3
Solid State Communications, Vol. 13, pp. 1385—1387, 1973. Pergamon Press. Printed in Great Britain THE DIELECTRIC CONSTANT OF LIQUID NOBLE METALS AND THEIR ALLOYS*t Gerardo Cisneros ESFM, Instituto Politécnico Nacional, Mexico 14, D.F. Mexico and J.S. Helman Dep. de Fisica. CIEA, Instituto PolitCcnico Nacional, Mexico 14, D.F., Mexico (Received 10 Juli’ 1973 bi’ J. L. Olsen) The nearly-free-electron part of the dielectric constant of liquid Cu, Ag and Au are calculated and the results are compared with available experimental data. The formulae are generalized for the case of liquid alloys. THE AVAILABILITY of pseudopotentials for liquid Table 1. Values of kF, EF and Ed (Fermi momentum, noble metals t4 allows now the calculation of the Fermi energy and top of the d-band of the solid nearly-free-electron part of their dielectric Constant respecnvely) in a. u., and calculated and empirical resistivities (Pcaic and Pem~ respective/i’) in 4—cm. (NFEDC). We have calculated the NFEDC of liquid _____________________________________________ Cu, Ag and Au for different pseudopotentials24 Cu Ag Au using the formulae of reference 5, and the results were * compared with available experimental data. The same kF 0.6915 0.6097 0.6143 formulae can also be used for liquid alloys if IVQI2S(q) EF* 0.4782 0.37 17 0.3774 is substituted by Ed + 0.324 0.077 0.193 ~ P V~~ + ~ [S~V(q) I] } Pcaic~ 22.6 30.0 55.0 ~ Q M.v Pcaic~ 22.1 19.4 38.5 where V~ is the pseudopotential of the alloy component Pemp~ 20.6 17.5 31.3 1.1, c~, its concentration, and S~(q) are the usual alloy structure factors.6 * Reference 2. In the calculation we have used the empirical ~ SMITH N.V.,Phys. Rev. B3, 1862 (1971). structure factors given in reference 7, which were determined at 1125°C for Cu and 1050°C for Ag, and ~ Using the pseudopotentials of Moriarty.23 the pseudopotentials calculated by Moriarty23 and Borchi and DeGennaro4 for comparison.8 In Table I § Using the pseudopotentials of Borchi and DeGennaro.4 we give the relevant parameters used in the calculation and the static resistivity obtained with each model ~1 Reference 9. together with its measured value.9 The results for the * Work partially supported by Research Corporation. conductivity a and the real part of the dielectric con- stant e, in the form i e, versus the photon energy t This work was submitted to the ESFM, IPN, as a are shown in Figs. 1—3 together with those given by professional thesis by G.C. Drude’s model involving the empirical static resistivity. 1385

The dielectric constant of liquid noble metals and their alloys

Embed Size (px)

Citation preview

Page 1: The dielectric constant of liquid noble metals and their alloys

Solid StateCommunications, Vol. 13, pp. 1385—1387,1973. PergamonPress. Printedin GreatBritain

THE DIELECTRIC CONSTANTOF LIQUID NOBLE METALS AND THEIR ALLOYS*t

GerardoCisneros

ESFM,Instituto PolitécnicoNacional,Mexico 14, D.F. Mexico

and

J.S.Helman

Dep. de Fisica. CIEA, Instituto PolitCcnicoNacional,Mexico14, D.F.,Mexico

(Received10Juli’ 1973 bi’ J.L. Olsen)

Thenearly-free-electronpart of the dielectric constantof liquid Cu, Ag andAu arecalculatedand theresultsare comparedwith availableexperimentaldata.The formulaeare generalizedfor thecaseof liquid alloys.

THE AVAILABILITY of pseudopotentialsfor liquid Table1. ValuesofkF, EF and Ed (Fermimomentum,noble metalst4allows now the calculationof the Fermi energyand topofthe d-bandof thesolidnearly-free-electronpart of their dielectric Constant respecnvely)in a.u., andcalculatedandempirical

resistivities(Pcaic and Pem~ respective/i’)in 4�—cm.(NFEDC).We havecalculatedtheNFEDC of liquid _____________________________________________Cu, Ag andAu for different pseudopotentials24 Cu Ag Auusing the formulaeof reference5, and theresultswere

*

comparedwith availableexperimentaldata.Thesame kF 0.6915 0.6097 0.6143formulaecanalsobe usedfor liquid alloys if IVQI2S(q) EF* 0.4782 0.3717 0.3774is substitutedby Ed + 0.324 0.077 0.193

~ P V~~ + ~ [S~V(q)— I] } Pcaic~ 22.6 30.0 55.0~ QM.vPcaic~ 22.1 19.4 38.5

where V~is the pseudopotentialof the alloy component Pemp~ 20.6 17.5 31.31.1, c~,its concentration,andS~(q)are the usual alloystructurefactors.6 * Reference2.

In the calculationwe haveusedtheempirical ~ SMITH N.V.,Phys.Rev. B3, 1862 (1971).structurefactorsgiven in reference7,which weredeterminedat 1125°Cfor Cu and 1050°Cfor Ag, and ~ Usingthe pseudopotentialsof Moriarty.23the pseudopotentialscalculatedby Moriarty23 andBorchi andDeGennaro4for comparison.8In TableI § Usingthepseudopotentialsof Borchi andDeGennaro.4we give therelevantparametersusedin thecalculationand thestaticresistivity obtainedwith eachmodel ~1Reference9.togetherwith its measuredvalue.9The resultsfor the

* Work partially supportedby ResearchCorporation. conductivitya and the real part of the dielectric con-stante,in theform i — e,versusthe photonenergy

t Thiswork wassubmittedto the ESFM, IPN, as a areshown in Figs. 1—3 togetherwith thosegivenbyprofessionalthesisby G.C. Drude’smodel involving theempiricalstatic resistivity.

