THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

Embed Size (px)

Citation preview

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    1/40

    THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    SCHOOL OF PSYCHOLOGY

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    2/40

    Printed September 2010

    2

    CONTENTS

    GENERAL COMMENTS ....................................................................................... 3

    FORMATTING YOUR REPORT

    .......................................................................... 4WHAT TO INCLUDE IN THE REPORT .............................................................. 5

    1. TITLE................................................................................................................... 5

    2. ABSTRACT.......................................................................................................... 6

    3. INTRODUCTION ................................................................................................ 6

    4. METHODS ........................................................................................................... 7

    5. RESULTS ............................................................................................................. 8

    6. DISCUSSION ..................................................................................................... 12

    7. REFERENCING ................................................................................................ 12

    How to reference: In outline ......................................................................... 12

    Citations in the text: The details ................................................................ 13

    References in the reference section: The details ............................................ 14How to reference: Primary and secondary sources ........................................ 17

    8. APPENDIX......................................................................................................... 18

    IMPORTANT NOTES ON STYLE ...................................................................... 18

    DEVIATIONS FROM APA STYLE ..................................................................... 20

    Appendix A: Example Report .................................................................................. 21

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    3/40

    Printed September 2010

    3

    GENERAL COMMENTS

    Writing laboratory reports and research papers is a fundamental part of the scientific

    process. A research report should communicate what you did, why you did it, how youdid it, what you found and what you think your findings mean. It is essential to follow a

    standard format, with headings, which allows the reader to extract information with

    minimal fuss. There is nothing worse than wading through a poorly thought out, poorlyreferenced, disorganised manuscript.

    The format explained in this guide is the same as that used in most published psychologypapers, i.e., the format of the American Psychological Association (APA). The details of

    how to present a report in APA style are presented in greater detail in the APApublication manual, which is available in the library and should be your reference for

    more information on report writing. The full reference for the manual is:

    American Psychological Association (2001). Publication Manual of the AmericanPsychological Association (5th ed.). Washington, DC: American Psychological

    Association.

    At a number of points in this guide you will be provided with page numbers in the

    margins, as in the example to the left. These refer to the pages in the 5th

    edition of

    the APA manual where you can get more information about the topic being covered.In the rare cases that our guidelines differ from that of the APA it will be clearly marked

    in the Deviations from APA style section, and you should follow our guidelines.

    An example of a well constructed report is shown in Appendix A. You should lookclosely at this example when producing your own reports.

    Using this guide

    1. This guidebook is intended to provide a summary of the key APA recommendations

    for articles. It therefore includes specific formatting conventions (e.g., size of fonts touse) but also some suggestions on how to organise and communicate your study, be it a

    small practical or a more in-depth project thesis (or, even an article). Obviously, there areother suggestions and recommendations but please refer to this guidebook in the first

    instance in cases where there are differences.

    2. As usual, there may be exceptions to this guidebook for some practicals and someprojects. However, any acceptable deviations from this guidebook will clearly be stated

    by the module leader and/or supervisors. It is your responsibility to be aware of theseexceptions.

    3. Be aware that not all journals follow APA convention. So if you would like more

    examples, please use APA journals (e.g.,Journal of Experimental Psychology: General).

    4. This guidebook is an evolving set of guidelines. Please always remember to use the

    most recent version of the guidebook.

    APA 5 ed.

    Pages x-x

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    4/40

    Printed September 2010

    4

    FORMATTING YOUR REPORT

    You must use the following formatting when producing your report:

    12-pt Times New Roman font. Double line spacing.

    oExceptions: Use single spacing for figure/table captions. For largetables, 10-pt Times New Roman and single spacing is allowed to fit a

    table into a single page.

    Table captions should go above tables, figure captions go below figures. 1 (2.54 cm) margins at the top, bottom and sides of the page. Left alignment (this should leave a ragged right edge). A header showing your student number and the page number (both right aligned). In all of the report except the reference section: 0.5 (1.27 cm) first line indents for

    each new paragraph (you do not need to leave blank lines between paragraphs).

    In the reference section: 0.5 (1.27 cm) hanging indents.Limitations in pages, figures, tables, etc.

    It is not the purpose of this guidebook to provide prescriptions on limitations in pages,

    figures, and so on. These limitations are specific to different practicals and your 3rd

    -yearproject. Therefore, you should find out any limitations from the module leader or

    from your project supervisor as soon as possible.

    PLAGIARISM

    Please consult your degree handbook for information.

    PENALTIES

    Please consult your degree handbook for information.

    APA 5 ed.

    Pages 284-293

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    5/40

    Printed September 2010

    5

    WHAT TO INCLUDE IN THE REPORT

    The above figure is a useful way of visualising how general or specific each part of the

    report should be. The narrower parts of the hourglass, the method and results sections,should be specific to your study. The introduction should start with some general

    background, then focus in, becoming more specific to your study. The discussion shouldbegin with the specific findings of your study, then become more general, looking at how

    your findings relate to the topic area.

    In what follows, each of the sections of your report is described in further detail, in theorder that you should include them.

    1. TITLE

    (What you did)

    The title should provide a single line summary of the measures of behaviour that youmade. For example, "The effect of sleep loss on the exploratory behaviour of gerbils" is a

    suitable title; "Keeping gerbils awake" is not. The title may be a question: "Does sleepdeprivation affect the exploratory behaviour of gerbils?" as opposed to "Can gerbils be

    kept awake?". Thus your title should be a brief, but accurate reflection of the content ofthe report.

    Your title should be presented on the title page, which is page 1 of the report (see

    example report in Appendix A).

    You will usually use the following

    sections when you write your practicalreports:

    Title

    Acknowledgements*

    Contents*Abstract

    Introduction

    Method

    Participants

    Apparatus

    Materials

    Design

    Procedure

    Data Analysis

    Results

    DiscussionReferences

    Appendix

    * these headings are usually for projects

    Introduction

    Discussion

    Results

    Method

    APA 5 ed.

    Page 10

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    6/40

    Printed September 2010

    6

    2. ABSTRACT

    The abstract is a summary of your report. It must contain a brief description of the

    rationale behind your experiment, the methods used, the results and the conclusions.When papers are published readers will often read an abstract to decide whether the rest

    of the article is of interest to them, and in reality, an abstract may be the only piece of

    information which a reader can access (e.g. from a literature search). Therefore it mustcapture the essence of your work. Browsing through the abstracts of journals in thelibrary may be helpful to find good examples.

    The abstract should be presented on a separate page of the report.

    3. INTRODUCTION

    (Why you did it)

    The Introduction should present a clear account of the reasoning behind your experiment.Once a reader has read the Introduction, he or she should feel able to predict what your

    experiment will be.

    Begin by providing some general background (see the hourglass shape at the beginningof this guide). This will provide the framework for developing the specific aims of the

    experiment. It should comprise a brief review of past work in the area, including citationsof published work (see later for details about referencing), and an explanation of the

    theoretical or practical reasons for doing the current study. There are a number of distincttopics which you should consider including:

    1. Describe and define the area that you wish to study, perhaps explaining why it isinteresting and/or important.

    2. Describe previous work by others that is relevant to the area.3. Explain why the previous work is inadequate. It may have methodological

    problems, or perhaps there is plenty of scope for extending it, or it may simply

    require replicating.4. Show how your proposed study goes beyond and improves upon the previous

    attempts to study the area. (NB Bear in mind that the practicals you will carry outare not original research so it will obviously be difficult in practice to fulfil points

    3 and 4 adequately.)5. In the light of previous results and what you propose to do, predict the outcome of

    your study. You need to state a hypothesis about the relationships you will find(e.g. the presence of music during study will improve word learning) and a

    prediction about what exactly you expect to find in terms of the measures used inthe study (e.g. participants who studied in the presence of music will recall

    significantly more words than participants who studied in silence). It is oftenclearest if you state the hypothesis and prediction in the final paragraph of the

    introduction.

