203
• The concept of energy (and the conservation of energy) is one of the most important topics in physics. • Work • Dot products • Energy approach is simpler than Newton’s second law. Chapter 7: Work and Kinetic Energy-1 Reading assignment: Chapter 7.6-7.9 Homework: due Monday, Sept 28, 2009 Chapter 7: 5AE's, 5AF's, Q7, 2, 9, 18, 22

The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Embed Size (px)

Citation preview

Page 1: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• The concept of energy (and the conservation of energy) is one of the most important topics in physics.

• Work

• Dot products

• Energy approach is simpler than Newton’s second law.

Chapter 7: Work and Kinetic Energy-1

Reading assignment: Chapter 7.6-7.9

Homework: due Monday, Sept 28, 2009

Chapter 7: 5AE's, 5AF's, Q7, 2, 9, 18, 22

Page 2: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. A woman holds a bowling ball in a fixed position. The work she does on the ball___ 1. depends on the weight of the ball.___ 2. cannot be calculated without more information.___ 3. is equal to zero. 2. A man pushes a very heavy load across a horizontal floor. The work done by gravity on the load___ 1. depends on the weight of the load.___ 2. cannot be calculated without more information.___ 3. is equal to zero.

Page 3: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

3. When net positive work is done on a particle, its kinetic energya. increases.b. decreases.c. remains the same.d. need more information about the way the work was done

4. In a collision between two billiard balls,a. energy is not conserved if the collision is perfectly elastic.b. momentum is not conserved if the collision is inelastic.c. not covered in the reading assignment

Page 4: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work (as defined by a physicist)

Definition:

The work done on an object by an external force is

- the product of the component of the force in the direction of the displacement and the magnitude of the displacement.

cos dFW

Page 5: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 6: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 7: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

How much work is done when just holding up an object?

0

cos

W

dFW

Page 8: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

How much work is done when the displacement is perpendicular to the force?

0

cos

W

dFW

Page 9: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

What is the work done by

- the gravitational force

- the normal force

- the force F

when the block is displaced along the horizontal.

The total work is:

- the sum of the work done by all forces

- or: netnettotal dFW

d = 10m = 60°

F = 10 N

Page 10: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

What is the work done when lifting?- By the gravitational force?

- By the applied force?

J1372

cos

dFW

dFW

Sign convention:

W is positive: If F and d are parallel If energy is transferred into the system

W is positive: If F and d are antiparallel If energy is transferred out of the system

Strongest man lifting 140 kg boulder by 1 m.

Page 11: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 12: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work is a scalar quantitiy. (not a vector)

Work has units of

newton·meter (N·m) = the joule (J)

Page 13: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A man loads a refrigerator onto a truck using a ramp. Ignore friction.

He claims he would be doing less work if the length of the ramp would be longer. Is this true?

Black board example 7.5

Page 14: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 15: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.1

A donkey is pulling a cart with a force of magnitude F = 500 N at an angle of 30º with the horizontal.

Calculate the work done by the donkey as the cart is pulled for one mile (1648 m).

500 N

Page 16: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

cos dFdFW

Work is the scalar product (or dot product) of the force F and the displacement d.

F and d are vectors

W is a scalar quantity

Definition of dot product and work

Page 17: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Scalar product between vector A and B

cos ABBA

ABBA

Scalar product is commutative:

CABACBA

)(

Definition:

Distributive law of multiplication:

Page 18: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Scalar Product using unit vectors:

kBjBiBBkAjAiAA zyxzyx

We have the vectors A and B:

Then:

zzyyxx BABABABA

2AAAAAAAAA zzyyxx

Page 19: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.2

A particle moving in the x-y plane undergoes a displacement d = (2.0i + 3.0j) m at a constant force F = (5.0i + 2.0j) N acts on the particle. Calculate

(a) The magnitude of the displacement and the force.

(b) The work done by F.

(c) The angle between F and d.

Page 20: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 21: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 22: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 23: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. The gravitational potential energy of a particle at a height z above Earth’s surface___ 1. depends on the height z.___ 2. depends on the path taken to bring the particle to z.___ 3. both 1 and 2.___ 4. is not covered in the reading assignment. 2. Which of the following is not a conservative force?___ 1. the force exerted by a spring on a particle in one dimension___ 2. the force of friction___ 3. the force of gravity___ 4. not covered in the reading assignment 3. Which of the following was not discussed in the reading assignment?___ 1. conservation of non-conservative forces___ 2. block and tackle___ 3. work___ 4. all of the above were discussed

Page 24: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.2

A particle moving in the x-y plane undergoes a displacement d = (2.0i + 3.0j) m at a constant force F = (5.0i + 2.0j) N acts on the particle. Calculate

(a) The magnitude of the displacement and the force.

(b) The work done by F.

(c) The angle between F and d.

Page 25: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

What if the force varies? We have to integrate the force along x

f

i

x

x

dxxFWWork done by a varying force:

Thus, the work is equal to the area under the F(x) vs. x curve.

Page 26: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.3

A force acting on a particle varies as shown in the Figure.

What is the total work done on the particle as it is moved from x = 0 to x = 8 m?

Hint: It is the area under the curve.

Page 27: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider a spring

Hooke’s law:(Force required to stretch or compress a spring by x):

xkFs

k is the spring constant of a spring.

Stiff springs have a large k value.

Page 28: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

)(2

1 22fi xxkW

Work done by a spring

xi xf

Page 29: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A spring-loaded toy dart gun is used to shoota dart straight up in the air, and the dartreaches a maximum height of 24 m.The samedart is shot straight up a second time fromthe same gun, but this time the spring is compressedonly half as far before firing. Howfar up does the dart go this time, neglectingfriction and assuming an ideal spring?1. 96 m2. 48 m3. 24 m4. 12 m5. 6 m6. 3 m7. impossible to determine

Page 30: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.3

A 0.500 kg mass is hung from a spring extending the spring by a distance x = 0.2 m

(a) What is the spring constant of the spring?

(b) How much work was done on the mass by the gravitational force

(c) How much work was done on the mass by the spring force?

Page 31: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

The kinetic energy of a particle is:

2

2

1vmK

Page 32: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A bullet of mass m = 0.020 kg moves at 500 m/s.

A truck of mass m = 1000 kg moves at 5 m/s

Which has more kinetic energy?

Page 33: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work due to friction

If friction is involved in moving objects, work has to be done against the kinetic frictional force.

This work is:dfW kf

Page 34: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A cart on an air track is moving at 0.5 m/swhen the air is suddenly turned off. The cartcomes to rest after traveling 1m. The experimentis repeated, but now the cart is movingat 1 m/s when the air is turned off. How fardoes the cart travel before coming to rest?1. 1 m2. 2 m3. 3 m4. 4 m5. 5 m6. impossible to determine

Page 35: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.4

Angus is pulling a 10,000 kg truck with all his might (2000N) on a frictionless surface for 10.0 m.

(a) How much work is the man doing?

(b) What is the speed of the truck after 10 m.

