1
Objectives This study investigated the relationship between spatial learning and subsequent navigation in an indoor environment. Specifically, we examined whether navigation efficiency could be altered by manipulating the exploratory strategy utilised. Methods Participants 55 students from the University of Southampton participated Materials Spatially uniform experimental room Room dimensions 3.5 (length) x 3.5 (width) x 2.5 (height) metres The room contained five identical boxes with a distinct object inside each Procedure Phase 1 (“Free exploration”), individual walking patterns were identified using an automated cluster analysis algorithm as described in Makany et al. (2007). These were clustered on visual similarities Two distinct exploratory patterns were identified: Axial & Circular. Makany et al. (2007) found that distinct exploratory patterns optimized navigation performance differently. Axial group was cognitively more efficient, whilst Circulars were physically efficient. This represented a trade off between distance travelled and memory demands Phase 2 (“Forced Learning”) participants were forced to learn a similar spatial layout using either a matching or nonmatching route to their initial exploratory pattern. Yellow carpet tiles marked allowed paths. Participants were asked to “always follow this Yellow Brick Road”. Phase 3 (“Test”) Yellow Brick Road (YBR) was removed. Participants were instructed to navigate betweensequences of 3 objects in any order they wished using the most efficient path. In total there were 12 trials. The effects of forced spatial learning: Should we always stay on the Yellow Brick Road? Jonathan Pyke, Tamas Makany, Edward Redhead, & Itiel Dror University of Southampton [email protected] Figure 7. Binary Errors (Standard deviation) for subgroups Figure 8. Frequency Errors (Standard deviation) for subgroups Figure 6. Binary visitations (standard deviation) for forced groups Figure 2. Axial cluster pattern Figure 3. Circular cluster pattern * p<0.05 Figure 4. Forced Circular pattern Figure 5. Forced Axial Pattern Figure 1. Arrangement of Room during Free Exploration CC. Initial Circular, Forced Circular, AC. Initial Axial, Forced Circular CA. Initial Circular, Forced Axial, AA. Initial Axial , Forced Axial

The effects of forced spatial learning: should we always follow the yellow brick road?

  • Upload
    luscher

  • View
    266

  • Download
    1

Embed Size (px)

DESCRIPTION

Fifty-five participants were tested for their spatial exploration and navigation performances in a square shaped experimental room containing five identical boxes each hiding a visually distinct object. In an initial – unconstrained – exploratory phase during which the participants were asked to learn the positions of the objects, two patterns of spatial exploration emerged: axial explorers utilised main axis, while circular explorers circled around the centre of the space. In the next phase, participants were forced to learn the position of new objects which had been placed in a novel arrangement of the boxes. The participants were only able to explore along a marked route – that either matched or conflicted with their initial exploratory pattern. Finally, participants were required to visit a sequence of objects in an optional order task. The results showed significant differences in navigation efficiencies as a consequence of forced learning. Participants forced to learn via a more cognitively optimal (circular) pattern utilized their acquired spatial knowledge more efficiently than those forced to learn in a cognitively less beneficial pattern (axial). This finding was regardless of the initial exploratory pattern shown by participants.

Citation preview

Page 1: The effects of forced spatial learning: should we always follow the yellow brick road?

Objectives 

This study investigated the relationship between spatial learning and

subsequent navigation in an indoor environment. Specifically, we

examined whether navigation efficiency could be altered by manipulating 

the exploratory strategy utilised. 

Methods

Participants

• 55 students from the University of Southampton participated

Materials

• Spatially uniform experimental room 

• Room dimensions 3.5 (length) x 3.5 (width) x 2.5 (height) metres

• The room contained five identical boxes with a distinct object 

inside each

Procedure

• Phase 1 (“Free exploration”), individual walking patterns were 

identified using an automated cluster analysis algorithm as 

described in Makany

et al. (2007). These were clustered on 

visual similarities 

• Two distinct exploratory patterns were identified: Axial & 

Circular. 

• Makany

et al. (2007) found that distinct exploratory patterns 

optimized navigation performance differently. Axial group was 

cognitively more efficient, whilst Circulars were physically 

efficient. This represented a trade off between distance 

travelled and memory demands

• Phase 2 (“Forced Learning”) participants were forced to learn a 

similar spatial layout using either a matching or non‐matching 

route to their initial exploratory pattern. Yellow carpet tiles 

marked allowed paths. Participants were asked to “always 

follow this Yellow Brick Road”. 

• Phase 3 (“Test”) Yellow Brick Road (YBR) was removed. 

Participants were instructed to navigate betweensequences of 3 

objects in any order they wished using 

the most efficient path. In 

total there were 12 trials.  

The effects of forced spatial learning: 

Should we always stay on the Yellow Brick Road? 

Jonathan Pyke, Tamas

Makany, Edward Redhead, & Itiel

Dror

University of Southampton

[email protected]

Figure 7.

Binary Errors (Standard deviation) for 

subgroupsFigure 8.

Frequency Errors (Standard deviation) for 

subgroups

Figure 6.

Binary visitations (standard deviation) for forced groups

Figure 2.

Axial cluster pattern Figure 3.

Circular cluster pattern 

* p<0.05

Figure 4. Forced Circular pattern Figure 5.

Forced Axial Pattern

Figure 1.

Arrangement of Room  during Free Exploration 

C‐C. Initial Circular, Forced Circular, A‐C. Initial Axial, Forced Circular C‐A. Initial Circular, Forced Axial, 

A‐A. Initial Axial , Forced Axial