kn (i =0, 1, · · · , n− 1) ∈ Kn

o , then

Wp,i(K1, · · · ,Kn−1−i,Kn)n−1−i

≥n−1−i∏j=1

Wi(Kj [n− 1− i],Kn)p

×Wi(K1, · · · ,Kn−1−i,Kj)1−p. (63)

Remark 24. Taking r = n− i,K1 = · · · = Kn−1−i = Kand Kn = L in (62), we can get the Minkowski inequalityproved by Lutwak [51]: If K,L ∈ Kn

o , p ≥ 1, then for i =0, 1, · · · , n− 2,

Wp,i(K,L)n−i ≥ Wi(K)n−i−pWi(L)p, (64)

with equality for p > 1 if and only if K and L are dilates,for p = 1 if and only if K and L are homothetic.

B. The Aleksandrov-Fenchel inequality for generalized Lp-mixed projection of convex bodies

In this section, we prove the Aleksandrov-Fenchel inequal-ity for Lp-mixed projection bodies of convex bodies statedin the beginning of this paper.Lemma 25. If p ≥ 1 and K1, · · · ,Kn−1 ∈ Kn

o , for i =0, 1, · · · , n− 1, then

Wi(Πp(K1, · · · ,Kn−1))p

n−i

≥ n1−pWi(Π(K1, · · · ,Kn−1))p

n−i

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 . (65)

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 8: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

Proof. We only prove the first inequality with p ≥ 1. FromDefinition 1, Definition 6, the reverse of Holder’s inequality(58), (49) and (21), it follows that

h(Πp(K1, · · · ,Kn−1), u)p

=1

2p

∫Sn−1

|u · v|p(hK1(v) · · ·hKn−1(v)

) 1−pn−1

×dS(K1, · · · ,Kn−1; v)

≥ n1−p

(1

2

∫Sn−1

|u · v|dS(K1, · · · ,Kn−1; v)

)p

×( n−1∏

j=1

(1

n

∫Sn−1

hKj (v)dS(K1, · · · ,Kn−1; v)

)) 1−pn−1

= n1−ph(Π(K1, · · · ,Kn−1), u)p

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 .

Namely,

h(Πp(K1, · · · ,Kn−1), u)p

≥ n1−ph(Π(K1, · · · ,Kn−1), u)p

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 . (66)

For each Q ∈ Kno , integrating both sides of (66) for

dSp,i(Q, u) in u ∈ Sn−1, and by (33), we obtain

Wp,i(Q,Πp(K1, · · · ,Kn−1))

≥ n1−pWp,i(Q,Π(K1, · · · ,Kn−1))

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 .

Taking Q = Πp(K1, · · · ,Kn−1), we have

Wi(Πp(K1, · · · ,Kn−1))

≥ n1−pWp,i(Πp(K1, · · · ,Kn−1,Π(K1, · · · ,Kn−1))

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 . (67)

Using inequality (64) in (67), we have (65).Taking i = 0 in (65) and using inequality (5), this has

Theorem 2. Taking r = n− 1 in (10), we obtainCorollary 26. Let K1, · · · ,Kn−1 ∈ Kn

o . If p ≥ 1, then

V (Πp(K1, · · · ,Kn−1))pn ≥ n1−p

n−1∏j=1

V (ΠKj)p

n(n−1)

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)1−pn−1 . (68)

When p = 1 in (10), we obtain the Brunn-Minkowskiinequality (5) for mixed projection bodies established by Lut-wak [45]. From (53), (46), the reverse of Holder’s inequality(58), (31) and (6), the same argument can get

Theorem 27. If p ≥ 1, K1, · · · ,Kn−1−i ∈ Kno (i =

0, 1, · · · , n− 2), then

V (Πp,i(K1, · · · ,Kn−1−i))pn

≥ n1−pr∏

j=1

V (Πi(Kj [r],Kr+1 · · · ,Kn−1−i))pnr

×n−1−i∏j=1

Wi(K1, · · · ,Kn−1−i,Kj)1−p

n−1−i . (69)

Now we established the generalized Aleksandrov-Fenchelinequality for the polar of Lp-mixed projection bodies.Lemma 28. If p ≥ 1,K1, · · · ,Kn−1 ∈ Kn

o and i ∈ R, then

Wi(Π∗p(K1, · · · ,Kn−1))

≤ n(p−1)(n−i)

p Wi(Π∗(K1, · · · ,Kn−1))

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(p−1)(n−i)

(n−1)p , (70)

with equality if and only if Kj is the line segment λj [u],where λj > 0 (j = 1, · · · , n− 1).Proof. From (66) we have

ρ(Π∗p(K1, · · · ,Kn−1), u)

n−i

≤ n(p−1)(n−i)

p ρ(Π∗(K1, · · · ,Kn−1), u)n−i

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(p−1)(n−i)

(n−1)p . (71)

For each Q ∈ Kno , integrate both sides of (71) for u ∈ Sn−1,

and by (38) and the formula of the dual quermassintegrals(38), we immediately obtain (70).

