16
The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt Outline: Probing dense baryonic matter Experimental observables Technical challenges and (possible) solutions Peter Senger

The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt

  • Upload
    jake

  • View
    26

  • Download
    0

Embed Size (px)

DESCRIPTION

The Compressed Baryonic Matter Experiment at the Future Accelerator Facility in Darmstadt. Peter Senger. Outline:  Probing dense baryonic matter  Experimental observables  Technical challenges and (possible) solutions. The future international accelerator facility. Key features: - PowerPoint PPT Presentation

Citation preview

Page 1: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

The Compressed Baryonic Matter Experimentat the Future Accelerator Facility in Darmstadt

Outline:

Probing dense baryonic matter Experimental observables Technical challenges and (possible) solutions

Peter Senger

Page 2: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

SIS 100 Tm

SIS 300 Tm

U: 35 AGeV

p: 90 GeV

Structure of Nuclei far from Stability

Cooled antiproton beam:Hadron Spectroscopy

Compressed Baryonic Matter

The future international accelerator facility

Key features:Generation of intense, high-quality secondary beams of rare isotopes and antiprotons.Two rings: simultaneous beams.

Ion and Laser Induced Plasmas:

High Energy Density in Matter

Page 3: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Mapping the QCD phase diagram with heavy-ion collisions

B 6 0

B 0.3 0

baryon density: B 4 ( mT/2)3/2 x

[exp((B-m)/T) - exp((-B-m)/T)] baryons - antibaryons

P. Braun-Munzinger

SIS300

C. R. Allton et al, hep-lat 0305007

Lattice QCD : maximal baryon number density fluctuations at TC for q = TC (B 500 MeV)

Page 4: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Statistical hadron gas modelP. Braun-Munzinger et al.

Nucl. Phys. A 697 (2002) 902

Experimental situation : Strangeness enhancement ?Experimental situation : Strangeness production

in central Au+Au and Pb+Pb collisions

New results from NA49 (CERN Courier Oct. 2003)

SIS100300

SIS100300

Page 5: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM physics topics and observables

1. In-medium modifications of hadrons onset of chiral symmetry restoration at high B

measure: , , e+e- open charm (D mesons) 2. Strangeness in matter (strange matter?) enhanced strangeness production ?

measure: K, , , , 3. Indications for deconfinement at high B anomalous charmonium suppression ?

measure: J/, D

softening of EOS

measure flow excitation function 4. Critical point event-by-event fluctuations 5. Color superconductivity precursor effects ?

Page 6: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Invariant mass of electron-positron pairs from Pb+Au at 40 AGeVCERES Collaboration S. Damjanovic and K. Filimonov, nucl-ex/0109017

≈185 pairs!

Page 7: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

central collisions 25 AGeV Au+Au 158 AGeV Pb+Pb

J/ multiplicity 1.5·10-5 1·10-3 beam intensity 2·108/s 2·107/sinteractions 8·106/s (4%) 2·106/s (10%)central collisions 8·105/s 2·105/sJ/ rate 12/s 200/s 6% J/e+e- (+-) 0.7/s 12/sspill fraction 0.8 0.25 acceptance 0.25 0.1J/ measured 0.14/s 0.3/s 8·104/week 1.8·105/week

J/ experiments: a count rate estimate10 50 120 210 Elab [GeV]

Page 8: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Charmed mesons

Some hadronic decay modes

D (c = 317 m):D+ K0+ (2.90.26%)

D+ K-++ (9 0.6%)

D0 (c = 124.4 m):D0 K-+ (3.9 0.09%)

D0 K-+ + - (7.6 0.4%)

D meson production in pN collisions

Measure displaced vertex with resolution of 30 μm !

Page 9: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

The CBM Experiment

Radiation hard Silicon pixel/strip detectors in a magnetic dipole field

Electron detectors: RICH & TRD & ECAL: pion suppression up to 105

Hadron identification: RPC, RICH

Measurement of photons, π0, η, and muons: electromagn. calorimeter (ECAL)

High speed data acquisition and trigger system

Page 10: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Experimental challenges

107 Au+Au reactions/sec (beam intensities up to 109 ions/sec, 1 % interaction target)

determination of (displaced) vertices with high resolution ( 30 m)

identification of electrons and hadrons

Central Au+Au collision at 25 AGeV:URQMD + GEANT4

160 p 400 -

400 + 44 K+ 13 K-

Page 11: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

MIMOSA IV

IReS / LEPSI Strasbourg

Design of a Silicon Pixel detector

Design goals: • low materal budget: d < 200 μm • single hit resolution < 20 μm• radiation hard (dose 1015 neq/cm2)• fast read out

Silicon Tracking System: 7 planar layers of pixels/strips.Vertex tracking by two first pixel layers at 5 cm and 10 cm downstream target

Roadmap:R&D on Monolithic Active Pixel Sensors (MAPS)• pitch 20 μm• thickness below 100 μm • single hit resolution : 3 μm• Problem: radiation hardness and readout speed

Fallback solution: Hybrid detectors

Page 12: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Hit rates for 107 minimum bias Au+Au collisions at 25 AGeV:

Experimental conditions

Rates of > 10 kHz/cm2 in large part of detectors ! main thrust of our detector design studies

Page 13: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Design of a fast TRD

Design goals: e/π discrimination of > 100 (p > 1 GeV/c)• High rate capability up to 150 kHz/cm2

• Position resolution of about 200 μm• Large area ( 500 m2, 9 layers)

Roadmap:Outer part: ALICE TRD Inner part: • GEM/MICROMEGAS readout chambers• Straw tube TRT (ATLAS) • Fast read-out electronics

Page 14: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

Design of a high rate RPC

Design goals: • Time resolution ≤ 80 ps• High rate capability up to 25 kHz/cm2• Efficiency > 95 %• Large area 150 m2• Long term stability

Prototype test:detector with plastic electrodes(resistivity 109 Ohm cm.)P. Fonte, Coimbra

Page 15: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM R&D working packages Feasibility, Simulations

D Kπ(π)GSI Darmstadt, Czech Acad. Sci., RezTechn. Univ. Prague

,ω, e+e-

Univ. KrakowJINR-LHE Dubna

J/ψ e+e-

INR Moscow

Hadron ID Heidelberg Univ,Warsaw Univ.Kiev Univ. NIPNE BucharestINR Moscow

GEANT4: GSI

TrackingKIP Univ. HeidelbergUniv. MannheimJINR-LHE Dubna

Design & constructionof detectors

Silicon PixelIReS StrasbourgFrankfurt Univ.,GSI Darmstadt,RBI Zagreb,Univ. Krakow

Silicon StripSINP Moscow State U.CKBM St. PetersburgKRI St. Petersburg

RPC-TOFLIP Coimbra, Univ. Santiago de Com.,Univ. Heidelberg,GSI Darmstadt,Warsaw Univ.NIPNE BucharestINR MoscowFZ RossendorfIHEP ProtvinoITEP Moscow

Fast TRDJINR-LHE, DubnaGSI Darmstadt,Univ. MünsterINFN Frascati

Straw tubesJINR-LPP, DubnaFZ RossendorfFZ JülichTech. Univ. Warsaw

ECAL ITEP Moscow GSI DarmstadtUniv. Krakow

RICH IHEP Protvino GSI Darmstadt

Trigger, DAQKIP Univ. HeidelbergUniv. MannheimGSI DarmstadtJINR-LIT, DubnaUniv. BergenKFKI BudapestSilesia Univ. KatowiceUniv. Warsaw

MagnetJINR-LHE, DubnaGSI Darmstadt

AnalysisGSI Darmstadt,Heidelberg Univ,

Data Acquis.,Analysis

Page 16: The Compressed Baryonic Matter  Experiment at the Future Accelerator  Facility in Darmstadt

CBM R&D Collaboration : 38 institutions , 15 countriesCroatia:

RBI, Zagreb

Cyprus: Nikosia Univ.  Czech Republic:Czech Acad. Science, RezTechn. Univ. Prague France: IReS Strasbourg

Germany: Univ. Heidelberg, Phys. Inst.Univ. HD, Kirchhoff Inst. Univ. FrankfurtUniv. Mannheim Univ. MarburgUniv. MünsterFZ RossendorfGSI Darmstadt

   

Romania: NIPNE Bucharest

Russia:CKBM, St. PetersburgIHEP ProtvinoINR TroitzkITEP MoscowKRI, St. PetersburgKurchatov Inst., MoscowLHE, JINR DubnaLPP, JINR DubnaLIT, JINR DubnaPNPI GatchinaSINP, Moscow State Univ.

Spain: Santiago de Compostela Univ.  Ukraine: Univ. Kiev

Hungaria:KFKI BudapestEötvös Univ. Budapest

Italy: INFN Frascati

Korea:Korea Univ. SeoulPusan National Univ.

Norway:Univ. Bergen

Poland:Jagiel. Univ. Krakow Silesia Univ. KatowiceWarsaw Univ.Warsaw Tech. Univ.  Portugal: LIP Coimbra