(c) What is the speed of the truck after 10 m if there is friction?

(friction coefficient: 0.0153)

Page 36: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Power

Power is the rate at which work is done:

dt

dWP

Average power:

(work done per time interval t) t

WP

Page 37: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

vFdt

sdF

dt

dWP

The power can also be expressed as:

The units of power are joule/sec (J/s) = watt (W)

(Dot product)

Page 38: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 7.7

An elevator having a total mass of 3000 kg moves upward against the gravitational force at a constant speed of 9.13 m/s.

(a) What is the power delivered by the motor?

Page 39: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 40: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• One form of energy can be converted into another form of energy.

• Conservative and non-conservative forces

• CONSERVATION OF ENERGY

Chapter 8: Potential Energy and Conservation of Energy part 1 (finish Chp7)

Reading assignment: Chapter 8.5-8-7

Homework : due Monday, October 5, 2009

Problems: Chapter 8 33, 36, 37, 58, 65

Bonus: 48, 64, 37

Page 41: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. Suppose you know the potential energy function corresponding to a force. Is it always possible to calculate the force?___ 1. yes___ 2. only if the force is nonconservative___ 3. not covered in the reading assignment

2. The potential energy of a spring is___ 1. proportional to the amount the spring is stretched.___ 2. proportional to the square of the amount the spring is stretched.___ 3. not yet covered in any reading assignment.

3. A car slows down as a result of air friction. Which is true?___ 1. The car’s kinetic energy decreases.___ 2. Heat is generated.___ 3. The energy of the car/road/air system is constant.___ 4. all of the above___ 5. none of the above

Page 42: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Potential energy U:

- Can be thought of as stored energy that can either do work or be converted to kinetic energy.

- When work gets done on an object, its potential and/or kinetic energy increases.

- There are different types of potential energy:

1. Gravitational energy

2. Elastic potential energy (energy in an stretched spring)

3. Others (magnetic, electric, chemical, …)

Page 43: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservative and non-conservative forces

Conservative forces:

Work is independent of the path taken.

Work depends only on the final and initial point.

Work done is zero if the path is a closed loop (same beginning and ending points.)

We can always associate a potential energy with conservative forces.

We can only associate a potential energy with conservative forces.

Work done by a conservative force: Wc = Ui – Uf = - U

Examples of conservative forces:

_____________________________________________

Page 44: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservative forces and potential energy

UdxxFWf

i

x

x

c The work done by a conservative force equals the negative of the change in potential energy associated with that force.

dx

dUF

Thus

dxFdU

x

x

,

Any conservative force acting on an object within a system equals the negative derivative of the potential energy of the system with respect to x.

Page 45: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Non-conservative forces:A force is non-conservative if it causes a change in mechanical energy; mechanical energy is the sum of kinetic and potential energy.

Example: Frictional force.

- This energy cannot be converted back into other forms of energy (irreversible).

- Work does depend on path.

Conservative and non-conservative forces

Sliding a book on a table

Page 46: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Gravitational potential energy:

ygmU g

- Potential energy only depends on y (height) and not on x (lateral distance)

)( ififg yymgUUU

Page 47: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

You are 1.80 m tall.

A 0.1 kg apple, which is hanging 1 m above your head, drops on you.

What is the difference in gravitational potential energy when it hangs and when it hits you?

(a) How much gravitational potential energy does it loose?

1 m

Black board example 8.1

Page 48: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

)(2

1 22fi xxkW

Work done by/on a spring:

xi xf

2

2

1kxU

Elastic potential energy stored in a spring:

The spring is stretched or compresses from its equilibrium position by x

Page 49: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Review Important energy formulas:Work:

2

2

1 :energy potential Elastic kxUe

hgmU g :energy potential nalGravitatio

zzyyxx dFdFdF

dF

dFW

cos

2

2

1 :energy Kinetic vmK

f

i

x

x

dxxFW

Forms of energy:

Page 50: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conversion of:

Elastic potential energy

into kinetic energy

into gravitational potential energy

Demo example (conversion of energy):

(ballistic pendulum)

Page 51: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A mass m is bobbing up and down on a spring.

Describe the various forms of energy of this system.

(a) At the highest point

(b) At the point where the kinetic energy is highest

(c) At the lowest point

Black board example 8.2

Page 52: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 8.3

Three balls are thrown from the top of a building, all with the same initial speed.

The first is thrown horizontally, the second with some angle above the horizontal and the third with some angle below the horizontal.

(a) Describe the motion of the balls.

(b) Rank the speed of the balls as they hit the ground.

Page 53: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 8.5

Nose crusher?

A bowling ball of mass m is suspended from the ceiling by a cord of length L. The ball is released from rest when the cord makes an angle A with the vertical.

(a) Find the speed of the ball at the lowest point B.

(b) Assume a cord length L = 5m and an angle A = 20°.

(c) The ball swings back. Will it crush the operator’s nose?

Page 54: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Reading potential energy curves

UKE

dx

dUFx

Remember:

Page 55: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 8.6

During a rock slide, a 520 kg rock slides from rest down a hillside that is 500 m long and 300 m high. The coefficient of friction between the rock and the hillside is 0.25.

(a) What is the gravitational potential energy of the rock before the slide?

(b) How much energy is transferred into thermal energy during the slide?

(c) What is the kinetic energy of the rock as it reaches the bottom of the hill?

Page 56: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• One form of energy can be converted into another form of energy.

• Conservative and non-conservative forces

• CONSERVATION OF ENERGY

Chapter 8: Potential Energy and Conservation of Energy part 2

Reading assignment: Chapter 9

Homework : (due Wednesday, Oct. 7, 2009):

Problems: 10AE's, Q2, 3, 6, 19, 20

Page 57: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

(a) Can an object-Earth system have kinetic energy and not gravitational potential energy?Yes No

(b) Can it have gravitational potential energy and not kinetic energy?Yes No

(c) Can it have both types of energy at the same moment?Yes No

(d) Can it have neither?Yes No

Page 58: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1) A ball of clay falls freely to the hard floor. It does not bounce noticeably, but very quickly comes to rest. What then has happened to the energy the ball had while it was falling?

a) Most of it went into sound. b) It has been transformed back into potential energy. c) It is in the ball and floor as energy of invisible molecular motion. d) It has been used up in producing the downward motion. e) It has been transferred into the ball by heat.

2) You hold a slingshot at arm's length, pull the light elastic band back to your chin, and release it to launch a pebble horizontally with speed 100 cm/s. With the same procedure, you fire a bean with speed 500 cm/s. What is the ratio of the mass of the bean to the mass of the pebble (bean/pebble)?

a) 1/5 b) 1/√5 c) 1 d) √5 e) 5

Page 59: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservation of mechanical energyIf we deal only with conservative forces and

If we deal with an isolated system (no energy added or removed):

The total mechanical energy of a system remains constant!!!!

UKE

The final and initial energy of a system remain the same: Ei = Ef

E… total energy

K… Kinetic energy

U… potential energy

Thus:

ffii UKUKE

Page 60: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work due to friction

If friction is involved in moving objects, work has to be done against the kinetic frictional force.