1385

Page 2: The dielectric constant of liquid noble metals and their alloys

1386 DiELECTRICCONSTANT OFLIQUID NOBLE METALS Vol. 13,No. 9

0.OI0r~

~ F ~j c1’~° 1 0_0l0~ ~ ‘—ito

oMeratyb\ OMQruarly

(I4&ci.~ra Ci b.B~cht&0.G~maro b b8adi~DGmore

300

00~ ~ 2000.005 (I/~~) E a C Oruds.~00

,—

00 ‘ 00

0 r ~ F ~3 I 2 ‘3 40 I 2t~E3 4 5 6 1EF Er

~u ~V) p.~~

FiG. I. Dielectric constantof liquid Cu. a: solid line, FIG. 3. Dielectricconstantof liquid Au. a: solid line.Calculated:v, experimental.I — e: dotted line, calcu- calculated.I — e: dotted line, calculated.lated: EJ,experimental.

_______________________________ NFEconductivity obtainedwith the theoryofOOIC C

1 c~iIO reference5 usingany oneof the pseudopotentialsoM~arty

Ag b•Borchr &D.Gsrmorotestedhereare in reasonableagreementwith exper.iment. Thesevaluesare larger thanDrude’s by a factor

(I/1~Clcm) aL o\

~200 of the order of 2 in the range3—5 eV.

0.005

The resultsfor theNFEDC are expectedto bedirectly comparablewith experimentonly for photonenergieshw ~ E~-— Ed whereEF is the FermienergyandEd theenergycorrespondingto thetop of theJ d.band’.

0 2 3 ~FEd

5EF

~U2 IsV)It is importantto point out that thephaseshifts

FIG. 2. Dielectric constantof liquid Ag. a: solid line, techniqueusedto describetheelectronscatteringincalculated:G, experimental.I — e: dottedline, calcu. the calculationof transportpropertiesof liquidlated;~, experimental, metals9is not adequateherebecauseinelasticelectron

scatteringprocessesare important.Thereforeapseudopotentialapproximationmust be used.

Someavailableexperimentalvalues,determinedat1083°Cfor Cu and 1000°Cfor Ag. are also included.10 Acknowledgements— We want to thank Drs.W.

Baltensperger,R. Evans,H.J. Guntherodtand F.It is known thatDrude’s formulaincorporating Sánchez.Sinenciofor fruitful discussions.J.S.H.

d.c. parametersdoesnot fit properly measured acknowledgesa grant from theConsejoNacional deopticaldata.11The valuesfor the frequency-dependent Ciencia~‘ Tecnologia(CONACYT).

REFERENCES

1. HARRiSON W.A.,Ph~’s.Rev. 181. 1036(1969).

2. MORIARTY J.A.,Phvs.Rev. B 1.1363(1970).

3. MORIARTY J.A.,Phj’s. Rev. B 6. 1239 (1972).

Page 3: The dielectric constant of liquid noble metals and their alloys

Vol. 13,No.9 DIELECTRIC CONSTANTOF LIQUID NOBLE METALS 1387

4. BORCHI E. andDEGENNARO S.,Thys.Rev.B 5,4761(1972).

5. HELMAN J.S.andBALTENSPERGERW., Phys.kondens.Materie 5, 60(1966).Weusedformulae(2), (18),(19), (34) and(35)of this reference.In that paperthereis an error.To obtain thecorrectformulae thefirstterm within bracketsin the integrandof(18)hasto be deleted.Seeerratapublishedin thesamejournal,15,346(1973).

6. FABER I.E. andZIMAN J.M.,Phil. Mag. 11, 153(1965). ForbinaryalloysS~v(q)cansometimesbe obtainedempirically,or theycanbecalculatedtheoretically(ASHCROFTN.W. andLANGRETH D.C., Phys.Rev. 156.685 (1967)).

7. WAGNER C.N.J.,OCKEN H. andJOSHIM.L., Z. Naturf 20a,325 (1965).We usedfor Au the samestructurefactor reportedfor Ag.

8. In the caseof Moriarty’s pseudopotentials.forq < 2k,,.we usedthevaluesof reference2, andfor q> 2kFthoseof reference3 with the correspondingkF for the liquid. Borchi andDeGennarop~udopotentials4areadjustedto fit theempirical resistivity whenusedtogetherwith the correspondingtheoreticalstructurefactors.Sincewe useempiricalstructurefactors in all cases,a smalldiscrepancyis foundbetweenthe resistivity calcu-latedwith thesepseudopotentialsand themeasuredvalue(Table 1).

9. DREIRACH 0., EVANS R.. GUNTHERODTH.J. and KUNZI H.U..J.Phys. F.’ MetalPhj’s. 2. 709 (1972,1.

10. HODGSONJ.N..Phil. Mag. 5, 272 (1960).

11. FABER T.E..Introduction to theTheoryofLiquid Metals,CambridgeUniversity Press(1972). p. 390. Fabetwrites. ‘We havestill to relate the optical propertiesof liquid metalsto their measuredd.c. conductivities.andit is at this stagethat discrepanciesappear’.andlater in thesamepage,‘Thesediscrepanciesare still notunderstood’.We would like to point outthat a theoryof the dielectricconstantof liquid metalswhich includesthed.c. conductivity asthe limiting caseh~ 0 is given in reference5. Thistheor~accountsfor theabovementioneddiscrepancies.

Wir berechnenden Beitrag quasi-freierElektronenzur Dielektrizitatskonstantenvon flussigemCu, Ag und Au und vergleichendie Resultatemit verfugbarenexperimentellenDaten. Die Formeinwerdenfur den Fall flussigerVerbindungenverallgemeinert.