    The introduction should begin on a new page of the report. The rest of the report thenfollows directly from the introduction up to the discussion (i.e., do not leave blank space

    after each section, simply begin the next section on the same page).

    APA 5 ed.

    Page 12-15

    APA 5 ed.

    Page 15-17

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    7/40

    Printed September 2010

    7

    4. METHOD

    (How you did it)

    The Method section must contain sufficient and precise information for the reader to beable to repeat your experiment. Avoid irrelevant details. For example, if you are giving

    your participants lists of words to memorise, it is not necessary to explain that they were

    seated at a desk (as opposed to standing or seated at a table) unless you were specificallystudying the effects of furniture usage on memory. However, it is important to know thedetails about the word list: e.g. number of words, word type, number of letters in the

    words, word frequency etc. It is also unnecessary to say that response sheets weredownloaded from Blackboard or that responses were recorded on Microsoft Excel, as we

    could have chosen to hand out response sheets and note down reactions times, without ithaving any effect on the outcome of the study.

    Below are the subsections that you will most often need to use in your method section.

    These subsections will help organise your Method section and ensure that the appropriateinformation is included. Depending on the experimental details you may exclude or

    combine some of these sections. Bear in mind that although some subsections areoptional, you need to ensure that there is enough detail and information for your

    experiment to be reproducible and make your analyses understandable. See the report inAppendix A for an example of how different subsections can sometimes be more

    appropriate.

    Participants

    State how many participants were used, how they were selected and any other importantcharacteristics. For example: mean or median age, sex ratio, educational level. Which

    characteristics are important will depend upon the task you are asking people to performand the kinds of conclusions you wish to draw. If you only study undergraduate students,

    you may not be able to generalise your findings to elderly people. If most of yourparticipants are females (a common situation in psychology departments) then you may

    not be able to extrapolate your findings to males. Depending on the experiment, suchdetails may be trivial or extremely important.

    Ethical issues are important for any research with human and animal subjects. A

    statement about ethics should be included in the report. Example:

    The ethics was approved by the local ethics committee at Newcastle University.

    Apparatus

    Some experiments involve only pencil, paper, stop-watch etc, and so an apparatus sectionmay not be needed (because details like these are not critical to replicating the

    experiment). But this section is required when you use more complex equipment, e.g. acomputer running a particular programme (this would not include programs like Excel,

    Minitab or SPSS as they are common computer programs. See example paper inappendix A for an example of a programme that you would include in the apparatus

    section). You should describe the equipment in sufficient detail, using a figure ifnecessary, to allow another researcher to construct an equivalent apparatus. If you do use

    APA 5 ed.

    Page 17-20

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    8/40

    Printed September 2010

    8

    a figure, it should be treated in the same way as figures in the results section (see Tables

    & Figures in the Results section of this guide).

    Materials

    Stimuli, word lists, puzzles, IQ tests, questionnaires etc are materials. This section should

    describe the general criteria for how you selected the particular items which you used.For example, if you used words as the stimuli for a memory test, as far as possible youshould describe properties like: word length, word frequency (in the English language),

    part of speech (noun, verb), other psycholinguistic variables (concreteness, abstractness,etc). If you used a set of important stimuli you can present them in a figure (see example

    paper in Appendix A)

    Design

    The choice of statistical tests typically depends on the experimental design. You shouldtherefore state whether the design was: within-subject (e.g. each participant carries out all

    experimental conditions), between-subject (e.g. two or more groups of participants, whodiffer in some way, carry out one condition each) or mixed (e.g. two or more groups of

    participants carry out two or more conditions each). In this section you should make itclear which experimental condition was carried out by which participants and in what

    order.

    Procedure

    This section describes how the design was actually implemented and should describeexactly what took place during the testing session. You should include a description of

    the instructions given to participants, how the independent variable was controlled andhow the dependent variable was recorded. Remember, there should be enough

    information for the reader to repeat your experiment.

    Data Analysis

    In this section you should describe any data manipulations that were carried out beforedata analysis (e.g. if you log transformed the data or used only a mean value for each

    participant in the analysis, then you would say this here). You should also say how thedata were analysed (i.e. what statistical tests you used and what they were used for).

    Finally, include a standard sentence, such as An alpha value of .05 was used for allstatistical analyses. this shows that you will only be accepting differences/relationships

    as significant if they are associated with a p-value of

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    9/40

    Printed September 2010

    9

    A good results section should comprise two things: 1) tables and/or figures, and 2) text.

    Please note that tables/figures can never stand alone, but need to be described within thetext and need to be accompanied by a shorter description in the table/figure captions.

    Tables & Figures

    Tables contain the numerical results, such as means, standard deviations in tabulatedform. The example report in Appendix A uses the appropriate format for tables, so makesure you study this closely to understand what you are trying to achieve. You will also

    find useful example tables in the APA manual.

    According to the APA manual, any type of illustration other than a table is called afigure . A figure may be a chart, graph, photograph, drawing, or other depiction. It

    can also include any of these combinations. Typically, your figures will include graphsthat represent your data (e.g. box plots, histograms, scatter plots). Once again, the report

    in Appendix A gives a good example of how to add different types of figures to a report.

    You should use the following rules when preparing tables and figures that depict results(e.g., graphs):

    Never repeat the same information in both a table and a figure. All tables/figures must be referred to and described in the text of your results (e.g.

    Table 1 shows / The data are plotted in Figure 3). Always refer to tablesand figures by their number. Tables and figures should be labelled separately, so do

    not use Table 1, Figure 2, Table 3, instead use Table 1, Figure 1, Table 2.

    For tables:o Clearly label each column and row, including the appropriate units of

    measurement.

    o Use only horizontal lines.o

    To fit large tables on a single page, you can use a minimum of 10-ptTimes New Roman font and single spacing (see Formatting above)

    For figures:o Label both axes correctly with the appropriate units.o Use the x axis for the independent variable and the y axis for the

    dependent variable.

    o Explain any symbols that are used in either a legend within the figure or, ifthere are too many, in the figure caption.

    Note that figures can include multiple graphs (see Appendix A for an example).However, it is important that all labels and illustrations (e.g., symbols for linegraphs) should be clearly visible.

    Text

    In the text of the results section you will both describe and statistically analyse the data.Do not interpret the findings in the results section, you will do that in the discussion.

    If you are comparing groups you should present group means or medians, usually with a

    measure of variability, such as the standard error or standard deviation. This can be donein a table if you have a number of means or in the text if you only have one or two. If you

    APA 5 ed.Tables

    Pages 147-175

    FiguresPages 177-201

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    10/40

    Printed September 2010

    10

    are looking at the relationship between two or more variables across participants in a

    single group, present a graph or scatter plot to show the relationship.

    Once you have your tables/figures you need to describe the relationships in the text. Youshould refer directly to the table or figure and say what it shows about the differences

    between the groups or the relationship between the variables.