This work is:dfW kf

Page 61: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work done by non-conservative forces

1. Work done by an applied force.(System is not isolated)

An applied force can transfer energy into or out of the system.

Example. Applying a force to an object and lifting increases the energy of the object.

cos dFdFW

Page 62: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work done by non-conservative forces

2. Situations involving kinetic friction.(Friction is not a conservative force).

Kinetic friction is an example of a non-conservative force. If an object moves over a surface through a distance d, and it experiences a kinetic frictional force of fk it is loosing kinetic energy

dfWK kfrictionfriction

Thus, the mechanical energy (E = U + K) of the system is reduced by this amount.

Page 63: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A frictionless roller coaster with an initial speed of v0 = 10.00 m/s, at the initial height h = 100.0 m, has a mass m = 1000.0 kg

(a) What is the speed at point A?

(b) What is the speed at point B

(c) How high will it move up on the last hill?

Black board example 8.4

HW 12

Page 64: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

3) A pile driver is a device used to drive posts into the Earth by repeatedly dropping a heavy object on them. Assume the object is dropped from the same height each time. By what factor does the energy of the pile driver-Earth system change when the mass of the object being dropped is tripled?a) 1/9 b) 1/3 c) 1: the energy is the same d) 3 e) 9

Page 65: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A curving children's slide is installed next to a backyard swimming pool. Two children climb to a platform at the top of the slide. The smaller child hops off to jump straight down into the pool and the larger child releases herself at the top of the frictionless slide.

(4) Upon reaching the water, how does the kinetic energy of the larger child compare to that of the smaller child?a) greater than b) equal to c) less than

(5) Upon reaching the water, how does the speed of the larger child compare to that of the smaller child?a) equal to b) less than c) greater than

(6) During the motions from the platform to the water, how does the acceleration of the larger child compare to that of the smaller child?a) equal to b) less than c) greater than

Page 66: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 8.7

A 3.5 kg block is accelerated by a compressed spring whose spring constant is 640 N/m. After leaving the spring at the spring’s relaxed length, the block travels over a horizontal surface with a frictional coefficient k = 0.25 for a distance of 7.8 m.

(a) What is the increase in the thermal energy of the block-floor system?

(b) What is the maximum kinetic energy of the block?

(c) Through what distance was the spring compressed initially (before the block moved)?

Page 67: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose you drop a 1-kg rock from a height of 5 m above the ground. When it hits, how much force does the rock exert on the ground?

1. 0.2 N2. 5 N3. 50 N4. 100 N5. impossible to determine

Page 68: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Center of mass

• Momentum

• Momentum is conserved

Chapter 9: Linear Momentum & Collisions

vmp

Reading assignment: Chapter 9.5-9.7

Homework : (due Saturday, Oct. 10, 2009):

Problems: Chapter 9: 5AF's, Q11, 28, 32, 40, 68, 69

Page 69: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. The impulse delivered to a body by a force is___ 1. defined only for interactions of short duration.___ 2. equal to the change in momentum of the body.___ 3. equal to the area under an F vs. x graph.___ 4. defined only for elastic collisions.

2. In an elastic collision___ 1. energy is conserved.___ 2. momentum is conserved.___ 3. the magnitude of the relative velocity is conserved.___ 4. all of the above

3. In an inelastic collision___ 1. both energy and momentum are conserved.___ 2. energy is conserved.___ 3. momentum is conserved.___ 4. neither is conserved.

Page 70: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

4. In two-dimensional elastic collisions, the conservation laws___ 1. allow us to determine the final motion.___ 2. place restrictions on possible final motions.___ 3. do not allow us to say anything about the final motion.___ 4. are not covered in the reading assignment.

Page 71: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose you drop a 1-kg rock from a height of 5 m above the ground. When it hits, how much force does the rock exert on the ground?

1. 0.2 N2. 5 N3. 50 N4. 100 N5. impossible to determine

Page 72: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Center of massCenter of mass for many particles:

M

rmr i

ii

CM

Where is the center of mass of the arrangement of particles below. (m3 = 2 kg and m1 = m2 = 1 kg)?

Black board example 9.1

Page 73: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A method for finding the center of mass of any object.

- Hang object from two or more points.

- Draw extension of suspension line.

- Center of mass is at intercept of these lines.

Page 74: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Center of mass of a solid body (uniform density)

zdVV

z

ydVV

y

xdVV

x

CM

CM

CM

1

1

1

Page 75: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 9.2

A uniform square plate 6 m on a side has had a square piece 2 m on a side cut out of it. The center of that piece is at x = 2 m, y = 0. The center of the square plate is at x = y = 0. Find the coordinates of the center of mass of the remaining piece.

Page 76: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Motion of a System of Particles.

Newton’s second law for a System of Particles

The center of mass of a system of particles (combined mass M) moves like one equivalent particle of mass M would move under

the influence of an external force.

zCMznetyCMynetxCMxnet

CMnet

MaFMaFMaF

aMF

,,,,,,

Page 77: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A rocket is shot up in the air and explodes.

Describe the motion of the center of mass before and after the explosion.

Page 78: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

The linear momentum of a particle of mass m and velocity v is defined as

vmp

The linear momentum is a vector quantity.

It’s direction is along v.

zzyyxx vmpvmpvmp

The components of the momentum of a particle:

Linear Momentum

Page 79: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

amdt

vmd

dt

pdFnet

)(

From Newton’s second law:

The time rate of change in linear momentum is equal to the net forces acting on the particle.

This is also true for a system of particles: CMvMP

Total momentum = Total mass ·velocity of center of mass

dt

PdFnet

And: Net external force = rate of change in momentum of the center of mass

Page 80: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Thus:

If no external force is acting on a particle, it’s momentum is conserved.

This is also true for a system of particles:If no external forces interact with a system of particles the total momentum of the system remains constant.

ffii

fi

pppp

PP

pppP

2121

21

:or

constant

Conservation of linear momentum

Page 81: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose you are on a cart, initially at rest ona track with very little friction. You throwballs at a partition that is rigidly mounted onthe cart. If the balls bounce straight back asshown in the figure, is the cart put in motion?1. Yes, it moves to the right.2. Yes, it moves to the left.3. No, it remains in place.

Page 82: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 9.3

You (100kg) and your skinny friend (50.0 kg) stand face-to-face on a frictionless, frozen pond. You push off each other. You move backwards with a speed of 5.00 m/s.

(a) What is the total momentum of the you-and-your-friend system?

(b) What is your momentum after you pushed off?

(c) What is your friends speed after you pushed off?

Page 83: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Momentum

• Momentum is conserved – even in collisions with energy loss due to friction/deformation.

