38
The Design of Offline Scheduling Mechanisms on EPON Professor : Ho-Ting Wu Student : Pei-Hwa Yin 1

The Design of Offline Scheduling Mechanisms on EPON Professor : Ho-Ting Wu Student : Pei-Hwa Yin 1

  • View
    222

  • Download
    4

Embed Size (px)

Citation preview

1

The Design of Offline Scheduling Mechanisms on EPON

Professor : Ho-Ting Wu

Student : Pei-Hwa Yin

2

Outline

Back ground review

DBA introduction

Simulation work so far

Remaining work

Q&A

3

Background Review

4

PON’s origination

Bandwidth bottleneck between end users and

backbone networks

PON can provide more bandwidth to end users

in a cost-effective way

5

EPON’s advantages

low-cost Ethernet equipment and low cost passive

optical components

lower cost for equipment maintenance

larger bandwidth capacity

longer transmission distance(10~20km)

6

EPON Architecture

point-to-multipoint fiber optical network with no

active elements in the transmission path from

source to destination

7

Operation principle

In an EPON system all data are encapsulated in

Ethernet packets for transmission

ONU)(OLT- direction Downstream

8

Operation principle

ONU)(OLT- direction Upstream

9

Multi-Point Control Protocol(MPCP)

Being developed by the IEEE 802.3ah task force.

This protocol relies on two Ethernet messages : GATE and

REPORT to achieve dynamic bandwidth allocation process

GATE : assign time slot

REPORT : report ONU’s local queues condition

10

Dynamic Bandwidth Allocation (DBA)Mechanism

Online scheduling

Offline scheduling

11

Online scheduling

Stop and poll polling policy

12

Interleaved Polling with Adaptive Cycle Time(IPACT)

IPACT mechanism concept

13

IPACT example

14

IPACT example

15

IPACT example

16

Transmission window

OLT use transmission window to notify ONU let ONU

knows that how many data it can upload in a cycle.

Max transmission window size

It’s a threshold that use to forbid ONU upload too

many data in a cycle

17

Transmission window The way to determine the Transmission window size

Limited service

If (request>Transmission window size)

Transmission window size=Max transmission window size

else

Transmission window size=request

Gated service

Transmission window size=request

Fixed service

Transmission window size=Max Transmission window size

18

Offline scheduling

Once OLT collect Report message from all ONUs, then start to send Gate messages to response ONU.

19

Offline scheduling

Partial ONU in two groups High load and light load

Let ONUs which belong the high load group can use excess bandwidth to transmit more data

20

Offline scheduling

Guarantee bandwidth computation

Excess bandwidth assignment

After DBA Bandwidth assignment

8*

*

N

RGNTB UMAXMIN

iMIN

L

iiMIN

TOTALEXCESS RBwhereRBB )(

MINiTOTALEXCESSH

ii

iEXCESSi BRifB

R

RB

*

MINiEXCESSiMIN

gi

MINiigi

BRifBBB

or

BRifRB

21

Offline scheduling with early allocation scheme

if (Request<=guarantee bandwidth)

Grant bandwidth right away

else

Grant bandwidth after collect all REPORT messages

22

Simulation work

23

Simulation description

Model1(M1) Offline scheduling mechanism

Model2(M2) Offline scheduling with early allocation scheme

Intra-ONU bandwidth assign methods[1]

Strict Priority Priority queuing(OLT)Central control

24

Simulation parametersONU number 16

Uplink transmission rate 1Gb/sSimulation time 30s

RTT time /transmission distance Uniform(100~200)us /10~20km

Offered network load(ONU’s maximum input traffic rate)

0.08~1.6(Gbps)(100Mb/s)

Maximum cycle time 2ms

Guard time 5us

Packet size P0 : fix at 70 bytesP1 , P2 : Uniform(64~1518) bytes

Traffic type_1 P0 fix at 4.48Mbit/s,P1,P2 : Remain loading*50%

Packet generate method P0 : Constant bit rateP1 , P2 : Poisson distribution

Measurement metrics Delay

Maximum transmission window size 15000 bytes

25

Simulation result

26

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1.00E+01

1.00E+02

M1-PriortyQ

M1-PriorityQ-P0 M1-Priority-P1 M1-PriorityQ-P2

Offered network load (Gbps)

Delay(Second)

27

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

IPACT-limit-PriorityQ

IPACT-limit-PriorityQ-P0 IPACT-limit-PriorityQ-P1 IPACT-limit-PriorityQ-P2

Offered network load (Gbps)

Delay (Second)

28

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.60.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

Compare Online to Offine-P0 data

M1-PriorityQ-P0 IPACT-limited-PriorityQ-P0

Offered network load (Gbps)

Delay(Second)

29

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.60.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

Compare Online to Offine-P1 data

M1-PriorityQ-P1 IPACT-limited-PriorityQ-P1

Offered network load (Gbps)

Delay(Second)

30

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

Compare Online to Offine-P2 data

M1-PriorityQ-P2 IPACT-limited-PriorityQ-P2

Offered network load (Gbps)

Delay(Second)

31

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.60.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

M1 with different Intra-ONU bandwidth assign methods-P0

Strict Priority-P0 PriorityQ-P0 Central control-P0

Offered network load (Gbps)

Delay(Second)

32

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.60.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

4.5E-03

M1 with different Intra-ONU bandwidth assign methods-P1

Strict Priority-P1 PriorityQ-P1 Central control-P1

Offered network load (Gbps)

Delay(Second)

33

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02

M1 with different Intra-ONU bandwidth assign methods-P1

Strict Priorty-P2 PriorityQ-P2 Cental control-P2

Offered network ;oad (Gbps)

Delay(Second)

34

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.60.0E+00

5.0E-04

1.0E-03

1.5E-03

2.0E-03

2.5E-03

3.0E-03

3.5E-03

4.0E-03

Compare M1 M2-PriorityQ-P0,P1

M1-PriorityQ-P0 M2-PriorityQ-P0 M1-PriorityQ-P1 M2-PriorityQ-P0

Offered network load (Gbps)

Delay(Second)

35

0.08 0.16 0.24 0.32 0.4 0.48 0.56 0.64 0.72 0.8 0.88 0.96 1 1.04 1.12 1.2 1.28 1.36 1.44 1.52 1.6

1E-04

1E-03

1E-02

1E-01

1E+00

1E+01

1E+02Compare M1 M2-PriorityQ-P2

M1-PriorityQ-P2 M2-PriorityQ-P2

Offered network load (Gbps)

Delay(Second)

36

Remaining work

Define a DBA which base on offline scheduling that can well reduce idle time on EPON system.

37

Reference[1] C.M. Assi, Yinghua Ye, Sudhir Dixit, and M.A. Ali, “ Dynamic

bandwidth allocation for quality-of-service over Ethernet

PONs ,”IEEE Journal on Selected Areas in Communications,

vol.21, no.9, pp. 1467-1477, November 2003.

[2] G. Kramer, B. Mukherjee, and G. Pesavento, “Interleaved Polling

with Adaptive Cycle Time (IPACT): A Dynamic Bandwidth

Distribution Scheme in an Optical Access Network,”Photonic

Network Communications, vol. 4, no. 1 pp. 89-107, January 2002.

[3] J. Zheng and H.T. Mouftah, “Media access control for Ethernet

passive optical networks: an overview,”IEEE Communications

Maganize, vol.43, no2 pp.145-150 , February 2005.

[4] G. Kramer, Ethernet Passive Optical Networks, McGraw-Hill

Professional, ISBN: 0071445625, Publication date: March 2005.

38

Q&A