14
The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9 , E. Arik 2 , H.P. Beck 1 , S. Cetin 2 , T. Conka 2 , A. Fernandes 3 , D. Francis 3 , Y. Hasegawa 4 , M. Joos 3 , G. Lehmann 1,3 , J. Lopez 3,10 , A. Mailov 2 , L. Mapelli 3 , G. Mornacchi 3 , Y. Nagasaka 7 , M. Niculescu 3,5 , K. Nurdan 2 , J. Petersen 3 , D. Prigent 3 , J. Rochez 3 , L. Tremblet 3 , G. Unel 3 , S. Veneziano 3,6 , Y. Yasu 8 1. Laboratory for High Energy Physics, University of Bern, Switzerland 2. Department of Physics, Bogazici University, Istanbul, Turkey 3. CERN, Geneva, Switzerland 4. ICEPP, University of Tokio, Tokio, Japan 5. Institute of Atomic Physics,Bucharest, Romania 6. I.N.F.N. Sezione di Roma, Roma, Italy 7. Nagasaki Institute for Applied Science, Nagasaki, Japan 8. High Energy Accelerator Research Organization (KEK), Japan 9. Now at Lightning Instrumentation S.A., Lausanne, Switzerland 10. Now at EDF, Grenoble, France

The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Embed Size (px)

Citation preview

Page 1: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project

G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1 , S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis3,

Y. Hasegawa 4, M. Joos 3, G. Lehmann 1,3 , J. Lopez 3,10, A. Mailov 2, L. Mapelli 3,

G. Mornacchi 3, Y. Nagasaka7, M. Niculescu 3,5, K. Nurdan 2, J. Petersen 3,

D. Prigent 3, J. Rochez 3, L. Tremblet3, G. Unel3 , S. Veneziano 3,6, Y. Yasu8

1. Laboratory for High Energy Physics, University of Bern, Switzerland

2. Department of Physics, Bogazici University, Istanbul, Turkey

3. CERN, Geneva, Switzerland

4. ICEPP, University of Tokio, Tokio, Japan

5. Institute of Atomic Physics,Bucharest, Romania

6. I.N.F.N. Sezione di Roma, Roma, Italy

7. Nagasaki Institute for Applied Science, Nagasaki, Japan

8. High Energy Accelerator Research Organization (KEK), Japan

9. Now at Lightning Instrumentation S.A., Lausanne, Switzerland

10. Now at EDF, Grenoble, France

Page 2: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

2

G. Lehmann, LHEP Bern / CERN

The DAQ/EF “-1” Project

Study of a vertical slice of the ATLAS DAQ system to:– define requirements on different sub-systems,

– design the elements of the DAQ with their boundaries and their interaction with other components,

– implement a prototype to evaluate technological solutions with the requested performance.

The project has been organized in 4 main activities:– Detector interface

– Data Flow

– Event Filter– Back-End (see talk by I. Soloviev on Thursday)

Page 3: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

3

G. Lehmann, LHEP Bern / CERN

View of the Data Flow System

LDA

EF SubFarm

SFOQ

SFI

LDA

ReadoutBuffers

TRGQ

EBIF

Sw itc hing N etw ork

D e te ct o r E le c tr o n ic s

F ar m D A Q

SwitchSupervision

Mass Storage

DFM+ LDAQ

F r o nt E nd DA Q

From triggerTo level 2

E ven t B u ild er

LDA

ReadoutBuffers

TRGQ

EBIF

systems (L2A, L2R, ROI)

consisting of read-out crates

consisting of sub-farm crates

Input Rate

75 - 100 kHz

Bandwidth

~100 MB/s

1- 2 kHz 4-5 GB/s

LDA

EF SubFarm

SFOQ

SFI

See talk by S. Veneziano

Page 4: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

4

G. Lehmann, LHEP Bern / CERN

Prototype Implementation

of the Data Flow

Page 5: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

5

G. Lehmann, LHEP Bern / CERN

Global Performance Measurements

3000

Event Rate = f (ROB fragment size)