From the condition of equality in Holder inequality, weknow that equality holds in inequality (70) if and only if Kj

is the line segment λj [u], where λj > 0 (j = 1, · · · , n− 1).Taking i = 0 in (70) and using inequality (7), we can

obtain Theorem 3. Taking r = n− 2 in (11), we obtainCorollary 29. If p ≥ 1 and K1, · · · ,Kn−1 ∈ Kn

o , then

V (Π∗p(K1, · · · ,Kn−1))

≤ n(p−1)n

p

n−2∏j=1

V (Π∗Kj)1

n−2

×n−1∏j=1

V (K1, · · · ,Kn−1,Kj)(p−1)n(n−1)p , (72)

with equality if and only if Kj is the line segment λj [u],where λj > 0 (i = 1, · · · , n− 1).

Taking p = 1 in (11), we obtain the Aleksandrov-Fenchelinequality (7) for the polars of mixed projection bodiesestablished by Leng et al. [38].

From Definition 18, (46), the reverse of Holder’s inequal-ity (58), (38), (8) and (21), and similar to the proof ofTheorem 3, we haveTheorem 30. If p ≥ 1 and K1, · · · ,Kn−1−i ∈ Kn

o (i =

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 9: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

0, 1, · · · , n− 2), then

V (Π∗p,i(K1, · · · ,Kn−1−i))

≤ n(p−1)n

p

r∏j=1

V (Π∗i (Kj [r],Kr+1 · · · ,Kn−1−i))

1r

×n−1−i∏j=1

Wj(K1, · · · ,Kn−1−i,Kj)(p−1)n

(n−1−i)p , (73)

with equality if and only if K1, · · · ,Kn−1−i (i =0, 1, · · · , n− 2) are line segment 2[u].

C. The Brunn-Minkowski inequality for polars of generalizedLp-mixed projection bodies

For u ∈ Sn−1, b(K,u) := 12 (h(K,u) + h(K,−u)) is

defined to be half the width of K in the direction u. Twoconvex bodies K and L are said to have similar width if thereexists a constant λ > 0 such that b(K,u) = λb(L, u) for allu ∈ Sn−1. For K ∈ Kn and p ∈ intK, we use Kp to denotethe polar reciprocal of K with respect to the unit spherecentered at p. The width integrals were first considered byBlaschke (see [9], p.85). The width integrals of index i isdefined by Lutwak [54]. For K ∈ Kn, i ∈ R,

Bi(K) =1

n

∫Sn−1

b(K,u)n−idS(u). (74)

The width-integral of index i is a map Bi : Kn → R.It is positive, continuous, homogeneous of degree n-i andinvariant under motion. In addition, for i ≤ n it is alsobounded and monotone under set inclusion.

The following result will be used later (see [54]),

b(K + L, u) = b(K,u) + b(L, u). (75)

On the other hand, Lutwak [55] showed the notion ofLp-mixed width integrals. Let K1, · · · ,Kn ∈ Kn, andreal number p = 0, then the Lp-mixed width integrals ofK1, · · · ,Kn ∈ Kn, can is defined by

Bp(K1, · · · ,Kn)

= ωn

(1

nωn

∫Sn−1

b(K,u)p · · · b(Kn, u)pdS(u)

) 1p

.

(76)

And the Lp-mixed width integrals of index i of K is definedby

Bp,i(K) = Bp(K[n− i], B[i])

= ωn

(1

nωn

∫Sn−1

b(K,u)p(n−i)dS(u)

) 1p

,

p = 0. (77)

The generalized Lp-quasi dual mixed volume was givenby Zhao [93]. Let Ki ∈ Sn

o (i = 1, · · · , n) and p > 0, thenthe generalized Lp-quasi dual mixed volume of K1, · · · ,Kn

is defined by

Vp(K1, · · · ,Kn)

= ωn

(1

nωn

∫Sn−1

ρ(K1, u)p · · · ρ(Kn, u)

pdS(u)

) 1p

.

(78)

Taking K1 = · · · = Kn−i = K and Kn−i+1 = · · · = Kn =L in (34), we write Vp,i(K,L) = Vp(K[n− i], L[i]). If i isany real, then Vp,i(K,L) is said the ith Lp-quasi dual mixedvolume of K,L ∈ Sn

o (see [93]), and

Vp,i(K,L)

= ωn

(1

nωn

∫Sn−1

ρ(K,u)p(n−i)ρ(L, u)pidS(u)

) 1p

.