• Impulse

Chapter 9: Linear Momentum and Collisions

vmp

Reading assignment: Chapter 10.1-10.5

Homework #16 : (due Monday, Oct. 10, 2005):

Problems: Q1, Q14, 9, 14, 21, 28

Page 84: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1) If two objects collide and one is initially at rest, is it possible for both to be at rest after the collision?A) yes B) no

2) Is it possible for one to be at rest after the collision?A) yes B) no

Page 85: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Elastic and inelastic collisions in one dimension

Momentum is conserved in any collision, elastic and inelastic.

Kinetic Energy is only conserved in elastic collisions.

Perfectly inelastic collision: After colliding, particles stick together. There is a loss of kinetic energy (deformation).

Inelastic collisions: Particles bounce off each with some loss of kinetic energy.

Perfectly elastic collision: Particles bounce off each other without loss of kinetic energy.

Page 86: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Perfectly inelastic collision of two particles

(Particles stick together)

fii

fi

vmmvmvm

pp

)( 212211

Notice that p and v are vectors and, thus have a direction (+/-)

221

222

211 )(

2

1

2

1

2

1flossii

flossi

vmmEvmvm

KEK

There is a loss in kinetic energy, Eloss

Page 87: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Elastic collision of two particles

(Particles bounce off each other without loss of energy.

ffii vmvmvmvm 22112211

222

211

222

211 2

1

2

1

2

1

2

1ffii vmvmvmvm

Energy is conserved:

Momentum is conserved:

Page 88: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

iif

iif

vmm

mmv

mm

mv

vmm

mv

mm

mmv

221

121

21

12

221

21

21

211

2

2

For elastic collisions in one dimension:

Suppose we know the initial masses and velocities.

Then:

(9.21)

(9.22)

Page 89: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 9.2

Two carts collide elastically on a frictionless track. The first cart (m1 = 1kg) has a velocity in the positive x-direction of 2 m/s; the other cart (m = 0.5 kg) has velocity in the negative x-direction of 5 m/s.

(a) Find the speed of both carts after the collision.

(b) What is the speed if the collision is inelastic?

(c) How much energy is lost in the inelastic collision?

Page 90: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two-dimensional collisions (Two particles)

ffii vmvmvmvm 22112211

Conservation of momentum:

Split into components:

fyfyiyiy

fxfxixix

vmvmvmvm

vmvmvmvm

22112211

22112211

If the collision is elastic, we can also use conservation of energy.

Page 91: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 9.3

Accident investigation. Two automobiles of equal mass approach an intersection. One vehicle is traveling towards the east with 29 mi/h (13.0 m/s) and the other is traveling north with unknown speed. The vehicles collide in the intersection and stick together, leaving skid marks at an angle of 55º north of east. The second driver claims he was driving below the speed limit of 35 mi/h (15.6 m/s).

13.0 m/s

??? m/s

Is he telling the truth?

What is the speed of the “combined vehicles” right after the collision?

How long are the skid marks (k = 0.5)

Page 92: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

If ball 1 in the arrangement shown here ispulled back and then let go, ball 5 bouncesforward. If balls 1 and 2 are pulled back andreleased, balls 4 and 5 bounce forward, andso on. The number of balls bouncing on eachside is equal because

1. of conservation of momentum.2. the collisions are all elastic.3. neither of the above

Page 93: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 94: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Impulse (change in momentum)

A change in momentum is called “impulse”: if pppJ

During a collision, a force F acts on an object, thus causing a change in momentum of the object:

f

i

t

t

dttFJp )(

For a constant (average) force: tFJp avg

Think of hitting a soccer ball: A force F acting over a time t causes a change p in the momentum (velocity) of the ball.

Page 95: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A soccer player hits a ball (mass m = 440 g) coming at him with a velocity of 20 m/s. After it was hit, the ball travels in the opposite direction with a velocity of 30 m/s.

(a) What impulse acts on the ball while it is in contact with the foot?

(b) The impact time is 0.1s. What is the force acting on the ball?

Black board example 10.1

Page 96: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Momentum

• Momentum is conserved – even in collisions with energy loss due to friction/deformation.

• Impulse

Chapter 9: Linear Momentum and Collisions

vmp

Reading assignment: Chapter 10.1-10.5

Homework #16 : (due Monday, Oct. 10, 2005):

Problems: Q1, Q14, 9, 14, 21, 28

Page 97: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1) If two objects collide and one is initially at rest, is it possible for both to be at rest after the collision?A) yes B) no

2) Is it possible for one to be at rest after the collision?A) yes B) no

Page 98: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Elastic and inelastic collisions in one dimension

Momentum is conserved in any collision, elastic and inelastic.

Kinetic Energy is only conserved in elastic collisions.

Perfectly inelastic collision: After colliding, particles stick together. There is a loss of kinetic energy (deformation).

Inelastic collisions: Particles bounce off each with some loss of kinetic energy.

Perfectly elastic collision: Particles bounce off each other without loss of kinetic energy.

Page 99: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Perfectly inelastic collision of two particles

(Particles stick together)

fii

fi

vmmvmvm

pp

)( 212211

Notice that p and v are vectors and, thus have a direction (+/-)

221

222

211 )(

2

1

2

1

2

1flossii

flossi

vmmEvmvm

KEK

There is a loss in kinetic energy, Eloss

Page 100: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

You are given two carts, A and B. They look identical, and you are told that they are made of the same material. You place A at rest on an air track and give B a constant velocity directed to the right so that it collides with A. After the collision, both carts move to the right, the velocity of B being smaller than what it was before the collision. Whatdo you conclude?1. Cart A is hollow.2. The two carts are identical.3. Cart B is hollow.4. need more information

Page 101: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A car accelerates from rest. In doing so thecar gains a certain amount of momentumand Earth gains1. more momentum.2. the same amount of momentum.3. less momentum.4. The answer depends on the interactionbetween the two.

Page 102: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A car accelerates from rest. It gains a certainamount of kinetic energy and Earth1. gains more kinetic energy.2. gains the same amount of kinetic energy.3. gains less kinetic energy.4. loses kinetic energy as the car gains it.

Page 103: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose the entire population of the world gathers in one spot and, at the sounding of a prearranged signal, everyone jumps up. While all the people are in the air, does Earth gain momentum in the opposite direction? 1. No; the inertial mass of Earth is so large that the planet’s change in motion is zero.2. Yes; because of its much larger inertial mass, however, the change in momentum of Earth is much less than that of all the jumping people.3. Yes; Earth recoils, like a rifle firing a bullet, with a change in momentum equal to and opposite that of the people.4. It depends.

Page 104: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose the entire population of the world gathers in one spot and, at the sound of a prearranged signal, everyone jumps up. About asecond later,5 billion people land back on theground. After the people have landed, Earth’smomentum is

1. the same as what it was before the peoplejumped.2. different from what it was before the people jumped.

Page 105: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose rain falls vertically into an opencart rolling along a straight horizontal trackwith negligible friction. As a result of theaccumulating water, the speed of the cart

1. increases.2. does not change.3. decreases.

Page 106: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose rain falls vertically into an open cart rolling along a straight horizontal track with negligible friction. As a result of the accumulating water, the kinetic energy of the cart

1. increases.2. does not change.3. decreases.