    Whenever you carry out a statistical test it is important that you report your findingsaccurately, and in a format that allows others to check the statistic that you have reported.

    This usually means stating whether you found a difference, giving the direction of thedifference (if there is one), providing the statistic associated with the test itself (e.g. t in

    the t-test, F in an ANOVA), the degrees of freedom and the p value. You can report theexact p value, unless your statistics package reports p = 0.0000 (SPSS may not record 5

    digits after the comma). It is impossible to have a p value of zero, so you must report thisas p < .0001.

    There are specific conventions used to report different tests, and examples of those that

    you will use most often are shown below. Pay close attention to the format in which thestatistics are reported and the use of capitals or italics, in order to match APA style.

    Note that in each of these examples the description and statistics are integrated into

    the same short paragraph. You should emulate this style in your own reports. These

    are only typical examples encountered in psychology articles. It is your

    responsibility to determine the appropriate way to report statistics for other tests

    (e.g., by looking at an APA journal article).

    Common examples:

    Independent samplest test

    Provide the tvalue, degrees of freedom (df) and p value. Use the format t(df) = tvalue,p= p value.

    An independent samples ttest revealed that the performance in the end-of-course

    examination was significantly higher for the group that received the positive comment (M= 65.1, SD = 4.6) than for the group that did not receive this comment (M= 56.8, SD =

    8.9), t(28) = 2.70,p = .01 (two-tailed test).

    Related samplest testThe format for the related samples ttest is the same as for the independent samples ttest.

    A related samples ttest indicated that the performance in the end-of-course examination

    was significantly higher in the course where a positive comment was received (M= 65.1,

    SD = 4.6) than in the course where no positive comment was received (M= 56.8, SD =

    4.6), t(14) = 2.49,p = .03 (two-tailed test).

    Analysis of variance (ANOVA)For an ANOVA you will need to state whether you used a between subjects ANOVA or a

    within subjects ANOVA. You should also make it clear what the levels of eachindependent variable are. If you use a mixed ANOVA you should say which is the

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    11/40

    Printed September 2010

    11

    between subjects factor and which is the within subjects factor. You then need to report

    the Fvalue, the df for the numerator (the main effect or interaction) and the df for thedenominator (the error) and the p value. Use the format F(df numerator, df

    denominator) = F value,p = p value.

    The data in Table 1 were analysed using 2 x 2 ANOVA for mixed designs, with

    imageability (easy to image or hard to image) as the within subjects variable andinstruction (mnemonic or no mnemonic) as the between subjects variable. There was astatistically significant main effect of instruction, F(1, 38) = 7.20,p = .01, with those in

    the mnemonic group recalling more items overall than did those in the no mnemonicgroup (M= 15.65, SD = 3.97;M= 12.40, SD = 3.74, respectively). There was also a

    statistically significant main effect of imageability, F(1, 38) = 145.22,p

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    12/40

    Printed September 2010

    12

    6. DISCUSSION

    (What you think the data mean for psychology)

    This is the section in which you interpret the findings of your experiment and discusswhat they may mean. It is important that you relate the results to the issues raised in the

    Introduction. You should decide whether your data support or refute the hypothesis which

    you set up in your Introduction. In the discussion, it is usual and often necessary to relateyour findings to those in published articles.

    Often your results may not lead to a clear cut answer. Therefore, with the benefit ofhindsight, you should discuss what limitations of your experiment may have led to the

    outcome you found. This will lead naturally to suggestions about what furtherexperiments should be carried out to test your hypothesis further.

    It is a good idea to consider constructing your discussion in the following way:

    1. Summarise the essential findings from your results section and decide whetheryour predictions were met and therefore support your hypothesis. You should saywhether or not there was a significant difference between groups here, but you

    should not refer to p values or exact statistics.2. Consider the limitations of your methodology and suggest reasonable

    improvements.3. Relate your own findings to previously published findings. Here you can start

    with the most similar study or studies, then look at the relevance of your findings

    to the broader topic area (see the hourglass shape at the beginning of this guide).

    4. Suggest directions for future research, based on what you have found.5. Finally, a brief conclusion may be useful, emphasising the positive points of your

    study and stating its broader implications.

    After the discussion, begin the reference section on a new page.

    7. REFERENCING

    When referring to published work it is important to make the source of the work clear so

    that the reader can locate the work, should they wish to check it themselves, or follow upthe work in more detail. Proper use of referencing is also important in distinguishing

    between your own ideas and findings, and those of others, already published. Passing offthe work of others as your own is plagiarism and, for obvious reasons, is forbidden (see

    the Psychology Degree Handbook). The rest of this section of the guide describes theconventional methods of citation and referencing, and explains how you should reference

    sources that you have read directly and those you have read aboutin other sources.

    See the example report in Appendix A for examples of appropriate citations and

    referencing.

    How to reference: In outline

    Referencing comes in two parts:

    APA 5 ed.

    Page 26

    APA 5 ed.Page 28

    &

    207-281

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    13/40

    Printed September 2010

    13

    (1) A citation in the text, in brackets, immediately after the relevant work has beendescribed, citing the author and the year the work was published. For example:

    Rudolph and Kim (1996) found that mood improved after aerobic exerciseevidence

    suggests that exercise and therapy seem to be better than exercise alone (Martinsen,

    1995)

    (2) Full reference to the work that was cited, in a section headed References at theend of the piece of coursework. Each reference provides full details of the workcited, so that a reader can locate the work. For example:

    Rudolph, D. L., & Kim, J. G. (1996). Mood responses to recreational sport and exercise

    in a Korean sample.Journal of Social Behaviour and Personality, 11(4), 841-849.

    The reference section only contains references cited in the text, so if you have read

    an article but not cited it in the main text it should not be included in the reference

    section.

    Citations in the text: The details

    Single author:

    Smith (1983) compared reaction times . . . if you read the Smith article, or Smith(1983, cited by Jones, 1995) compared reaction times . . . if you read about Smith in

    Jones.

    In a recent study of reaction times (Smith, 1983) . . ..

    As long as a study cannot be confused with others, it is not necessary to repeat the yearwhen subsequently citing it in the same paragraph. For example:

    In a recent study of reaction times, Smith (1983) described the method . . . Smith also

    found . . ..

    However, you must repeat the year if you go on to discuss another author and then returnto Smith, or if you discuss Smith in another paragraph.

    Two authors:

    . . . as James and Ryerson (1983) demonstrated . . ..

    . . . as has been shown (James & Ryerson, 1983) . . ..

    Notice that when the authors are mentioned in the main text the full word and is used,but when they are cited in parentheses an ampersand (&) is used. When there are only

    two authors you must cite both authors at every mention.

    Three to Five authors:

    APA 5 ed.

    Pages 207-214

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    14/40

    Printed September 2010

    14

    Cite all authors at first mention; subsequently mention only the first, followed by et al..

    (et al. Is short for et alii, which is Latin for and others).

    William, Jones and Smith (1983) found . . .. [first citation]

    William et al. (1983) found . . .. [subsequent citations]

    Six or more authors:

    Cite only the first author, followed by et al., at every citation (including the first).

    Two or more works within the same parentheses:

    If you make a statement like similar results have been obtained in many studies, it is

    vital that you cite at least a few of these studies to support this assertion. To do this youwill need to cite two or more works within the same parentheses and you should use the

    same order as in the reference section (see below).