(79)

In (79), let L = B and we write Vp,i(K,B) = Vp,i(K).Thereby, for K ∈ Sn

o , i ∈ R, the ith Lp-quasi dualquermassintegrals, Vp,i(K), of K is defined by

Vp,i(K) = ωn

(1

nωn

∫Sn−1

ρ(K,u)p(n−i)dS(u)

) 1p

. (80)

Lutwak proved the result [54]: If K ∈ Kn, then B2n(K) ≤V (Kp), with equality if and only if K is symmetric withrespect to p. We first give a generalization of this inequality.Lemma 31. If K ∈ Kn, p > 0, i < n, then

Bp,2n−i(K) ≤ Vp,i(K∗), (81)

with equality if and only if K is symmetric with respect tothe origin.Proof. From (77) and (75), we have

Bp,2n−i(K)1

n−i

= ω1

n−in

(1

nωn

∫Sn−1

b(K,u)−p(n−i)dS(u)

) 1p(n−i)

= ω1

n−in

(1

nωn

∫Sn−1

(1

b(K,u)

)p(n−i)

dS(u)

) 1p(n−i)

= ω1

n−in

(1

nωn

∫Sn−1

(2

h(K,u) + h(K,−u)

)p(n−i)

×dS(u)

) 1p(n−i)

≤ ω1

n−in

(1

nωn

∫Sn−1

(1

2h(K,u)+

1

2h(K,−u)

)p(n−i)

×dS(u)

) 1p(n−i)

≤ ω1

n−in

(1

nωn

∫Sn−1

(1

2h(K,u)

)p(n−i)

dS(u)

) 1p(n−i)

+ω1

n−in

(1

nωn

∫Sn−1

(1

2h(K,−u)

)p(n−i)

×dS(u)

) 1p(n−i)

≤ ω1

n−in

(1

nωn

∫Sn−1

ρ(K∗, u)p(n−i)dS(u)

) 1p(n−i)

= Vp,i(K∗)

1n−i , (i = 0, 1, · · · , n− 1), (82)

with equality if and only if K is centered.From (82), we know that inequality (81) is proved.

Lemma 32. If K,L ∈ Knc , p > 0 and i < n, then

4Vp,i((K + L)∗)1

n−i ≤ Vp,i(K∗)

1n−i + Vp,i(L

∗)1

n−i , (83)

with equality if and only if K = L.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 10: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

Proof. For K,L ∈ Knc ,K + L ∈ Kn

c , it follow from (77)and (81) that (83) is equivalent to the following inequality

4Bp,2n−i(K + L)1

n−i ≤ Bp,2n−i(K)1

n−i +Bp,2n−i(L)1

n−i .

In fact, from Minkowski inequality, (77) and (75), we have

Bp,2n−i(K)1

n−i +Bp,2n−i(L)1

n−i

= ω1

n−in

(1

nωn

∫Sn−1

(1

b(K,u)

)p(n−i)

dS(u)

) 1p(n−i)

+ω1

n−in

(1

nωn

∫Sn−1

(1

b(L, u)

)p(n−i)

dS(u)

) 1p(n−i)

≥ ω1

n−in

(1

nωn

∫Sn−1

(1

b(K,u)+

1

b(L, u)

)p(n−i)

×dS(u)

) 1p(n−i)

≥ 4ω1

n−in

(1

nωn

∫Sn−1

(1

b(K,u) + b(L, u)

)p(n−i)

×dS(u)

) 1p(n−i)

= 4Bp,2n−i(K + L)1

n−i ,

with equality if and only if b(K,u) = b(L, u), u ∈ Sn−1.Since K and L are centered, it follows that K = L.

Noting that Π(K,C) and Π(L,C) are centered, from (57)and (83), we infer Theorem 4.

D. A generalization of Pythagorean inequality for mixedvolumes

Pythagorean inequalities were given by Firey [24]:

V (K1, · · · ,Kn−1, [e])2

≤n∑

i=1

V (K1, · · · ,Kn−1, [ei])2, (84)

where {e1, · · · , en} is an orthogonal basis in Rn and e is anarbitrary unit vector. Now, we generalize inequality (84) toJohn basis. Namely, we complete the proof of Theorem 5stated in the beginning of this paper.Proof of Theorem 5. From the support function ofΠp(K1, · · · ,Kn−1) and (51), we get

h(u)p = nVp(K1, · · · ,Kn−1, [u]).