Page 107: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider these situations:(i) a ball moving at speed v is brought to rest;(ii) the same ball is projected from rest so that it moves at speed v;(iii) the same ball moving at speed v is brought to rest and then projected backward to its original speed.In which case(s) does the ball undergo the largest change in momentum?1. (i)2. (i) and (ii)3. (ii)4. (ii) and (iii)5. (iii)

Page 108: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider two carts, of masses m and 2m, atrest on an air track. If you push first one cartfor 3 s and then the other for the same lengthof time, exerting equal force on each, themomentum of the light cart is1. four times2. twice3. equal to4. one-half5. one-quarterthe momentum of the heavy cart.

Page 109: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider two carts, of masses m and 2m, atrest on an air track. If you push first one cartfor 3 s and then the other for the same lengthof time, exerting equal force on each, the kineticenergy of the light cart is1. larger than2. equal to3. smaller thanthe kinetic energy of the heavy car.

Page 110: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose a ping-pong ball and a bowling ballare rolling toward you. Both have the samemomentum, and you exert the same force tostop each. How do the time intervals to stopthem compare?

1. It takes less time to stop the ping-pong ball.2. Both take the same time.3. It takes more time to stop the ping-pongball.

Page 111: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose a ping-pong ball and a bowling ballare rolling toward you. Both have the samemomentum, and you exert the same force tostop each. How do the distances needed tostop them compare?1. It takes a shorter distance to stop the ping-pong ball.2. Both take the same distance.3. It takes a longer distance to stop the ping-pong ball.

Page 112: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A cart moving at speed v collides with anidentical stationary cart on an airtrack, andthe two stick together after the collision. Whatis their velocity after colliding?1. v2. 0.5 v3. zero4. –0.5 v5. –v6. need more information

Page 113: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A person attempts to knock down a largewooden bowling pin by throwing a ball at it.The person has two balls of equal size andmass, one made of rubber and the other ofputty. The rubber ball bounces back, while theball of putty sticks to the pin. Which ball ismost likely to topple the bowling pin?1. the rubber ball2. the ball of putty3. makes no difference4. need more information

Page 114: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Think fast! You’ve just driven around a curvein a narrow, one-way street at 25 mph whenyou notice a car identical to yours comingstraight toward you at 25 mph. You have onlytwo options: hitting the other car head on orswerving into a massive concrete wall, alsohead on. In the split second before the impact,you decide to1. hit the other car.2. hit the wall.3. hit either one—it makes no difference.4. consult your lecture notes.

Page 115: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

If all three collisions in the figure shownhere are totally inelastic, which bring(s) thecar on the left to a halt?1. I2. II3. III4. I, II5. I, III6. II, III7. all three

Page 116: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

If all three collisions in the figure shownare totally inelastic, which cause(s) themost damage?1. I2. II3. III4. I, II5. I, III6. II, III7. all three

Page 117: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A golf ball is fired at a bowling ball initiallyat rest and bounces back elastically. Comparedto the bowling ball, the golf ball afterthe collision has1. more momentum but less kinetic energy.2. more momentum and more kinetic energy.3. less momentum and less kinetic energy.4. less momentum but more kinetic energy.5. none of the above

Page 118: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A golf ball is fired at a bowling ball initiallyat rest and sticks to it. Compared to the bowlingball, the golf ball after the collision has1. more momentum but less kinetic energy.2. more momentum and more kinetic energy.3. less momentum and less kinetic energy.4. less momentum but more kinetic energy.5. none of the above

Page 119: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Suppose you are on a cart, initially at rest ona track with very little friction. You throwballs at a partition that is rigidly mounted onthe cart. If the balls bounce straight back asshown in the figure, is the cart put in motion?1. Yes, it moves to the right.2. Yes, it moves to the left.3. No, it remains in place.

Page 120: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A compact car and a large truck collide headon and stick together. Which undergoes thelarger momentum change?1. car2. truck3. The momentum change is the same for both vehicles.4. Can’t tell without knowing the final velocityof combined mass.

Page 121: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A compact car and a large truck collidehead on and stick together. Which vehicleundergoes the larger acceleration duringthe collision?1. car2. truck3. Both experience the same acceleration.4. Can’t tell without knowing the final velocity of combined mass.

Page 122: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Is it possible for a stationary object that isstruck by a moving object to have a largerfinal momentum than the initial momentumof the incoming object?1. Yes.2. No because such an occurrence wouldviolate the law of conservation of momentum.

Page 123: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two carts of identical inertial mass are put back-to-back on a track. Cart A has a spring loaded piston; cart B is entirely passive. When the piston is released, it pushes against cart B, and1. A is put in motion but B remains at rest.2. both carts are set into motion, with A gaining more speed than B.3. both carts gain equal speed but in opposite directions.4. both carts are set into motion, with B gaining more speed than A.5. B is put in motion but A remains at rest.

Page 124: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two carts are put back-to-back on a track.Cart A has a spring-loaded piston; cart B,which has twice the inertial mass of cart A, isentirely passive. When the piston is released,it pushes against cart B, and the carts moveapart. How do the magnitudes of the finalmomenta and kinetic energies compare?1. pA > pB, kA > kB2. pA > pB, kA = kB3. pA > pB, kA < kB4. pA = pB, kA > kB5. pA = pB, kA = kB6. pA = pB, kA < kB7. pA < pB, kA > kB8. pA < pB, kA = kB9. pA < pB, kA < kB

Page 125: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two carts are put back-to-back on a track.Cart A has a spring-loaded piston; cart B,which has twice the inertial mass of cart A,is entirely passive. When the piston is released,it pushes against cart B, and the cartsmove apart. Ignoring signs, while the pistonis pushing,1. A has a larger acceleration than B.2. the two have the same acceleration.3. B has a larger acceleration than A.

Page 126: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two people on roller blades throw a ball backand forth. Which statement(s) is/are true?A. The interaction mediated by the ball isrepulsive.B. If we film the action and play the moviebackward, the interaction appears attractive.C. The total momentum of the two peopleis conserved.D. The total energy of the two people isconserved.What about the conservation laws? The ball carries both momentum and energy back and forth between the two roller-bladers. Their momentum

and energy therefore cannot be conserved.

Page 127: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

In the following figure, a 10-kg weight is suspended from the ceiling by a spring. The weight-spring system is at equilibrium with the bottom of the weight about 1 m above the floor. The spring is then stretched until the weight is just above the eggs. When the spring is released, the weight is pulled up by the contracting spring and then falls back down under the influence of gravity. On the way down, it1. reverses its direction of travel well above the eggs.2. reverses its direction of travel precisely as it reaches the eggs.3. makes a mess as it crashes into the eggs.

Page 128: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

In part (a) of the figure, an air track cart attachedto a spring rests on the track at the position xequilibrium and the spring is relaxed. In (b), the cart is pulled to the position xstart and released. It then oscillates about xequilibrium. Which graph correctly represents the potential energy of the spring as a function of theposition of the cart?