    Several studies have shown similar results (Bruce 1980a, 1980b; Dorow & O'Neal, 1979;Talpers 1981) . . .

    Specific parts of a source:

    Always give page numbers when literally quoting text from a source (and the quotation

    should be in quotation marks).

    (Czapiewski & Ruby, 1978, p. 10)

    (Wilmarth, 1980, chap. 3)

    Web Sources:

    The principle here is the same as for print-based resources: name the author and date, ifpossible. If the author of a document is not identified, use the title of the document. The

    date of a web page is often found at the end of the page but if none is shown write n.d.for no date. For example:

    Fredrickson (2000) or (Fredrickson, 2000)

    GVU's 8th WWW user survey. (n.d.).

    References in the reference section: The details

    In the reference section list all references, of any kind (journal articles, books, web sitesetc.), in a single, alphabetically ordered, list.

    APA 5 ed.Pages 215-231

    &examples

    pages 231-281

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    15/40

    Printed September 2010

    15

    If there is more than one reference by the same author(s) in the same year then the year

    entries (both in the reference list and the citations in the text of your work) should bedenoted by 1983a, 1983b, etc. Single-author entries precede multiple-author entries

    beginning with the same first author.

    Note the orderof the different parts of the reference and follow the punctuation

    conventions carefully.

    Book:

    Use the order: Author(s) (year of publication). title. place of publication: publisher. For

    example:

    Bernstein, T. M. (1965). The careful writer: A modern guide to English usage. NewYork: Atheneum.

    Strunk, W., Jr., & White, E. B. (1979). The elements of style (3rd ed.) New York:

    Macmillan.

    Edited book:

    Letheridge, S., & Cannon, C. R. (Eds.) (1980).Bilingual education: Teaching English asa second language. New York: Praeger.

    Book chapter:

    This would usually refer to a chapter in an edited book. Use the order: Author(s) (year of

    publication). chapter title. In bookeditor(s) (Ed(s)), book title (page numbers ofchapter). place of publication: publisher.

    Hartley, J. T., Harker, J. O., & Walsh, D. A. (1980). Contemporary issues and new

    directions in adult development of learning and memory. In L. W. Poon (Ed.),Aging in the 1980s: Psychological issues (pp. 239-252). Washington, DC:

    American Psychological Association.

    Journal article:

    Use the order: Author(s) (year of publication) title of article. title of journal, volumenumber(issue number if available), page numbers.

    Paivio, A. (1975). Perceptual comparisons through the mind's eye. Memory & Cognition,

    3, 635-647.

    Becker, L. J., & Seligman, C. (1981). Welcome to the energy crisis. Journal of SocialIssues, 37(2), 1-7.

    Horowitz, L. M., Post, D. L., French, R. S., Wallis, K. D., & Siegelman, E. Y. (1981).

    The prototype as a construct in abnormal psychology: 2. Clarifying disagreementin psychiatric judgments.Journal of Abnormal Psychology, 90, 575-585.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    16/40

    Printed September 2010

    16

    Journal article in press:

    Corcoran, D. L., & Williamson, E. M. (in press). Unlearning learned helplessness.Journal of Personality and Social Psychology.

    Web source:

    Provide a reference to the specific web page that holds the relevant information, not to ahome or menu page. Provide as much as possible of the following information, in the

    order shown:

    Author's name (if available) or title of document Date of publication (i.e. date of most recent update) Title or description of document Title of complete work, if relevant (e.g. electronic journal or newsletter),

    underlined or in italics (these are equivalent)

    Further information may be necessary to describe the location of the information(e.g. volume and page numbers for an electronic journal). If a source does nothave page numbers but has internal divisions (such as sections or paragraphs), use

    these instead in your citation, making use of the abbreviations chap. andpara.(e.g. para. 3).

    Date on which you retrieved the information (because the information on websites can change)

    URL; i.e. the web addressWeb source examples:

    Article in an Internet-only journal:

    Fredrickson, B. L. (2000, March 7). Cultivating positive emotions to optimize health and

    well-being. Prevention & Treatment, 3, Article 0001a. Retrieved November 20,2000, from http://journals.apa.org/prevention/ volume3/pre0030001a.html

    Article in an Internet-only newsletter:

    Glueckauf, R. L., Whitton, J., Baxter, J., Kain, J., Vogelgesang, S., Hudson, M., et al.

    (1998, July). Videocounseling for families of rural teens with epilepsy -- Projectupdate. Telehealth News,2(2). Retrieved from http://www.telehealth

    .net/subscribe/newslettr4a.html1

    Stand-alone document, no author identified, no date:

    GVU's 8th WWW user survey. (n.d.). Retrieved August 8, 2000, fromhttp://www.cc.gatech.edu/gvu/ usersurveys/survey1997-10/

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    17/40

    Printed September 2010

    17

    Document available on university program or department Web site:

    Chou, L., McClintock, R., Moretti, F., & Nix, D. H. (1993). Technology and education:

    New wine in new bottles: Choosing pasts and imagining educational futures.Retrieved August 24, 2000, from Columbia University, Institute for Learning

    Technologies Web site: http://www.ilt .columbia.edu/publications/papers/

    newwine1.html

    How to reference: Primary and secondary sources

    New knowledge - theories and findings - is generally published in journals, collectively

    called the primary literature, since this is where the work first appears. An example of ajournal is the British Journal of Psychology. For work to be accepted for publication in a

    journal it generally has to be deemed worthy of publication by other specialists in thesame discipline, who read the work and assess it. Each piece of work described in a

    journal is called an article or a paper.

    Once an article has appeared in the primary literature its contents can be disseminatedfurther in a number of ways: in similar, specialist articles; in broader review articles that

    discuss the work carried out on some particular topic; or in a book such as a student text.Books and review articles are examples of the secondary literature or secondary

    sources, as they are second interpretations of the original work.

    When citing published work it is important that your reader can judge whether you haveread the primary source (the original description of the work) or a secondary source

    (someone else's description of the work). This is because in communicating with othersyou have a responsibility to be clear about the level of confidence your reader can have in

    the accuracy of what they are reading. Highest confidence can be had when reading whatthe writer has done or thought; this means what you have done or thought. Readers will

    naturally have rather less confidence in reading an account of work you have read in theprimary literature. This is because your, or anyone elses, account, despite the best

    intentions, may contain errors. Least confidence will be felt by your readers when yourdescription of a piece of work is gained from a secondary source, since in this case errors

    may have crept into both your account of what you read, and into the secondary sourcesaccount of the primary source.

    Here is a section from a textbook by Martin, Carlson and Buskist:

    Rudolph and Kim (1996) found that mood improved after aerobic exercise

    If you have read the primary source - for example Rudolph and Kim (1996) in thequotation abovethen you just cite Rudolph and Kim (1996) in the text, with the

    full reference to Rudolph and Kim in the References section at the end of the piece ofwork.

    If you have not read Rudolph and Kim (1996) but have read the piece above on page 773

    of Martin, Carlson and Buskists textbook and want to refer to the information aboutRudolph and Kim (1996), then you would refer to that information in your own words

    and cite in the text Rudolph and Kim (1996, cited by Martin, Carlson & Buskist,

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    18/40

    Printed September 2010

    18

    2007). Note that the primary and secondary source, with dates, all come together

    in the same place in the text.