Together with [3]

u =m∑i=1

ci(u · ui)ui,

we have

nVp(K1, · · · ,Kn−1, [u])

= h

( m∑i=1

ci(u · ui)ui

)p

=

( m∑i=1

cih((u · ui)ui)

)p

=

( m∑i=1

ci|u · ui|h(sgn(u · ui)ui

))p

=

(n

1p

m∑i=1

ci|u · ui|Vp(K1, · · · ,Kn−1, [ui])1p

)p

.

(85)

Together Cauchy inequality with ||x||2 =∑m

i=1 ci|x · ui|2,we have

m∑i=1

ci|u · ui|Vp(K1, · · · ,Kn−1, [ui])1p

≤( m∑

i=1

ci|u · ui|2) 1

2

×( m∑

i=1

ciVp(K1, · · · ,Kn−1, [ui])2p

) 12

. (86)

From (85) and (86), we have

nVp(K1, · · · ,Kn−1, [u])

≤ n

( m∑i=1

ci|u · ui|2) p

2

×( m∑

i=1

ciVp(K1, · · · ,Kn−1, [ui])2p

) p2

= n||u||p( m∑

i=1

ciVp(K1, · · · ,Kn−1, [ui])2p

) p2

.

(87)

From (87), the proof of inequality (14) is completed.Remark 33. The equality in (13) implies

∑mi=1 ci = n.

Clearly, the sequence {u1, · · · , um} is just like a standardorthogonal basis such that for any x ∈ Rn,

||x||2 =

m∑i=1

ci|ui · x|2. (88)

Moreover, let ci = nm . Then {u1, · · · , um} is called star-

coordinates by Kawashima [36]. It is also easy to prove thatits inertial ellipsoid is a ball (see [90], [92]).

Taking p = 1 in Theorem 5, then inequality (14) reducesto Leng’s result [38]. Taking K1 = · · · = Kn−1−r =K,Kn−r = · · · = Kn−1 = B in (14), it follows thatCorollary 34. If p > 0,K ∈ Kn

o , then

wp,r(Ku)

2p ≤

m∑i=1

ciwp,r(Kui)

2p . (89)

In particular, let r = 1 to (89), we have Corollary 35. Ifp > 0,K ∈ Kn

o , then

Sp(Ku)

2p ≤

m∑i=1

ciSp(Kui)

2p . (90)

If {ui}mi=1 is a standard orthogonal basis, then we canprove the generalized results of the obtained results by Firey[24].

E. Generalized Loomis-Whitney inequality

We require the following result on the zonotope. In fact, azonotope is a Minkowski combination of line segments, andsee [80]. A body in Kn being the limit (with respect to theHausdorff metric) of zonotope is called a zonoid.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 11: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

Lemma 36. Suppose that {ui}mi=1 is a sequence of unitvectors in Rn, and {ci}mi=1 is a sequence of positive numberssuch that

∑mi=1 ciui ⊗ ui = In. If λ1, · · · , λm are the

sequence real numbers and Z =∑m

i=1 λi[ui], then

V (Z) ≥m∏i=1

(λi

ci

)ci

. (91)

Proof of Theorem 6. Let λ1, · · · , λm are the sequence realnumbers and Z =

∑mi=1 λi[ui]. It follow from (52) and the

property of mixed volume thatm∑i=1

λivp(Kui1 , · · · ,Kui

n−1)1p

×n−2∏j=1

V (Kj ,K1, · · · ,Kn−2, [ui])p−1

p(n−2)

≥ n1p

m∑i=1

λiV (K1, · · · ,Kn−1, [ui])

= n1pV (K1, · · · ,Kn−1, Z). (92)

Together (23), Minkowski inequality (3) with Lemma 8, wehave

V (K1, · · · ,Kn−1, Z)

= V ([K1, · · · ,Kn−1][n− 1], Z)

≥ V ([K1, · · · ,Kn−1])n−1n V (Z)

1n

≥ V ([K1, · · · ,Kn−1])n−1n

m∏i=1

(λi

ci

) cin

. (93)

Together (92) with (93), we havem∑i=1

λivp(Kui1 , · · · ,Kui

n−1)1p

×n−2∏j=1

V (Kj ,K1, · · · ,Kn−2, [ui])p−1

p(n−2)

≥ n1pV ([K1, · · · ,Kn−1])

n−1n

m∏i=1

(λi

ci

) cin

. (94)

LetA = vp(K

ui1 , · · · ,Kui

n−1)1p ,

B =n−2∏j=1

V (Kj ,K1, · · · ,Kn−2, [ui])p−1

p(n−2) ,

λi =ciAB

,

and note that∑m

i=1 ci = n, we obtain Theorem 6.Taking p = 1 in (15), we have

Corollary 37. Suppose that K1, · · · ,Kn−1 ∈ Kn, {ui}mi=1

is a sequence of unit vectors in Rn, and {ci}mi=1 is a sequenceof positive numbers such that

