43
The Emissivity Profiles of AGN Accretion Discs Dan Wilkins Institute of Astronomy, University of Cambridge Supervisor: Andy Fabian High Energy View of Accreting Objects, Crete 2010

The Emissivity Profiles of AGN Accretion Discswilkinsd/docs/talks/Crete2010Talk... · Accretion Discs Dan Wilkins ... Concept of emissivity profiles ... Theoretical emissivity profiles

Embed Size (px)

Citation preview

The Emissivity Profiles of AGN Accretion Discs

Dan WilkinsInstitute of Astronomy, University of Cambridge

Supervisor: Andy Fabian

High Energy View of Accreting Objects, Crete 2010

1. Concept of emissivity profiles

• So what?

2. Determination from observed spectra

• 1H 0707-495

3. Test with self-consistent XSPEC model

4. Theoretical emissivity profiles

• Link to source parameters

Outline

2

‘Lamppost’ Model

3

PLC

RDC

X-ray source in corona around BHIC scattering of seed photons

Reflection from accretion discatomic lines/absorption imprinted (reflionx)

Emissivity Profile

4

• Reflected power per unit area from disc.

• Flux received at point on disc falls off with distance from X-ray source.

1e-05

0.0001

0.001

0.01

0.1

1

10

0.1 1 10 100r

Emissivity Profile

4

• Reflected power per unit area from disc.

• Flux received at point on disc falls off with distance from X-ray source.

F ∝ 1d2

=1

r2 + h2

d

h

• e.g. Euclidean space

r

Emissivity Profile - So What?

5

• Depends on

• Source location/height

• Source extent

• Source/disc geometry

• Typically assume a (broken) power law emissivity profile.

Emissivity Profiles from Spectra

6

(r) ∝ r−α

• Typically assume a (broken) power law emissivity profile.

Emissivity Profiles from Spectra

6

(r) ∝ r−α

• Instead, can we determine the emissivity from observed spectra?

• Constrain properties of X-ray source...

1 100.5 2 5

12

3

ratio

Energy (keV)

1H0707 495 Emission Lines• Narrow emission line in disc frame.

• To observer, broadened by relativistic effects:• Doppler shift/beaming• Gravitational redshift

• Transfer function:

Broadened Emission Lines

7

F0(ν0) =

Ie(re,ν0

g)T (re, g)dgredre

105

050

010

00

norm

aliz

ed c

ount

s s

1 keV

1

Energy (keV)

Broadened Emission Lines

8

• Line profiles different from successive radii.

• Total line is sum (integral) over disc

• Photon count from each annulus

• Get emissivity from photon counts from successive annuli (divided by projected area).

Emissivity from Broad Lines

9

F0(ν0) =

T (re, g)redre(re)

N(r) ∝ A(r)(r)

• Model spectrum

• In iron K band (3-10 keV), dominant components are power law continuum and disc reflection.

• Model parameters from best fit model of Zoghbi+10 for 1H 0707-495.

• Fit for photon count from each radius (norm) in XSPEC.

Emissivity from Broad Lines

10

powerlaw +

kdblur⊗ reflionx

10 3

0.01

norm

aliz

ed c

ount

s s

1 keV

1

data and folded model

105

0.8

1

1.2

ratio

Energy (keV)drw 20 May 201

χ2 = 255.48

χ2 / NDoF = 1.1255

1H 0707-495

11

XMM-NewtonEPIC pn500ks(Zoghbi+10)

! = 3.3

! = 6

" /

arbi

trar

y u

nits

10#10

10#9

10#8

10#7

10#6

10#5

10#4

10#3

0.01

r / RG

1 10 100

1H 0707-495 Emissivity Profile

12

3-10 keV

! = 3.3

! = 6

" /

arbi

trar

y u

nits

10#10

10#9

10#8

10#7

10#6

10#5

10#4

10#3

0.01

r / RG

1 10 100

1H 0707-495 Emissivity Profile

12

3-10 keV

?

! = 3.3

! = 6

" /

arbi

trar

y u

nits

10#10

10#9

10#8

10#7

10#6

10#5

10#4

10#3

0.01

r / RG

1 10 100

! = 0

! = 7.8

" /

arbi

trar

y u

nits

10#12

10#9

10#6

10#3

r / RG

1 10 100

1H 0707-495 Emissivity Profile

12

3-10 keV 3-5 keV

?

• Fit one reflection component with continuous emissivity profile over disc.

• Twice broken power law

• kdblur3 blurring kernel.

• Fit for slopes and break points.

Test with XSPEC Model

13

kdblur2 kdblur3

Index 1 4.82 7.83

R break 1 6.85RG 5.60RG

Index 2 2.09 7.84x10-5

R break 2 — 34.75RG

Index 3 — 3.30

χ2 287.52 264.32

χ2 / Ndof 1.11 1.04

3-10keV : powerlaw + kdblur⊗reflionx

10 3

0.01

norm

aliz

ed c

ount

s s

keV

105

0.8

1

1.2

ratio

Energy (keV)

10 3

0.01

norm

aliz

ed c

ount

s s

keV

105

0.8

1

1.2

1.4ra

tio

Energy (keV)

Fits to 1H 0707-495 Iron K Line

14

kdblur3 kdblur2

powerlaw + kdblur⊗reflionx

1e-10

1e-09

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

1 10 100 1000

/ ar

bitra

ry u

nits

r / rg

kdblur3kdblur2

1H 0707-495 Emissivity Profile

15

16

0.6

0.7

0.8

0.9

1

1.1

1 10 100 1000

F( <

r )

/ F(

<40

0rg

)

r / rg

F (< r) =

r

1.235rg

(r) rdr

17

Reflected Flux Distribution

• Isotropic point source above the disc plane.