Page 129: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Rotational motion,

• Angular displacement, angular velocity, angular acceleration

• Rotational energy

• Moment of Inertia (Rotational inertia)

• Torque

• For every rotational quantity, there is a linear analog.

Chapter 10:Rotation of a rigid object about a fixed axis Part 1Reading assignment: Chapter 10.6-10.9 (know concept of moment of inertia, don’t worry about integral calculation)

Homework : (due Wednesday, Oct. 14, 2009):

Chapter 10: Q23, 35, 48, 57, 80

Page 130: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. The center of mass of a rigid object of arbitrary shape___ 1. is always inside the object.___ 2. can lie outside the object.___ 3. depends on the motion of the object.___ 4. depends on the frame of reference of the object.

2. Compared with the kinetic energy of its center of mass (CM), the total kinetic energy of a system is___ 1. always less than the kinetic energy of the CM.___ 2. always equal to the kinetic energy of the CM.___ 3. greater than or equal to the kinetic energy of the CM.___ 4. depends on the particular system

3. A rocket is propelled forward by ejecting gas at high speed. The forward motion is a consequence of___ 1. conservation of energy.___ 2. conservation of momentum.___ 3. both of the above.___ 4. neither of the above.

Page 131: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Planar, rigid object rotating about origin O.

Rotational motion

Look at one point P:

rsArc length s:

Thus, the angular position is:

r

s

is measured in degrees or radians (more common)

Page 132: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

One radian is the angle subtended by an arc length equal to the radius of the arc.

rs = r

For full circle: 22

r

r

r

s

Full circle has an angle of 2 radians,

Thus, one radian is 360°/2

Radian degrees2 360° 180° 90°1 57.3°

Page 133: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Define quantities for circular motion

(note analogies to linear motion!!)

Angular displacement:

Average angular speed:

Instantaneous angular speed:

Average angular acceleration:

Instantaneous angular acceleration:

if

ttt if

if

dt

d

tt

0

lim

ttt if

if

dt

d

tt

0

lim

Page 134: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A ladybug sits at the outer edge of a merry-go-round, and a gentleman bug sits halfwaybetween her and the axis of rotation. Themerry-go-round makes a complete revolutiononce each second. The gentleman bug’sangular speed is

1. half the ladybug’s.2. the same as the ladybug’s.3. twice the ladybug’s.4. impossible to determine

Page 135: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Angular quantities are vectorsAngular velocity, angular acceleration, angular momentum, torque.

Right-hand rule for determining the direction of this vector.

• rotates through the same angle,

• has the same angular velocity,

• has the same angular acceleration.

Every particle (of a rigid object):

characterize rotational motion of entire object

Page 136: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A ladybug sits at the outer edge of a merry-go-round, that is turning and slowing down.At the instant shown in the figure, the radialcomponent of the ladybug’s (Cartesian)acceleration is

1. in the +x direction.2. in the –x direction.3. in the +y direction.4. in the –y direction.

Page 137: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A ladybug sits at the outer edge of a merry-go-round, that is turning and slowing down.At the instant shown in the figure, the radialcomponent of the ladybug’s (Cartesian)acceleration is

1. in the +x direction.2. in the –x direction.3. in the +y direction.4. in the –y direction.

Page 138: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A ladybug sits at the outer edge of a merry-go-round that is turning and is slowing down.The vector expressing her angular velocity is

1. in the +x direction.2. in the –x direction.3. in the +y direction.4. in the –y direction.5. in the +z direction.

Page 139: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Linear motion with constant linear acceleration, a.

tavv xxixf

2

2

1tatvxx xxiif

)(222ifxxixf xxavv

tvvxx xfxiif )(2

1

Rotational motion with constant rotational acceleration,

tif

2

2

1ttiif

)(222ifif

tfiif )(2

1

Page 140: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 11.1

A wheel starts from rest and rotates with constant angular acceleration and reaches an angular speed of 12.0 rad/s in 3.00 s.

(a) What is the magnitude of the angular acceleration of the wheel?

(b) Through what angle does the wheel rotate in these 3.00 s?

(c) Through which angle does the wheel rotate between t = 2.00 s and 3.00 s?

Page 141: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Relation between linear and angular quantities

rv

Tangential speed of a point P:

raTangential acceleration of a point P: Note, this is not the centripetal

acceleration ar !!

rsArc length s:

Caution: Measure angular quantities in radians

Page 142: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

The diameters of the main rotor and the tail rotor of a helicopter are 7.60 m and 1.02 m, respectively. The respective rotational speeds are 450 rev/min and 4138 rev/min.

a) Calculate the speeds of the tips of both rotors.

b) Compare with the speed of sound, 343 m/s.

Black board example 11.2

c) The rotors are rotating at constant angular speed. What is the centripetal acceleration and what is the angular acceleration?

Page 143: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 11.3

HW 27

(a) What is the angular speed about the polar axis of a point on Earth’s surface at a latitude of 40°N

(b)What is the linear speed v of that point?

(c) What are and v for a point on the equator?

Radius of earth: 6370 km

Page 144: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 145: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 146: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 147: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1 2

1

2

Page 148: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 149: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two wheels initially at rest roll the same distancewithout slipping down identical inclinedplanes starting from rest. Wheel B hastwice the radius but the same mass as wheelA. All the mass is concentrated in their rims,so that the rotational inertias are I = mR2.Which has more translational kinetic energywhen it gets to the bottom?

1. Wheel A2. Wheel B3. The kinetic energies are the same.4. need more information

Page 150: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider two people on opposite sides of arotating merry-go-round. One of them throwsa ball toward the other. In which frame of ref-erence is the path of the ball straight whenviewed from above: (a) the frame of themerry-go-round or (b) that of Earth?1. (a) only2. (a) and (b)—although the paths appearto curve3. (b) only4. neither; because it’s thrown while in circularmotion, the ball travels along acurved path.

Page 151: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

You are using a wrench and trying to loosena rusty nut. Which of the arrangementsshown is most effective in loosening the nut?List in order of descending efficiency the following arrangements:a)1, 3, 4, 2b)2, 4, 1, 3c)4=2, 1, 3d)4=2, 1=3e)2, 1=4, 3

Page 152: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A force F is applied to a dumbbell for a timeinterval Δt, first as in (a) and then as in (b). Inwhich case does the dumbbell acquire thegreater center-of-mass speed?

1. (a)2. (b)3. no difference4. The answer depends on the rotationalinertia of the dumbbell.

Page 153: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Aforce F is applied to a dumbbell for a timeinterval Δt, first as in (a) and then as in (b). Inwhich case does the dumbbell acquire thegreater energy?

1. (a)2. (b)3. no difference4. The answer depends on the rotationalinertia of the dumbbell.

Page 154: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Imagine hitting a dumbbell with an objectcoming in at speed v, first at the center, thenat one end. Is the center-of-mass speed ofthe dumbbell the same in both cases?1. yes2. no

Page 155: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A box, with its center-of-mass off-center as indicatedby the dot, is placed on an inclinedplane. In which of the four orientations shown,if any, does the box tip over?