    When it comes to compiling the references in the reference section at the end of yourwork we ask youtolist only those references that you have read yourself. So, if you

    have read Rudolph and Kim (1996) you add this reference to the list; if you have not read

    Rudolph and Kim, but have read about it in Martin, Carlson and Buskists textbook thenyou add the reference to Martin, Carlson and Buskist (2007) but not the reference toRudolph and Kim (1996). (You would only reference Martin, Carlson and Buskist (2007)

    once, even if you had cited it a number of times as a secondary source.)

    Do not add to the reference list works that you have read but not cited in your ownwork.

    If you learn about a study or theory in a lecture or handout and want to mention it in your

    report, make sure you locate the same information in a textbook or (ideally) the originalarticle. This will not only increase your knowledge, but will allow you to provide an

    appropriate reference for the study or theory. Do not attempt to cite or reference teachingmaterials.

    8. APPENDIX

    An Appendix is not a necessary part of the report, but it can sometimes be useful.Specifically, you may include examples of data records e.g. questionnaires, where, by

    doing so, it becomes clear to the reader what questions were asked of a participant.However, do not include examples of data record sheets, such as lists of each of the

    reaction times recorded for each trial in an experiment. The logic here is that there are awhole variety of different ways in which you could have recorded such numbers, and

    showing the particular piece of paper which you happened to use in your own experimentdoes not provide useful information to the reader.

    IMPORTANT NOTES ON STYLE

    Remember, this is an objective report of what you did in an experiment, so one of themost important things to remember is to aim for a clear report that sounds objective and

    logical. The following are a few things to consider in terms of the style of your report:

    Do not use footnotes. Use formal language, rather than the informal language that one might use in

    conversation. For example, use cannot, is not, it is, rather than cant, isnt,

    its.

    Quotes. Never use extended (paragraph length) stretches of text from anotherauthors work. Use of short quotes is also discouraged and should be kept to anabsolute minimum.

    APA 5 ed.

    Page 28

    APA 5 ed.

    Pages 31-40

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    19/40

    Printed September 2010

    19

    Paragraphs. The transition from one paragraph to the next should represent atransition from one topic or issue to the next. Make sure you use paragraphs in yourreport, but do not stick to discussing one paper/article per paragraph, rather, you can

    use multiple articles in the process of discussing a topic and then only move onto thenext paragraph to begin a new topic.

    Be concise. Your goal is to report your experiment clearly, so going off track oradding any material to your report that does not add any useful information will only

    waste time and irritate the reader. If you have covered all the relevant points, but asection or report still seems short, do not continue writing just for the sake of

    extending the length of the work. Instead, you should double check that you haveincluded all of the worthwhile points and then move on.

    Define all complex terms. It is quite easy to slip into the use of jargon in order tomake the report sound more impressive or to automatically start using complex

    terms because you are familiar with them. However, your report should be aimed at

    an intelligent layperson. This means that you can assume that they understandstatistics and the principles of science, but that they do not know anything about thespecific topic area that you are discussing. Whenever you want to use a term that the

    intelligent layperson would not understand, make sure you explain what it means.

    Use the active voice. It is quite common in scientific articles to read sentences thatare written using the passive voice (e.g. the experiment was conducted in a quietroom), but it is now recommended that you use the active voice to communicate

    more clearly (e.g. I conducted the experiment in a quiet room).

    Howeveravoid overusing I did, I believe, My experiment, etc. It is okay touse first person singular when it helps to make the report clear and to use the activevoice (see above), but overuse can cause the report to sound subjective. You arelikely to find that you can reasonably use the first person singular most often in the

    method (e.g. I attached the electrodes or I asked participants), but should rarelyuse it in the introduction or discussion (e.g. the following make the report sound

    subjective, My results, I believe, I aim to investigate).

    Use the appropriate tense. Tenses can be difficult. A useful rule of thumb is to tryand think historically. When you write up your work, your methods and results arepast events, therefore you should use the past tense, reporting what was done and

    what was found. In the Introduction and Discussion, the conclusions drawn by other

    experimenters are also past events and should be described accordingly. However,the theories and models that previous workers have developed generate predictionsand ideas that are current. For example, if you want to talk about a theory developed

    by Smith et al. (1974), you would discuss what was done, found and concluded intheir study in the past tense, but discuss what the theory is or predicts in the present

    tense.

    Distinction between results and discussion. The results section and the discussionsection serve quite different purposes. In the results section you should examine the

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    20/40

    Printed September 2010

    20

    data and report your findings. In the discussion section you should discuss what your

    findings tell you about your hypotheses. For example, in an experiment requiringparticipants to press a button as quickly as possible in response to a visual stimulus,

    you may wish to compare the reaction times of males and females. So, in yourresults section you should only examine the data to establish what the findings of

    your study are. For example, state that (i) males on average have faster reaction

    times than females (report numbers in the correct format - see pp10-11); (ii) malesdisplay larger standard deviations; (iii) a t test indicates that the difference issignificant etc. Then in your discussion section you should just discuss possible

    interpretationsof your findings. For examples, say that the reaction times inresponse to a visual stimulus in males are faster because they might play more

    computer games etc.

    Sometimes it may be appropriate to combine the Results and Discussion sections(into a Results and Discussion heading). For example, in qualitative analyses, you

    may wish to report a finding (result) and then discuss the implication of that finding(discussion). In studies with more than one experiment, researchers sometimes

    combine these two sections and then have another section called GeneralDiscussion to tie all the experiments together.

    DEVIATIONS FROM APA STYLE

    This guide is based on the APA manual, however, you may have noticed that there are a

    small number of instructions in this guide that differ from the APA manual. In such casesyou should follow our guidelines rather than those of the APA manual. Below are the

    instructions that you should follow, even though the APA manual may say otherwise.

    Include your student number in the header, and do not use a running header (anabbreviated form of the title required for APA publications)

    Title your introduction Introduction, rather than repeating the title of your report. Figures and tables are in the body of the text.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    21/40

    Printed September 2010

    21

    Appendix A

    Example Report

    The following report is adapted from:

    Vuong, Q. C., & Tarr, M. J. (2006). Structural similarity and spatiotemporal noise effects on

    learning dynamic novel objects. Perception, 35, 497-510.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    22/40

    071234567 1

    The effect of structural similarity and spatiotemporal noise on learning dynamic novel objects

    Quoc Vuong

    Newcastle University

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    23/40

    071234567 2

    Abstract

    The spatiotemporal pattern projected by a moving object is specific to that object, as it depends

    on both the objects shape and its dynamics. Previous research has shown that observers learn to

    make use of this spatiotemporal signature to recognize dynamic faces and objects. In two

    experiments, we assessed the extent to which the structural similarity of the objects and the

    presence of spatiotemporal noise affect how these signatures are learned and subsequently used

    in recognition. Observers first learned to identify novel structurally distinctive or structurally

    similar objects that rotated with a particular motion. At test, each learned objects moved with its

    studied motion or with a nonstudied motion. In the nonstudied motion condition we manipulated

    the dynamic information. We found that changing an objects learned motion impaired

    recognition performance when three-dimensional shape was similar or when the visual input was

    noisy during learning. These results are consistent with the hypothesis that observers use learned

    spatiotemporal signatures and that such information becomes progressively more important as

    shape information becomes less reliable.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    24/40

    071234567 3

    Introduction

    We live in a dynamic environment. The interplay between our movements relative to

    other objects and illumination sources produces a continuously changing projection on our

    retinas. How does our visual system make sense of this visual cacophony to recognize objects?