• Either on or orbiting the rotation axis.

• Trace rays from source until they hit disc plane.

• Emissivity – number of photons hitting disc per unit area.

18

Theoretical Emissivity ProfilesFollowing Miniutti+03, Suebsuwong+06

e(t) = v

The Source

19

e(a) · e

(b) = η(a)(b)

• Source frame basis (flat)

• Rays at equal intervals in solid angle.

• Calculate initial conditions by transforming to global basis.

• Isotropic Point Source• Equal power radiated

into equal solid angle, in source frame.

dΩ = d(cos α)dβα

βei

e’i

θϕ

r

dΩ’

• Propagate photons using (null) geodesic equations as affine parameter advances.

Photon Propagation

20

• Accretion disc (equatorial plane) divided into radial bins.

• When photons hit disc (θ=π/2), record radial bin.

• Emissivity given by photons per bin (per bin area, with relativistic effects).

-4-2

0 2

4

-4

-2

0

2

4

0

1

2

3

4

5

1e-06

1e-05

0.0001

0.001

0.01

0.1

1 10 100r

• Flat, Euclidean spacetime.

• Flux falls off as inverse square of distance from source.

• Projected normal to the disc plane.

Classical Case

21

(r) ∝ 1

d2cosϑ =

1

h2 + r2h√

h2 + r2

d

h

r

r-3

constant

ϑ

• Gravitational light bending towards black hole• Focusses more rays onto inner disc – steepens emissivity

profile.

• Relativistic beaming if source is moving• More emission onto regions of disc on/below orbit.

• Proper area of radial bins (GR and length contraction)

• A/dr increases in inner disc – shallower profile.

• Time dilation/gravitational redshift• Proper time elapses slower at inner disc so greater flux

measured in disc frame per ray – significant steepening.

Relativistic Effects

22

∼ t2

Relativistic Effects (2)

23

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

r = 3r = 6

r = 10r = 20r = 50

rs

Theoretical Emissivity Profiles (1)

24

StationaryAxialSource

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

r = 3r = 6

r = 10r = 20r = 50

rs

Theoretical Emissivity Profiles (1)

24

StationaryAxialSource

α~7

α~3.3

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

x = 5, h = 1.235x = 5, h = 3x = 5, h = 5

x = 5, h = 10x = 5, h = 20x = 5, h = 50

!"

"

Theoretical Emissivity Profiles (2)

25

‘Co-rotating’Ring Source(height)

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

x = 1.235, h = 5x = 3, h = 5x = 5, h = 5

x = 10, h = 5

Theoretical Emissivity Profiles (3)

26

!"

"

‘Co-rotating’Ring Source(radius)

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

x = 20, h = 2

Theoretical Emissivity Profiles (4)

27

!"

"

‘Co-rotating’Ring Source

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

x = 20, h = 2

Theoretical Emissivity Profiles (4)

27

!"

"

‘Co-rotating’Ring Source Break point at outer

extent (rise as close to disc)

0.01

0.1

1

10

100

1000

10000

1 10 100 1000

/ ar

bitra

ry u

nits

r / RG

x = 20, h = 2

Theoretical Emissivity Profiles (4)

27

!"

"

‘Co-rotating’Ring Source Break point at outer

extent (rise as close to disc)

Steepening – close to disc/BH

• Simulations of point sources explain basic form of emissivity profile.

• Steep inner part due to time dilation/gravitational redshift.

• Flattening in middle region (h » r).• Constant index slightly steeper than classical (3).

Theoretical Results

28

• Outer break radius (flat to constant index outer disc) lies approximately below the source.

• Greater steepening at inner disc for sources closer to the black hole.

• Either source radius or height above disc.

Theoretical Results (2)

29

Extended Sources

30

• Sum point sources.

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / rg

• Vertical ‘jet’

• Constant power with h

Extended Sources

30

• Sum point sources.

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / rg

Extended source, 1.235<x<20, h=10Ring source, x=20, h=10• Radially

extended

• Constant power with r

Extended Sources (2)

31

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / rg

Extended source, 1.235<x<20, h=10Ring source, x=20, h=10• Radially

extended

• Constant power with r

Extended Sources (2)

31

Break point at outer extent

0.01

0.1

1

10

100

1000

10000

100000

1e+06

1 10 100 1000

/ ar

bitra

ry u

nits

r / rg

Extended source, 1.235<x<20, h=10Ring source, x=20, h=10• Radially

extended

• Constant power with r

Extended Sources (2)

31

Break point at outer extent

Steepening from inner/height

-4-2

0 2

4

-4-2

0 2

4 0

1

2

3

4

5

• Reflected radiation from one part of disc can be bent by black hole back on to disc.

• More radiation on inner disc – steeper profile.

Return Radiation

32

Cunningham 1976, Ross & Fabian 2002

• Determined emissivity profile of 1H 0707-495 without a priori assumption of its form.• Twice broken power law.• Steep (α~7.8) in inner disc, flat 5.6–34.8RG, α~3.3 over outer

disc.

• Consistent with XSPEC fit to reflection spectrum using one continuous emissivity profile.

• Form of emissivity profile agrees with theoretical prediction.• Understand form in terms of physics (relativistic effects).

• Can constrain properties of hard X-ray source...

Conclusions

33