∑mi=1 ciui ⊗ ui = In. Then

m∏i=1

v(Kui1 , · · · ,Kui

n−1)ci ≥ V ([K1, · · · ,Kn−1])

n−1. (95)

Inequality (95) is established by Si and Leng [84].In particular, let K1 = · · · = Kn−1 = K, and note that

[K1, · · · ,Kn−1] = K, then inequality (95) reduces to the

following Ball’s Loomis-Whitney inequality for John basis[5].Corollary 38. Suppose that K ∈ Kn, {ui}mi=1 is a sequenceof unit vectors in Rn, and {ci}mi=1 is a sequence of positivenumbers such that

∑mi=1 ciui ⊗ ui = In. Then

m∏i=1

v(Kui)ci ≥ V (K)n−1. (96)

REFERENCES

[1] R. Alexander, “Zonoid theory and Hilbert’s fouth problem”, GeometriaeDedicata, vol. 28, no. 2, pp. 199-211, 1988.

[2] A. D. Aleksandrov, “New inequalities between mixed volumes and theirapplications”, Mat Sb (N. S.), 1937, 2: 1205-1238 (in Russian).

[3] A. D. Aleksandrov, “On the surface area function of a convex body”,Mat Sb (N. S.), 1939, 6: 167-174 (in Russian).

[4] A. D. Aleksandrov, “Extension of two theorem of Minkowski on convexpolyhedru to arbitrary convex bodies”, Mat Sb (N. S.), 1938, 3: 27-46(in Russian).

[5] K. Ball, “Shadows of convex bodies”, Transactions of the AmericanMathematical Society, vol. 327, no. 1, pp. 891-901, 1991.

[6] J. Bastero, M. Romance, “Positions of convex bodies associated toextremal problems and isotropic measures”, Advances in Mathematics,vol. 184, no. 1, pp. 64-88, 2004.

[7] U. Betke, P. Mcmullen, “Estimating the sizes of convex bodies fromprojection”, Journal of the London Mathematical Society, vol. 27, no.2, pp. 525-538, 1983.

[8] C. Bianchini, A. Colesanti, “A sharp Rogers and Shephard inequalityfor p-difference body of planar convex bodies”, Proceedings of theAmerican Mathematical Society, vol. 136, no. 1, pp. 2575-2582, 2008.

[9] W. Blaschke, “Vorlesungenuber integralgeometrie”, I, II, Teubner,Leipzig, 1936, 1937; reprint, New York: Chelsea, 1949.

[10] E. D. Bolker, “A class of convex bodies”, Transactions of the AmericanMathematical Society, vol. 145, no. 1, pp. 323-345, 1969.

[11] J. Bourgain, J. Lindenstrauss, “Projection bodies”, Israel Semi-nar(G.A.F.A.) 1986-1987, Lecture Notes in Math, Vol.1317,Berlin.Newyork:Springer-Verlag, 1988, 250-269.

[12] T. Bonnesen, W. Fenchel, “Theorie der Konvexen Korper”, Berlin:Springer, 1934.

[13] N. S. Brannen, “Volumes of projection bodies”, Mathematika, vol. 43,no. 2, pp. 255-264, 1996.

[14] S. Campi, P. Gronchi, “The Lp-Busemann-Petty centroid inequality”,Advances in Mathematics, vol. 167, no. 1, pp. 128-141, 2002.

[15] S. Campi, P. Gronchi, “On the reverse Lp-Busemann-Petty centroidinequality”, Mathematika, vol. 49, no. 1-2, pp. 1-11, 2002.

[16] S. Campi, P. Gronchi, “Extremal convex sets for Sylvester-Busemanntype functions”, Applicable Analysis, vol. 85, no. 1-3, pp. 129-141,2006.

[17] S. Campi, P. Gronchi, “On volume product inequalities for convexsets”, Proceedings of the American Mathematical Society, vol. 134, no.1, pp. 2393-2402, 2006.

[18] S. Campi, P. Gronchi, “Volume inequalities for Lp-zonotopes”, Math-ematika, vol. 53, no. 1, pp. 71-80, 2006.

[19] G. D. Chakerian, E. Lutwak, “Bodies with similar projection”, Trans-actions of the American Mathematical Society, vol. 349, no. 1, pp.1811-1820, 1997.

[20] G. D. Chakerian, “Set of constant relative width and constant relativebrightness”, Transactions of the American Mathematical Society, vol.129, no. 1, pp. 26-37, 1967.