Page 156: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider the situation shown at left below.A puck of mass m, moving at speed v hits anidentical puck which is fastened to a poleusing a string of length r. After the collision,the puck attached to the string revolvesaround the pole. Suppose we now lengthenthe string by a factor 2, as shown on theright, and repeat the experiment. Comparedto the angular speed in the first situation, thenew angular speed is

1. twice as high 3. half as much2. the same 4. none of the above

Page 157: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A figure skater stands on one spot on the ice(assumed frictionless) and spins around withher arms extended. When she pulls in herarms, she reduces her rotational inertia andher angular speed increases so that her angularmomentum is conserved. Compared to herinitial rotational kinetic energy, her rotationalkinetic energy after she has pulled in herarms must be1. the same.2. larger because she’s rotating faster.3. smaller since her rotational inertia is smaller.

Page 158: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Two wheels with fixed hubs, each having amass of 1 kg, start from rest, and forces areapplied as shown. Assume the hubs andspokes are massless, so that the rotational inertiais I = mR2. In order to impart identicalangular accelerations, how large must F2 be?

1. 0.25 N2. 0.5 N3. 1 N4. 2 N5. 4 N

Page 159: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Consider the uniformly rotating objectshown below. If the object’s angular velocityis a vector (in other words, it points in acertain direction in space) is there a particulardirection we should associate with theangular velocity?

1. yes, ±x2. yes, ±y3. yes, ±z4. yes, some other direction5. no, the choice is really arbitrary

Page 160: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A person spins a tennis ball on a string in ahorizontal circle (so that the axis of rotationis vertical). At the point indicated below, theball is given a sharp blow in the forward direction. This causes a change in angular momentum ΔL in the

1. x direction2. y direction3. z direction

Page 161: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A person spins a tennis ball on a string in ahorizontal circle (so that the axis of rotation isvertical). At the point indicated below, the ballis given a sharp blow vertically downward. Inwhich direction does the axis of rotation tiltafter the blow?

1. +x direction2. –x direction3. +y direction4. –y direction5. It stays the same (but the magnitude ofthe angular momentum changes).6. The ball starts wobbling in all directions.

Page 162: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than
Page 163: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A suitcase containing a spinning flywheel isrotated about the vertical axis as shown in(a). As it rotates, the bottom of the suitcasemoves out and up, as in (b). From this, wecan conclude that the flywheel, as seen fromthe side of the suitcase as in (a), rotates

1. clockwise.2. counterclockwise.

Page 164: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Rotational motion,

• Angular displacement, angular velocity, angular acceleration

• Rotational energy

• Moment of Inertia (Rotational inertia)

• Torque

• For every rotational quantity, there is a linear analog.

Chapter 10:Rotation of a rigid object about a fixed axis Part 2

Reading assignment: Chapter 11.1-11.3

Homework : (due Wednesday, Oct. 14, 2009):

Problems: Chapter 11 9AE's, 3AF's, Q2, 9, 16, 26, 28

Page 165: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. An object is rotated about a vertical axis by 90° and then about a horizontal axis by 180°. If we start over and perform the rotations in the reverse order, the orientation of the object___ 1. will be the same as before.___ 2. will be different than before.___ 3. depends on the shape of the object.

2. A disk is rotating at a constant rate about a vertical axis through its center. Point Q is twice as far from the center of the disk as point P is. The angular velocity of Q at a given time is___ 1. twice as big as P’s.___ 2. the same as P’s.___ 3. half as big as P’s.___ 4. none of the above.

3. When a disk rotates counterclockwise at a constant rate about a vertical axis through its center, the tangential acceleration of a point on the rim is___ 1. positive.___ 2. zero.___ 3. negative.___ 4. impossible to determine without more information.

Page 166: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rotational energy

A rotating object (collection of i points with mass mi) has a rotational kinetic energy of

2

2

1 IKR

Where:2

ii

i rmI Rotational inertia

Page 167: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Demo:

Both sticks have the same weight.

Why is it so much more difficult to rotate the blue stick?

Page 168: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Four small spheres are mounted on the corners of a frame as shown.

a) What is the rotational energy of the system if it is rotated about the z-axis (out of page) with an angular velocity of 5 rad/s

b) What is the rotational energy if the system is rotated about the y-axis?

(M = 5 kg; m = 2 kg; a = 1.5 m; b = 1 m).

Black board example 11.4

What is the rotational inertia?

1

3

2

4

Page 169: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rotational inertia of an object depends on:

- the axis about which the object is rotated.

- the mass of the object.

- the distance between the mass(es) and the axis of rotation.

2i

ii rmI

Page 170: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Calculation of Rotational inertia for continuous extended objects

dVrdmrmrIi

iimi

222

0lim

Refer to Table11-2

Note that the moments of inertia are different for different axes of rotation (even for the same object)

2

12

1MLI

2

2

1MRI

2

3

1MLI

Page 171: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rotational inertia for some objects Page 278

Page 172: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Parallel axis theorem

Rotational inertia for a rotation about an axis that is parallel to an axis through the center of mass

h

2MhII CM CMI

What is the rotational energy of a sphere (mass m = 1 kg, radius R = 1m) that is rotating about an axis 0.5 away from the center with = 2 rad/sec?

Blackboard example 11.4

Page 173: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservation of energy (including rotational energy):

finalrotationalfinallinearfinitialrotationalinitiallineari

fi

KKUKKU

EE

,,,,

Again:

If there are no non-conservative forces: Energy is conserved.

Rotational kinetic energy must be included in energy considerations!

Page 174: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Connected cylinders.

Two masses m1 (5 kg) and m2 (10 kg) are hanging from a pulley of mass M (3 kg) and radius R (0.1 m), as shown. There is no slip between the rope and the pulleys.

(a) What will happen when the masses are released?

(b) Find the velocity of the masses after they have fallen a distance of 0.5 m.

(c) What is the angular velocity of the pulley at that moment?

Black board example 11.5

Page 175: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque

A force F is acting at an angle on a lever that is rotating around a pivot point. r is the distance between F and the pivot point.

This force-lever pair results in a torque on the lever

sin Fr

sinF

cosF

F

r

Page 176: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 11.6

Two mechanics are trying to open a rusty screw on a ship with a big ol’ wrench. One pulls at the end of the wrench (r = 1 m) with a force F = 500 N at an angle = 80 °; the other pulls at the middle of wrench with the same force and at an angle = 90 °.

What is the net torque the two mechanics are applying to the screw?

Page 177: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Particle of mass m rotating in a circle with radius r.

Radial force Fr to keep particle on circular path.

Tangential force Ft accelerates particle along tangent.

Torque and angular acceleration Newton’s 2. law for rotation.

tt maF

Torque acting on particle is proportional to angular acceleration : I

Page 178: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work in rotational motion:

Definition of work:

Work in linear motion:

sFW

sdFdW

cos

sFsFW

sdFdW

Component of force F along displacement s. Angle between F and s.

W

ddW

sdFdW

Torque and angular displacement .