    The conventional answer is that the visual system maps dynamic information onto structures that

    do not vary over time (Marr, 1982). For example, popular theories hypothesize that objects are

    represented as parts and their relations (Biederman, 1987), or as views comprised of visible

    features (Tarr & Pinker, 1989).

    Recently, however, several studies have underscored the need to understand how the

    visual system directly uses dynamic information for recognition (e.g., Knappmeyer, Thornton, &

    Blthoff, 2003; Lander & Bruce, 2000; Liu & Cooper, 2003; Stone, 1998; Vuong & Tarr, 2004).

    Many of these studies are motivated by the observation that how visible features change over

    time is specific to the objects being viewed, as this change depends on both their physical

    structure (shape and surface appearance) and their movements. Thus although it is well

    established that the visual system recovers and refines spatial structures from dynamic visual

    input (e.g., Ullman, 1984), it is plausible that the visual system also uses the dynamic pattern

    produced by the movement of that object. Stone (1998) argued that this object-specific dynamic

    pattern constitutes a spatiotemporal signature of the object being viewed, and can therefore

    provide information that can be used for recognition, in addition to any available shape

    information. Indeed, studies have shown that dynamic patterns can be used to recognize

    movements (e.g., Johansson, 1973); to discriminate between male and female actors (e.g.,

    Mather & Murdoch, 1994); to interpret facial expressions (e.g., Bruce & Valentine, 1988); and to

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    25/40

    071234567 4

    recognize individuals (e.g., Lander & Bruce, 2000; Knappmeyer et al., 2003) and objects (e.g.,

    Liu & Cooper, 2003; Stone, 1998; Vuong & Tarr, 2004).

    Given the strong evidence that observers use object-specific dynamic patterns for

    recognition purposes, our goal in the present study is to investigate the conditions under which

    observers learn to use these spatiotemporal signatures. This is an important issue because the

    extent to which static and dynamic information are ultimately used in object recognition may

    depend on how a stimulus class is learned (Wallis & Blthoff, 1999). As highlighted above,

    investigators have used a wide variety of stimuli (e.g., faces, human actions, novel shapes) and

    an equally wide variety of recognition tasks (e.g., old/new discrimination, identification,

    categorization) to study the role of motion in object recognition. Across these different studies,

    they have consistently found that recognition performance is often affected by subtle changes to

    the dynamics of the objects. For example, Stone (1998) introduced a rotation-reversal

    manipulation that preserved static cues to object identity, such as three-dimensional (3D) shape

    and two-dimensional (2D) image features but disrupted dynamic cues, such as the temporal

    ordering of views. He reported that this manipulation impaired observers ability to recognize

    amoebas rotating rigidly in depth in a complex manner (both in accuracy and response times).

    Liu and Cooper (2003) subsequently reported similar costs for rotation reversal on accuracy in an

    old/new discrimination task, and on response-time priming in a symmetry judgment task. In their

    experiments, they used structurally distinctive novel objects rotating about the vertical axis.

    In many of these studies, learning the object dynamics is an important component of the

    study (either during the course of the experiment or from observers pre-experimental

    knowledge). Thus beyond demonstrating an important role of motion in object recognition, these

    previous studies also suggest that learning may shape the visual information that is ultimately

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    26/40

    071234567 5

    used in recognition. However, on this issue, investigators have not teased apart the factors that

    may affect the extent to which spatiotemporal signatures are picked-up and used. Here we

    examined two factors suggested by the literature in object recognition (e.g., Tarr & Blthoff,

    1995): the structural similarity between objects, and the availability of shape and motion

    information. Both of these factors may make learning the objects more difficult and therefore

    influence the extent to which their dynamics are used in the recognition process. That is, motion

    information may be more likely to be used when objects are difficult to learn, as may be the case

    when the tested objects are highly similar to each other (e.g., Williams & Hayward, 2000) or

    when objects are visually degraded (e.g., Bruce & Lander, 2000).

    Our goal was to examine the extent to which the rotation-reversal effect reported by

    Stone (1998) and Liu and Cooper (2003) may be influenced by the difficulty of learning the

    objects. For example, in Stones study, observers had the difficult challenge of learning

    structurally similar amoebas. By comparison, in Liu and Coopers study, observers had the

    equally difficult challenge of learning many objects (32 as compared to 4 objects in Stones

    study) from a single exposure and without knowing that their memory for these objects would be

    subsequently tested. Here we varied the difficulty of learning in two ways. First, we used either

    structurally distinctive objects that were easy to recognize or structurally similar objects that

    were hard to recognize (see Vuong & Tarr, 2004). Second, observers could learn either easy

    or hard objects in the presence or absence of a dynamic fog that degraded both shape

    (including 3D structure and 2D views) and motion information. Our working hypothesis is that

    there should be a larger rotation-reversal effect when the objects are difficult to learn.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    27/40

    071234567 6

    Method

    Participants

    A total of 40 observers were recruited from the Brown University community (29

    females/11 males). They participated either for course credit or payment. All observers gave

    informed consent and were naveto the purposes of the study. Ethics for this study was approved

    by the Ethics Committee at Brown University.

    Apparatus

    The experiment was run on a Windows PC using a monitor with a 1280 x 1024 pixel

    resolution and a 60 Hz refresh rate. The program to present the movies and collect responses was

    written in C and relied on the OpenGL 1.2 interface to the PCs graphics hardware. Observers sat

    approximately 50 cm from the monitor. At this viewing distance, each object subtended a

    maximum visual angle of ~9. The dynamic fog, when present, filled the entire screen.

    Responses were collected from the keyboard. The four keys used were v, b, n, and m,

    which were randomly assigned to the four targets for each observer. All observers were

    instructed to respond with their dominant hand.

    Stimuli

    Figure 1 shows the two set of novel 3D objects used in the study. These objects were a

    subset of those used in our earlier study, and details of their construction can be found in that

    paper (Vuong & Tarr, 2004). Each set consisted of eight objects, half of which served as targets

    and half as distractors.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    28/40

    071234567 7

    easy

    Targets

    Distractors

    hard

    Targets

    Distractors

    Figure 1. The set of easy structurally distinct and hard structurally similar objects used.

    The first set of eight stimuli consisted of easy objects with structurally distinctive

    shapes. Objects in this set are composed of parts that can be easily discriminated on the basis of

    nonaccidental properties (e.g., straight versus curved axis of elongation; see Biederman, 1987).

    In contrast, the second set of eight stimuli consisted of hard amoebas with s tructurally similar

    shapes (e.g., they lacked distinctive parts or features that could be easily used as identity cues),

    similar to those used in several previous studies of human object recognition (Blthoff &

    Edelman, 1992; Stone, 1998). The 3D coordinates of each objects vertices and their associated

    surface normals were imported into custom software that rendered the objects with a matte gray

    surface. The objects were illuminated by several light sources. All objects were rendered against

    a black background.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    29/40

    071234567 8

    Two trajectories were used to generate 128-frame (2.8/frame) animations for both

    easy and hard objects. For the first trajectory, a virtual camera was arbitrarily rotated about

    the three axes controlled by a parameter t that varied from 0 to 360. When either image

    sequence is presented in increasing frame order, objects appear to tumble in depth with a

    coherent rotation direction. The same image sequence played in decreasing order depicts each

    object rotating in the opposite direction. The animations were played at ~50 ms/frame (roughly

    three screen refreshes), so that it took ~6500 ms to play one entire 360 rotation.