[21] K. Chow, X. Wang, “The Lp-Minkowski problem and the Minkowskiproblem in centroaffine geometry”, Advances in Mathematics, vol. 205,no. 1, pp. 33-83, 2006.

[22] A. Cianchi, E. Lutwak, D. Yang, G. Zhang, “Affine Moser-Trudingerand Morrey-Sobolev inequalities”, Calculus of Variations and PartialDifferential Equations, vol. 36, no. 3, pp. 419-436, 2009.

[23] Y. B. Feng, “Some Inequalities for Lp-geominimal Surface Area”,IAENG International Journal of Applied Mathematics, vol. 47, no. 1,pp. 9-13, 2017.

[24] W. J. Firey, “Pythagorean inequalities for convex bodies”, Mathemat-ica Scandinavica, vol. 8, no. 1, pp. 168-170, 1960.

[25] W. J. Firey, “p-Means of convex bodies”, Mathematica Scandinavica,vol. 10, no. 1, pp. 17-24, 1962.

[26] W. J. Firey, B. Grunbrum, “Addition and decomposition of convexpolytope”, Israel Journal of Mathematics, vol. 2, no. 2, pp. 91-100,1964.

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________

Page 12: The Generalized L -mixed Volume and the Generalized Lp ... · THE mixed volume is a central part of the Brunn-Minkowski theory of convex bodies. The monograph by Schneider [80] introduced

[27] R. J. Gardner, “Geometric tomography”, Cambridge Univ. Press,Cambridge, 1995.

[28] Y. Gordon, M. Meyer, S. Reisner, “Zonoids with minimal volumeproduta new proof”, Proceedings of the American Mathematical Society,vol. 104, no. 1, pp. 273-276, 1988.

[29] P. R. Goodey, W. Weil, “Zonoids and generalizations, in Handbookof Convex Geometry ”(ed. Gruber. P. M., Wills. J. M.), North-Holland,Amsterdam, 1993, 326: 1297.

[30] C. Haberl, “Lp-intersection bodies”, Advances in Mathematics, vol.217, no. 6, pp. 2599-2624, 2008.

[31] C. Haberl, “Star body valued valuations”, Indiana University Mathe-matics Journal, vol. 58, no. 1, pp. 2253-2276, 2009.

[32] C. Haberl, F. Schuster, “Asymmetric affine Lp-Sobolev inequalities”,Journal of Functional Analysis, vol. 257, no. 3, pp. 641-658, 2009.

[33] C. Haberl, F. Schuster, “General Lp-affine isoperimetric inequalities”,Journal of Differential Geometry, vol. 56, no. 1, pp. 111-132, 2000.

[34] G. H. Hardy, J. E. Littlewood, Polya G., “Inequalities”, Cambridge:Cambridge University Press, 1934.

[35] C. Hu, X. Ma, C. Shen, “On the Christoffel-Minkowski problemof Firey’s p-sum”, Calculus of Variations and Partial DifferentialEquations, vol. 21, no. 2, pp. 137-155, 2004.

[36] T. Kawashima, “Polytopes which are orthogonal projections of regularsimplexes”, Geometriae Dedicata, vol. 38, no. 1, pp. 73-85, 1991.

[37] G. Leng, L. Zhang, “Extreme properties of quermassintegrals ofconvex bodies”, Science in China Series A: Mathematics,vol. 44, no. 7,pp. 837-845, 2001.

[38] G. Leng, C. Zhao, B. He and X. Li, “Inequality for polars of mixedprojection bodies”, Science in China Series A: Mathematics, vol. 47,no. 2, pp. 175-186, 2004.

[39] L. H. Loomis, H. Whitney, “An inequality related to the isoperimetricinequality”, Bulletin of the American Mathematical Society, vol. 55, no.1, pp. 961-962, 1949.

[40] M. Ludwig, “Projection bodies and valuations”, Advances in Mathe-matics, vol. 172, no. 2, pp. 158-168, 2002.

[41] M. Ludwig, “Valuations on polytopes containing the origin in theirinteriors”, Advances in Mathematics, vol. 170, no. 2, pp. 239-256, 2002.

[42] M. Ludwig, “Minkowski valuations”, Transactions of the AmericanMathematical Society, vol. 357, no. 1, pp. 4191-4213, 2005.

[43] M. Ludwig, “Intersection bodies and valuations”, American Journalof Mathematics, vol. 128, no. 6, pp. 1409-1428, 2006.

[44] M. Ludwig, “General affine surface areas”, Advances in Mathematics,vol. 224, no. 6, pp. 2346-2360, 2010.

[45] E. Luwak, “Inequalities for mixed projection bodies”, Transactions ofthe American Mathematical Society, vol. 339, no. 1, pp. 901-916, 1993.

[46] E. Lutwak, “Centroid bodies and dual mixed volumes”, Proceedingsof the London Mathematical Society, vol. 60, no. 2, pp. 365-391, 1990.

[47] E. Lutwak, “Intersection bodies and dual mixed volumes”, Advancesin Mathematics, vol. 71, no. 2, pp. 232-261, 1988.

[48] E. Lutwak, “On quermassintegrals of mixed projection bodies”, Ge-ometriae Dedicata, vol. 33, no. 1, pp. 51-58, 1990.

[49] E. Lutwak, “Volume of mixed bodies”, Transactions of the AmericanMathematical Society, vol. 294, no. 1, pp. 487-500, 1986.

[50] E. Lutwak, “Mixed projection inequalities”, Transactions of the Amer-ican Mathematical Society, vol. 287, no. 1, pp. 91-106, 1985.

[51] E. Lutwak, “The Brunn-Minkowski-Firey theory I: mixed volumes andthe minkowski problem”, Journal of Differential Geometry, vol. 38, no.1, pp. 131-150, 1993.

[52] E. Lutwak , “The Brunn-Minkowski-Firey theory II: Affine andgeominimal surface areas”, Advances in Mathematics, vol. 118, no. 2,pp. 244-294, 1996.

[53] E. Lutwak, “Dual mixed Volumes”, Pacific Journal of Mathematics,vol. 58, no. 2, pp. 531-538, 1975.

[54] E. Lutwak, “Width-integrals of convex bodies”, Proceedings of theAmerican Mathematical Society, vol. 53, no. 1, pp. 435-439, 1975.

[55] E. Lutwak, “Mixed width-integrals of convex bodies”, Israel Journalof Mathematics, vol. 28, no. 3, pp. 249-253, 1977.

[56] E. Lutwak, D. Yang, G. Zhang, “Lp-John Ellipsoids”, Proceedings ofthe London Mathematical Society, vol. 90, no. 2, pp. 497-520, 2005.

[57] E. Lutwak, “Inequalities for mixed projection bodies”, Transactionsof the American Mathematical Society, vol. 339, no. 1, pp. 901-916,1993.

[58] E. Lutwak, V. Oliker, “On the regularity of solutions to a generalizationof the Minkowski problem”, Journal of Differential Geometry, vol. 41,no. 1, pp. 227-246, 1995.

[59] E. Lutwak, D. Yang, G. Zhang, “Lp affine isoperimetric inequalities”,Journal of Differential Geometry, vol. 56, no. 1, pp. 111-132, 2000.

[60] E. Lutwak, D. Yang, G. Zhang, “A new ellipsoid associated withconvex bodies”, Duke Mathematical Journal, vol. 104, no. 4, pp. 375-390, 2000.

[61] E. Lutwak, D. Yang, G. Zhang, “The Cramer-Rao inequality for starbodies”, Duke Mathematical Journal, vol. 112, no. 1, pp. 59-81, 2002.

[62] E. Lutwak, D. Yang, G. Zhang, “Sharp affine Lp Sobolev inequalities”,Journal of Differential Geometry, vol. 62, no. 1, pp. 17-38, 2002.

[63] E. Lutwak, D. Yang, G. Zhang, “Volume inequalities for subspacesof Lp”, Journal of Differential Geometry, vol. 68, no. 1, pp. 159-184,2004.

[64] E. Lutwak, D. Yang, G. Zhang, “Volume inequalities for isotropicmeasures”, American Journal of Mathematics, vol. 129, no. 6, pp. 1711-1723, 2007.

[65] E. Lutwak, G. Zhang, “Blaschke-Santalo inequalities”, Journal ofDifferential Geometry, vol. 47, no. 2, pp. 1-16, 1997.

[66] T. Ma, “The ith p-geominimal surface area”, Journal of Inequalitiesand Applications, vol. 2014, no. 1, pp. 1-26, 2014.

[67] T. Ma, Y. Feng, “The ith p-affine surface area”, Journal of Inequalitiesand Applications, vol. 2015, no. 1, pp. 1-26, 2015.

[68] T. Ma, “The generalized Lp-Winternitz problem”, Journal of Mathe-matical Inequalities, vol. 9, no. 2, pp. 597-614, 2015.

[69] T. Ma, “The generalized Lp-mixed affine surface area”, Acta Mathe-matica Sinica, English Series, vol. 31, no. 11, pp. 1775-1788, 2015.