Page 179: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Work and Energy in rotational motion

Remember work-kinetic energy theorem for linear motion:

22

2

1

2

1if mvmvW

There is an equivalent work-rotational kinetic energy theorem:

22

2

1

2

1if IIW

External work done on an object changes its kinetic energy

External, rotational work done on an object changes its rotational kinetic energy

Page 180: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Linear motion with constant linear acceleration, a.

tavv xxixf

2

2

1tatvxx xxiif

)(222ifxxixf xxavv

tvvxx xfxiif )(2

1

Rotational motion with constant rotational acceleration,

tif

2

2

1ttiif

)(222ifif

tfiif )(2

1

Page 181: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Announcements1. Midterm 2 on Wednesday, Oct. 21.

2. Material: Chapters 7-11

3. Review on Tuesday (outside of class time)

4. I’ll post practice tests on Web

5. You are allowed a 3x5 inch cheat card with 10 equations

6. Go through practice exams & homework & class examples; understand concepts & demos

7. Time limit for test: 50 minutes

Page 182: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

1. The rotational inertia of a rigid body___ 1. is a measure of its resistance to changes in rotational motion.___ 2. depends on the location of the axis of rotation.___ 3. is large if most of the body’s mass is far from the axis of rotation.___ 4. is all of the above.___ 5. is none of the above.

2. The angular momentum of a particle___ 1. is independent of the specific origin of coordinates.___ 2. is zero when its position and momentum vectors are parallel.___ 3. is zero when its position and momentum vectors are perpendicular.___ 4. is not covered in the reading assignment.

3. A wheel rolls without slipping along a horizontal surface. The center of the wheel has a translational speed v. The lowermost point on the wheel has a net forward velocity___ 1. 2v.___ 2. v.___ 3. zero.___ 4. need more information

Page 183: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Linear motion with constant linear acceleration, a.

tavv xxixf

2

2

1tatvxx xxiif

)(222ifxxixf xxavv

tvvxx xfxiif )(2

1

Rotational motion with constant rotational acceleration,

tif

2

2

1ttiif

)(222ifif

tfiif )(2

1

Page 184: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Summary: Angular and linear quantities

2

2

1 IKR

I

Kinetic Energy:

Torque:

Linear motion Rotational motion

2

2

1vmK

maF

Kinetic Energy:

Force:

Momentum: mvp IL Angular Momentum:

Work: sFW WWork:

Page 185: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rolling motion

Pure rolling:

There is no slipping

Linear speed of center of mass:

R

dt

dR

dt

dsvCM

Page 186: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rolling motion

The angular velocity of any point on the wheel is the same.

The linear speed of any point on the object changes as shown in the diagram!!

For one instant (bottom), point P has no linear speed.

For one instant (top), point P’ has a linear speed of 2·vCM

Page 187: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Rolling motion of a particle on a wheel

(Superposition of rolling and linear motion)

Rolling

Rotation

Linear

+

=

Page 188: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Superposition principle:

Rolling motion = Pure translation + Pure rotation

Rolling motion

Kinetic energy

of rolling motion:

22

2

1

2

1 CMIMvK

Page 189: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

• Torque

• Angular momentum

• Angular momentum is conserved

Chapter 11: Angular Momentum part 1

Reading assignment: Chapter 11.4-11.6

Homework : (due Monday, Oct. 17, 2005):

Problems: 30, 41, 42, 44, 48, 53

Page 190: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque and the vector product

Thus far:

Torque sinFr

Torque is the vector product between the force vector F and vector r

Fr

Page 191: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque and the vector product

Definition of vector product:

BAC

- The vector product of vectors A and B is the vector C.

- C is perpendicular to A and B

- The magnitude of C = A·B·sin

Page 192: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque and the vector product

BAC

Use the right hand rule to figure out the direction of C.

- Thumb is C (i.e. torque angular velocity , angular momentum L)

- Index finger is A (e.g. radius r)

- Middle finger is B (e.g. force F)

Page 193: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque and the vector product

BAC

Rules for the vector product.

ABBA

If A is parallel to B then . Thus, 0BA

0AA

If A is perpendicular to B then BABA

CABACBA

)(

1.

2.

3.

4.

5. Magnitude of C = A·B·sin is equal to area of parallelogram made by A and B

Page 194: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Torque and the vector product

BAC

Rules for the vector product (cont).

kBABAjBABAiBABABA xyyxxzzxyzzy

)()()( 6.

Page 195: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

A force F = (2.00i + 3.00j) is applied to an object that is pivoted about a fixed axis aligned along the z-axis.

The force is applied at the point r = (4.00i + 5.00j).

Black board example 12.2

(a) What is the torque exerted on the object?

(b) What is the magnitude and direction of the torque vector .

(c) What is the angle between the directions of F and r?

Page 196: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Angular momentum of a particle

)( vrm

prL

L… angular momentum

r… distance from the origin

p… momentum of particle

v…velocity of particle

Definition:

L is perpendicular to r and p

L has magnitude L = r·p·sin

Page 197: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Angular momentum of a rotating rigid object

We’ll consider an object that is rotating about the z-axis.

The angular momentum of the object is given by:

ILz

Note that in this case L and are along the z axis.

Also note the analog formula for linear momentum p = m·v

Page 198: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Black board example 12.3

A light rigid rod, 1 m in length, joins two particles – with masses 3 kg and 4 kg at its end. The system rotates in the x-y plane about a pivot through the center of the rod.

Determine the angular momentum of the system about the origin when the speed of each particle is 5.00 m/s.

Page 199: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservation of angular momentum

The total angular momentum of a system is constant in both magnitude and direction if the resultant external torque acting on the system is zero.

constantL

If the system undergoes an internal “rearrangement”, then

constant fi LL

If the object is rotating about a fixed axis (say z-axis), then:

constant ffii II

Page 200: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Conservation laws

system isolatedan For

fi

fi

ffii

LL

pp

UKUK

Page 201: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Demo

A students stands still on a rotatable platform and holds a spinning wheel. The bicycle wheel is spinning in the clockwise direction when viewed from above.

He flips the wheel over.

What happens?

Page 202: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Student on a turn table.

A student stands on a platform that is rotating with an angular speed of 7.5 rad/s, his arms outstretched and he holds a brick in each hand. The rotational inertia of the whole system is 6.0 kg·m2. The student then pulls the bricks inward thus reducing the rotational inertia to 2.0 kg·m2.

(a) What is the new angular speed of the platform?

(b) What is the ratio of the new kinetic energy of the system to the original kinetic energy?

(c) What provided the added kinetic energy?

Black board example 12.4

Page 203: The concept of energy (and the conservation of energy) is one of the most important topics in physics. Work Dot products Energy approach is simpler than

Summary: Angular and linear quantities

2

2

1 IKR

I

Kinetic Energy:

Torque:

Linear motion Rotational motion

2

2

1vmK

maF

Kinetic Energy:

Force:

Momentum: mvp IL Angular Momentum:

Work: sFW WWork: