26
The finite element muscle modelling cookbook AND THE IMPORTANCE OF FIBRES C. Antonio Sánchez* Dept of Elec & Comp Eng University of British Columbia Vancouver, BC, Canada [email protected] John E. Lloyd Dept of Elec & Comp Eng University of British Columbia Vancouver, BC, Canada [email protected] *presenting author

The finite element muscle modelling cookbook AND THE IMPORTANCE OF FIBRES C. Antonio Sánchez* Dept of Elec & Comp Eng University of British Columbia Vancouver,

Embed Size (px)

Citation preview

  • Slide 1
  • The finite element muscle modelling cookbook AND THE IMPORTANCE OF FIBRES C. Antonio Snchez* Dept of Elec & Comp Eng University of British Columbia Vancouver, BC, Canada [email protected] John E. Lloyd Dept of Elec & Comp Eng University of British Columbia Vancouver, BC, Canada [email protected] *presenting author
  • Slide 2
  • Finite Element(FE) Muscle Models Extensor Carpi Radialis Longus Masseter
  • Slide 3
  • FE Muscle Models Term Stress tensor Strain tensor Strain-energy density Fibre direction/activation Volumetric Mesh Fibre Field(s) Constitutive Law (Blemker, 2005)
  • Slide 4
  • Fibre Geometries Fibre templates (Blemker & Delp, 2005)Digitized Fibres (Ravichandiran et al., 2009)
  • Slide 5
  • Fibre Geometries Digitized Template Point-to-Point (Axial)
  • Slide 6
  • Fibres matter! 45 Digitized Template Point-to-Point (Axial)
  • Slide 7
  • Fibres matter! Axial has same force-length relationship Template force is scaled 1.46x
  • Slide 8
  • Fibre-Rich FE Muscle Target surface geometry Template volumetric mesh Fibre geometry Ingredients Directions 1.Create Volumetric Mesh Register template to target Recondition elements 2.Register Fibre Field Wrap fibres with surface Register to target 3.Assign element properties Extract directions from fibres
  • Slide 9
  • 3.Assign element properties Extract directions from fibres 2.Register Fibre Field Wrap fibres with surface Register to target Fibre-Rich FE Muscle Target surface geometry Template volumetric mesh Fibre geometry Ingredients Directions 1.Create Volumetric Mesh Register template to target Recondition elements
  • Slide 10
  • Volumetric Meshes Muscles are highly deformable Structured hexahedral meshes preferred Most are hand-crafted International Union of Physiological Sciences (IUPS) Physiome Project Collection of template meshes Register template shapes to target geometry
  • Slide 11
  • Volumetric Meshes PoorGood Element ConditioningDeformable Registration
  • Slide 12
  • 3.Assign element properties Extract directions from fibres 1.Create Volumetric Mesh Register template to target Recondition elements 2.Register Fibre Field Wrap fibres with surface Register to target Fibre-Rich FE Muscle Target surface geometry Template volumetric mesh Fibre geometry Ingredients Directions
  • Slide 13
  • Fibre Registration (Lee et al., 2012)
  • Slide 14
  • Fibre Registration Video courtesy of Benjamin Gilles, INRIA Grenoble (Gilles et al., 2007)
  • Slide 15
  • 2.Register Fibre Field Wrap fibres with surface Register to target 1.Create Volumetric Mesh Register template to target Recondition elements Target surface geometry Template volumetric mesh Fibre geometry Ingredients 3.Assign element properties Extract directions from fibres Fibre-Rich FE Muscle Directions
  • Slide 16
  • Extracting Orientations Evaluated at integration points Find fibres in neighbourhood
  • Slide 17
  • Extracting Orientations Evaluated at integration points Find fibres in neighbourhood
  • Slide 18
  • Finite Element(FE) Muscle Models Extensor Carpi Radialis Longus Masseter
  • Slide 19
  • AND THE IMPORTANCE OF FIBRES ?
  • Slide 20
  • Preliminary simulations What level of detail is important? Axially along muscle Minimal set of templates Fibres typically run between tendon sheets Are there important intricacies? Simulation: Isometric contraction Generic muscle properties Ignored tendon component
  • Slide 21
  • Fibre Geometries Digitized Template Point-to-Point (Axial)
  • Slide 22
  • Extensor Carpi Radialis
  • Slide 23
  • Flexor Digitorum Superficialis
  • Slide 24
  • Axial force scaled 1.12x Template force is scaled 1.26x
  • Slide 25
  • Implications and Future Work Implications: Might not be sufficient to use simple templates Geometric deformation is sensitive to fibre orientations Questions to answer: How much detail is enough? Can fibres be registered between subjects? Future Work: Include tendon structures Accurate attachment sites Mesh-Free Implementation
  • Slide 26
  • EXTRA SLIDES