[70] T. Ma, “Extremum properties of dual Lp-centroid body and Lp-Johnellipsoid”, Bulletin of the Korean Mathematical Society, vol. 49, no. 3,pp. 465-479, 2012.

[71] T. Ma, W. Wang, “On the analong of Shephard problem for the Lp-projection body”, Mathematical Inequalities & Applications, vol. 14,no. 1, pp. 181-192, 2011.

[72] T. Ma, W. Wang, “Some Inequalities for Generalized Lp-mixed AffineSurface Areas”, IAENG International Journal of Applied Mathematics,vol. 45, no. 4, pp. 321-326, 2015.

[73] T. Ma, Y. Feng, “Some Inequalities for p-Geominimal Surface Areaand Related Results”, IAENG International Journal of Applied Mathe-matics, vol. 46, no. 1, pp. 92-96, 2016.

[74] T. Ma, Y. Feng, “Orlicz Intersection Bodies”, IAENG InternationalJournal of Applied Mathematics, vol. 47, no. 1, pp. 20-27, 2016.

[75] M. Meyer, E. Werner, “On the p-affine surface area”, Advances inMathematics, vol. 152, no. 2, pp. 288-313, 2000.

[76] I. Molchanov, “Convex and star-shaped sets associated with mul-tivariate stable distributions. I: Moments and densities”, Journal ofMultivariate Analysis, vol. 100, no. 10, pp. 2195-2213, 2009.

[77] H. Martini, “Zur Bestimmung Konvexer Polytope durch the Inhalteihrer Projection”, Beitrage Zur Algebra und Geometrie, vol. 18, no. 1,pp. 75-85, 1984.

[78] S. Reisner, “Zonoids with minimal volume-produt”, MathematischeZeitschrift, vol. 192, no. 3, pp. 339-346, 1986.

[79] D. Ryabogin, A. Zvavitch, “The Fourier transform and Firey projec-tions of convex bodies”, Indiana University mathematics journal, vol.53, no. 2, pp. 667-682, 2004.

[80] R. Schneider, “Convex Bodies: The Brunn-Minkowski Theory”, Sec-ond ed., Cambridge, Cambridge University Press, 2014.

[81] R. Schneider, “Random ploytopes generated by anisotropic hyper-planes”, Bulletin of the London Mathematical Society, vol. 14, no. 6,pp. 549-553, 1982.

[82] R. Schneider, W. Weil, “Zonoids and related topics, Convexity and itsApplications”, Basel: Birkhauser, 1983, 296-317.

[83] C. Schutt, E. Werner, “Surface bodies and p-affine surface area”,Advances in Mathematics, vol. 187, no. 1, pp. 98-145, 2004.

[84] L. Si, G. Leng, “Loomis-Whitney’s inequality about mixed body”,Acta Mathematica Scientia, vol. 27B, no. 3, pp. 619-624, 2007.

[85] A. Stancu, “The discrete planar L0-Minkowski problem”, Advancesin Mathematics, vol. 167, no. 1, pp. 160-174, 2002.

[86] R. P. Stanley, “Two combinatorial applications of the Aleksandrov-Fenchel inequalities”, Journal of Combinatorial Theory, Series A, vol.31, no. 1, pp. 56-65, 1981.

[87] V. Umanskiy, “On solvability of two-dimensional Lp-Minkowskiproblem”, Advances in Mathematics, vol. 180, no. 1, pp. 176-186, 2003.

[88] R. A. Vitale, “Expected absolute random determinants and zonoids”,The Annals of Applied Probability, vol. 1, no. 2, pp. 293-300, 1991.

[89] H. S. Witsenhausen, “A support characterization of the zonotopes”,Mathematika, vol. 25, no. 1, pp. 13-16, 1978.

[90] L. Yang, J. Zhang, “Pseudo-symmetric point set geometric inequali-ties”, Acta Mathematica Sinica, vol. 6, no. 2, pp. 802-806, 1986.

[91] V. Yaskin, M. Yaskina, “Centroid bodies and comparison of volumes”,Indiana University mathematics journal, vol. 55, no. 3, pp. 1175-1194,2006.

[92] J. Zhang, L. Yang, “The equelspaced embedding of finite point set inpseudo-Eucldeau space”, Acta Mathematica Sinica, vol. 24, no. 1, pp.481-487, 1981.

[93] C. Zhao, W. S. Cheung, “Lp-polar projection Brunn-Minkowskiinequality”, Chinese Annals of Mathematics, vol. 36A, no. 2, pp. 239-246, 2010. (in Chinese).

IAENG International Journal of Applied Mathematics, 49:3, IJAM_49_3_01

(Advance online publication: 12 August 2019)

______________________________________________________________________________________