0

0.5

1

1.5

2

2.5

3

3.5

0 500 1000 1500 2000 2500

ROB fragment size (bytes)

Eve

nt

Bu

ilder

rat

e (k

Hz)

2x2 system

Event Building Rate = f (L2R)

0

0.5

1

1.5

2

2.5

89 90 91 92 93 94 95 96 97 98 99 100

L2 reject factor

Eve

nt

Bu

ild

ing

rat

e (

kH

z) •ROB fragment size variable, with mean ~1.5 kBytes

•The EB dictates the performance for a L2 rejection ratio below 95%

•Measurements with no L2 rejection

•The performance is limited by the EB interface which collects fragments over VME and sends them out on the ATM network.

Page 6: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

6

G. Lehmann, LHEP Bern / CERN

The Event Builder (EB)• The EB is responsible for merging data fragments

to complete, formatted events• The EB design is based on a two layer approach

which separates the technology specific aspects from the functionality of the EB elements and their interaction protocol

Bsy/NotBsy

EoT

Transfer

EoE

GetIdSrc

DFM

Dst

• The EB has been studied through prototyping and simulation

Page 7: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

7

G. Lehmann, LHEP Bern / CERN

EB Performance Measurements: Gigabit Ethernet

Processor:

Intel Pentium PC @ 450 MHz

OS: Linux

Protocol: TCP/IP

Page 8: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

8

G. Lehmann, LHEP Bern / CERN

EB Performance Measurements: ATM

Processor:

RIOII 8062 SBC @ 200 MHz

OS: LynxOS 2.5.1

Protocol: AAL5

ATM bandwidth

Data

Page 9: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

9

G. Lehmann, LHEP Bern / CERN

Modelling of the EB• Main purpose: study of the scaling of the EB

system performance to ATLAS sizes• Model design: 2 layer approach as in the

prototype in order to be capable of studying different technologies with the same model

• Simulation Program: implementation with the discrete event simulation domain of the PTOLEMY (http://ptolemy.eecs.berkeley.edu) simulation tool

Page 10: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

10

G. Lehmann, LHEP Bern / CERN

Network Node Scheme

Check queue

Check queueCheck

User

Buffer

Send buffer queue

Receive buffer queue

CPU

runn

ing

the

EB

ap

pli

ca

ton

NIC

NIC

Flow of data

Flow control: checking of queues and requesting data

•Every EB element is a network node. Only the application specific part distinguishes between DFM, EBIF and SFI.

•The Network is modelled as an ideal router introducing a constant delay between input and output.

Page 11: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

11

G. Lehmann, LHEP Bern / CERN

EB Scalability Studies

The time to build an event increases fairly linearly with the number of EBIFs; nevertheless the data cannot exclude a weak quadratic dependency yet.

ATM

Page 12: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

12

G. Lehmann, LHEP Bern / CERN

Results of the simulation calibrated with the processing times and the ATM technology parameters measured in the prototype.

The performance is strongly dependent on the evolution of the processing time as a function of the number of nodes.

Scaling of the EB

Link speed

EB performance

ATLAS region

Page 13: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

13

G. Lehmann, LHEP Bern / CERN

Scaling: Possible Improvements

Reduce the number of nodes in the system by introducing higher bandwidth links

Increase the processing power of the nodes 400x400 ATM155 with

3 times fa

ster C

PU

Page 14: The Data Flow System of the ATLAS DAQ/EF "-1" Prototype Project G. Ambrosini 3,9, E. Arik 2, H.P. Beck 1, S. Cetin 2, T. Conka 2, A. Fernandes 3, D. Francis

Padova, CHEP 2000

14

G. Lehmann, LHEP Bern / CERN

Conclusions• An Event Builder prototype has been implemented

for Gigabit Ethernet and ATM; the latter has been used to calibrate a computer model of the EB.

• The model shows that the EB design is scalable and that the required performance is in reach.

• A small but complete Data Flow prototype has been designed and implemented; a LVL2 accept rate of 2.3 kHz could be sustained for ROB fragment sizes of ~1.5 kBytes.