    Finally, in some conditions, we presented objects rotating in a dynamic fog to degrade

    both spatial and dynamic information. The fog consisted of a pre-computed 3D fractal noise

    volume (Perlin, 1985). By presenting 2D slices of this volume on each frame, we were able to

    smoothly mask random fragments of the rotating object in space and time. On trials when the

    dynamic fog was presented (for both learning and test phases), we randomly selected a subset of

    frames and cycled back and forth through these frames on that trial. Thus, the dynamics of the

    fog was completely independent of the dynamics of the objects. Figure 2 illustrates a time

    sequence of an object rotating in this fog.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    30/40

    071234567 9

    Figure 2. An example sequence of the dynamic fog. Note that the easy object is difficult to seein any particular image. However, when the sequence is animated, the object is easily seen in the

    dynamic fog. Note also that the dynamics of the fog is independent of the dynamics of the object.

    Design

    Four main factors were tested in a mixed design with Object Type (easy, hard) and

    Learning Context (Fog, No-Fog) as between-participants factors, and Test Motion (studied,

    nonstudied) and Test Context (Fog, No-Fog) as within-participant factors. Ten observers were

    run in each of the four between-participants conditions.

    Procedure

    The experiment consisted of two learning phases followed by a test phase. In the first

    learning phase, observers were shown four objects individually for a full 360 rotation (~6500

    ms). To eliminate any effects of seeing a new rotation direction during the test phase, two targets

    rotated clockwise and the other two rotated counter-clockwise (by playing the animation

    sequence either forwards or backwards). Each objects rotation direction was randomly

    determined for each observer at the beginning of the experiment, which established its particular

    characteristic motion learned by that observer. The starting frame was selected randomly on each

    trial. Observers were instructed to press the appropriate key for each object after seeing the

    object make a complete rotation. They were informed that they could not respond until the object

    was removed from the screen. If observers responded incorrectly, they heard a low 500 Hz tone,

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    31/40

    071234567 10

    and the correct response key was presented on the screen. If they responded correctly, they heard

    a high 1000 Hz tone. For this phase, observers were instructed to respond as accurately as

    possible. Each object was presented 30 times for a total of 120 trials. There was a short self-

    timed break after every 40 trials.

    The second learning phase was the same as the first with the following two exceptions.

    First, observers were instructed to respond as quickly and as accurately possible. Thus, in this

    phase, they did not have to wait for the object to disappear from the screen before responding.

    Second, if observers responded incorrectly, they only heard the low tone. As in the first learning

    phase, each object was presented 30 times for a total of 120 trials, with self-timed breaks after

    every 40 trials.

    In the test phase, observers were presented with the four studied targets intermixed with

    four unstudied distractors. They were instructed to press the space bar for all distractors, and to

    continue to respond with the learned letter key associated with each target. During this phase, all

    objects (both targets and distractors) appeared in both the presence and absence of the dynamic

    fog and rotated in both rotation directions. Thus, on 50% of the test trials, the targets rotated with

    their studied motion (established during the learning phase), and on the remaining 50% of the

    trials, they rotated in a nonstudied motion (in which the studied motion was reversed). Observers

    were not informed that the targets would rotate any differently than before. Targets and

    distractors were shown 10 times in each condition during the test phase, for a total of 320 trials

    (8 objects [4 targets/4 distractors] x 2 test contexts x 2 test motions). There was a short break

    after every 40 trials. As in the second learning phase, observers were instructed to respond as

    quickly and as accurately as possible. No feedback was provided during this phase. The entire

    experiment took approximately 45 min.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    32/40

    071234567 11

    Data analysis

    Our main focus in the present study is the effects of rotation-reversal following learning.

    Thus, only results of target trials from the test phase were analyzed. Accuracy and correct

    response times (RT) for targets presented during the test phase were submitted to a mixed-design

    analysis of variance (ANOVA) with Object Type (easy, hard) and Learning Context (Fog,

    No-Fog) as between-participants factors, and Test Motion (studied, nonstudied) and Test Context

    (Fog, No-Fog) as within-participants factors. Response times outside the range of 400 and 6500

    ms in this experiment were removed to eliminate anticipatory responses and outliers. This

    procedure excluded less than 4% of correct trials. A significance level of = 0.05 was adopted

    for all statistical analyses reported.

    Results

    Accuracy data

    The mean percent correct scores are plotted in the left Figure 3a as a function of Object

    Type and Test Motion. We plotted this interaction throughout this study because it was the most

    robust finding. Observers performed well above chance levels (20%) in all conditions.

    Furthermore, there was no indication of any speed-accuracy trade-offs in the data.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    33/40

    071234567 12

    (a) (b)

    Figure 3. Mean accuracy (a) and response times (b) as a function of Object Type and Test

    Motion. Error bars reflect +1 standard error (SE) of the mean.

    We found main effects of Object Type, F(1, 36) = 21.04,p < 0.001, and Test Motion,

    F(1, 36) = 20.31,p< 0.001, on observers accuracy. As evident in the figure, there was also a

    significant interaction between Object Type and Test Motion, F(1, 36) = 15.08,p < 0.001,

    suggesting that the effect of rotation reversal on observers accuracy was modulated by the

    structural similarity of the objects. Lastly, there was no significant interaction between Learning

    Context and Test Motion, and no significant three-way interaction between Object Type,

    Learning Context and Test Motion,ps > 0.18. The ANOVA indicates that only Object Type

    modulated the effect of rotation reversal on how accurately observers identified targets.

    Response time data

    The mean RTs are plotted in Figure 3b. For RTs, all main effects were significant: Object

    Type, F(1, 36) = 132.52,p < 0.001; Test Motion, F(1, 36) = 18.89,p < 0.001; Learning Context,

    F(1, 36) = 9.18,p < 0.01; and Test Context, F(1, 36) = 111.98,p < 0.001. Similar to the accuracy

    data, there was evidence that structural similarity modulated the effect of rotation reversal on

    RTs, as indicated by the significant interaction between Object Type and Test Motion, F(1, 36) =

    8.74,p < 0.01. There was also some evidence that the availability of shape and motion

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    34/40

    071234567 13

    information modulated the effect of rotation reversal on RTs, but this did not reach significance

    in the omnibus ANOVA (the interaction between Learning Context and Test Motion was

    marginally significant, F(1, 36) = 2.55,p = 0.12, and the three-way interaction between Object

    Type, Learning Context, and Test Motion was not significant, F(1, 36)

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    35/40

    071234567 14

    the studied motion can severely impair observers recognition performance, even if 3D shape and

    2D views are fully preserved (Liu & Cooper, 2003; Stone, 1998).

    Our contribution to this growing literature is that we tested factors that affect how learned

    spatiotemporal signatures are ultimately used for recognition purposes; namely, we examined the

    structural similarity of the target objects and the availability of shape information during

    learning. Both of these factors have been found to affect the recognition of object presented as

    static images (e.g., Hayward & Williams, 2000), and thus we predicted that they would also

    mediate the recognition of moving objects. The present results are consistent with this prediction.

    We found interactions between structural similarity and availability of shape information in

    modulating the rotation-reversal effect (Liu & Cooper, 2003; Stone, 1998). For easy

    structurally distinctive objects, observers response times were affected by rotation-reversal only

    if they had studied the objects in a noisy context. By comparison, with hard structurally similar

    objects, accuracy and response times were affected by a rotation reversal in both learning

    contexts, probably because these stimuli were already difficult to recognize (see also Vuong &

    Tarr, 2004).

    We focused on the learning component in the present study because previous studies

    have not systematically investigated how the difficulty of learning objects may influence the

    visual information observers use to recognize those objects. Indeed, as far as we can tell, the test

    stimuli or learning context used in previous studies generally made it difficult to learn the

    stimuli. The stimuli formed a homogeneous class (e.g., faces, amoebas, arm movements); they

    were degraded in some manner (e.g., shown as point-light displays); or observers had to learn

    many items from limited exposures. Our strategy to address this issue was to test qualitatively

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    36/40

    071234567 15

    different types of stimuli and learning contexts using a difficult individual-level identification

    task.

    It is important to point out that we used a procedure to provide observers with every

    opportunity to learn both static (3D shape and 2D views) and dynamic (spatiotemporal

    signatures) cues to recognize the target objects. In our learning procedure, observers were

    initially required see the entire rotation sequence (first learning phase). Following that, they were

    encouraged to respond as quickly and as accurately as possible (second learning phase). They

    were provided with explicit feedback throughout both learning phases. Other studies have used

    different learning procedures. For example, Knappmeyer et al. (2003) found that observers

    learned very subtle characteristic facial movements of specific individuals incidentally. In their

    study, observers were merely exposed to animated faces and asked to answer questions about

    each individual (e.g., which person is more friendly?). Similarly, Liu and Cooper (2003) had

    observers incidentally learn their set of objects by having them decide whether the object could

    be used for support or as a tool. Other researchers have used famous or well-known individuals

    so that observers would be familiar with the idiosyncratic movements of those individuals from

    normal experience (e.g., Lander & Bruce, 2000). Indeed, a possible avenue for future research is

    to test different learning procedures; for example, whether observers learn objects incidentally or

    explicitly.

    We acknowledge that there is one potential confound in the present study that provides an

    alternative account of our data. During the test phase, it is possible that observers were surprised

    when learned objects moved in a different manner, and this could have caused them to make

    more errors or respond more slowly. To address this issue, we divided the accuracy and RT data

    into two blocks and looked at the results only on the second block. That is, we only looked at the

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    37/40

    071234567 16

    last five (out of 10) presentations of each target object and in each test condition. We assumed

    that any surprise effects should have disappeared by the second half of the test phase. A similar

    pattern of results emerged with only trials from the second half of the experiment. Thus, even

    after seeing learned objects moving with both studied and nonstudied motions and in the absence

    and presence of the dynamic fog, observers were still sensitive to the dynamics of the objects

    acquired during the learning phase.

    Lastly, our data suggest that both structural similarity and availability of stimulus

    information (shape and motion cues) had different effects on how observers ultimately used

    spatiotemporal information, although both factors generally made the recognition task more

    difficult during learning. However, as is often the case for static objects, structural similarity

    seemed to be the critical factor in our study (Tarr & Blthoff, 1995). The availability of shape

    and motion information, on the other hand, had a weak effect that was evident only in comparing

    differences between studied and nonstudied motion (mostly) RT distributions.

    For the two types of objects we used, the results suggest that spatial and dynamic

    information may be weighted differently. In our experiment, spatial and dynamic information

    about structurally similar hard objects may have been equally weighted in the object

    representation because motion information would help observers discriminate between visually

    similar objects. By comparison, shape information may have been weighted more than motion

    information for structurally distinct easy objects, as these can be accurately and quickly

    identified on the basis of shape. In any case, future studies will be required to further explore this

    important issue. Our data provide a starting point to further investigate precisely how learning

    affects the combination of shape and motion cues for object recognition, so that appropriate cue

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    38/40

    071234567 17

    combination models may be formulated. For example, it would be interesting in the future to

    systematically vary the structural similarity of targets from easy to hard.

    In summary, we used rotation reversal (Liu & Cooper, 2003; Stone, 1998) as a means to

    investigate the information observers use to recognize dynamic objects. Combined with earlier

    results, our present findings suggest that how an objects movements unfold over time also

    contribute to the recognition of that object. That is, observers can learn to directly associate

    specific dynamic information with specific objects (or classes of objects), particularly if this

    information is informative with regard to object identity. Hence, the term signature is

    appropriate: spatiotemporal signatures capture space-time structures projected onto our retinas by

    a dynamic world.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    39/40

    071234567 18

    References

    Biederman, I. (1987). Recognition-by-components: A theory of human image understanding.

    Psychological Review, 94, 115-147.

    Bruce, V., & Valentine, T. (1988). When a nods as good as a wink: The role of dynamic

    information in facial recognition. In N. N. Gruneberg, P. E. Morris, & R. N. Sykes (Eds.)

    PracticalAspects of Memory: Current Research and Issues Vol. 1 (pp. 169-174).

    Chichester, UK: Wiley.

    Hayward, W. G., & Williams, P. (2000). Viewpoint dependence and object discriminability.

    Psychological Science, 11, 7-12.

    Johansson, G. (1973). Visual perception of biological motion and a model for its analysis.

    Perception and Psychophysics, 14, 201-211.

    Knappmeyer, B., Thornton, I. M., & Blthoff, H. H. (2003). The use of facial motion and facial

    form during the processing of identity. Vision Research, 43, 1921-1936.

    Lander, K. & Bruce, V. (2000). Recognizing famous faces: Exploring the benefits of facial

    motion. Ecological Psychology, 12, 259-272.

    Liu, T., & Cooper, L. A. (2003). Explicit and implicit memory for rotating objects. Journal of

    Experimental Psychology: Learning, Memory, and Cognition, 29, 554-562.

    Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and

    Processing of Visual Information. San Francisco: Freeman.

    Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays based on

    dynamic cues. Proceedings of the Royal Society of London B, 258, 273-279.

    Newell, F. N., Wallraven, C., & Huber, S. (2004). The role of characteristic motion in object

    categorization.Journal of Vision, 4, 118-129.

  • 7/30/2019 THE ESSENTIAL GUIDE TO WRITING RESEARCH REPORTS

    40/40

    071234567 19

    Perlin, K. (1985). An image synthesizer. Computer Graphics, 19, 287-296.

    Stone, J. V. (1998). Object recognition using spatiotemporal signatures. Vision Research, 38,

    947-951.

    Tarr, M. J., & Blthoff, H. H. (1995). Is human object recognition better described by geon

    structural descriptions or by multiple views? Comment on Biederman and Gerhardstein

    (1993).Journal of Experimental Psychology: Human Perception and Performance, 21,

    1494-1505.

    Tarr, M. J., & Pinker, S. (1989). Mental rotation and orientation-dependence in shape

    recognition. Cognitive Psychology, 21, 233-282.

    Ullman, S. (1984). Maximizing rigidity: The incremental recovery of 3-D structure from rigid

    and rubbery motion. Perception, 13, 255-274.

    Vuong, Q. C., & Tarr, M. J. (2004). Rotation direction affects object recognition. Vision

    Research, 44, 1717-1730.

    Wallis, G., & Blthoff, H. H. (1999). Learning to recognize objects. Trends in Cognitive Science,

    3, 22-31.