26
THE BORDER BETWEEN RELATIVITY AND QUANTUM THEORY Tevian Dray I: Attempts at Unification II: Spinors III: The Future

The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

THE BORDER BETWEEN

RELATIVITY AND

QUANTUM THEORY

Tevian Dray

I: Attempts at Unification

II: Spinors

III: The Future

Page 2: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

AbstractAbstract

Many efforts have been made to fulfill Einstein’s dreamof unifying general relativity and quantum theory,including the study of quantum field theory in curvedspace, supergravity, string theory, twistors, and loopquantum gravity. While all of these approaches havehad notable successes, unification has not yet beenachieved. After a brief tour of the progress which hasbeen made, this talk will focus on the fundamental roleplayed by spinors in several of these approaches,suggesting that spinors are the key to combiningclassical relativity with quantum physics.

Page 3: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Apologies

• not much Spanish• not really PowerPoint• not many equations• not historian

Acknowledgments

• Jurgen Renn• Peter Bergmann• Bryce DeWitt

Page 4: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Borderline Problems

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................................................................

........................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.....................................................................................................................................................

............................................................................................................................................................................................................................

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................................................................

.....................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................ .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

................................................................................................................

.....................................................................................................................................................

.....................................................................................................................................................................................................................................................................................................................................................................

............................................................................................................................................................................................................................

MECHANICS

THERMO-DYNAMICS

ELECTRO-DYNAMICS

SM SR

QM

QG

Page 5: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Bronstein Cube

¡¡

¡¡

¡

¡¡

¡¡

¡

¡¡

¡¡

¡

¡¡

¡¡

¡

Galileo

~

G

1

c

QM

Newton

SR

QN

QFT

GR

QG

Page 6: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Start

All Roads Lead to Quantum Gravity

• QFT in curved space

• Canonical Quantum Gravity

• Loop Quantum Gravity

• Supergravity

• String Theory

• Twistors

• Other

Page 7: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Further Acknowledgment

Page 8: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Quantum Field Theory in Curved Space

Tevian Dray, Jurgen Renn, and Donald C. Salisbury, Particle

Creation with Finite Energy Density, Lett. Math. Phys. 7,

145–153 (1983).

• Fulling, Davies, Unruh, Ashtekar/Magnon:

Particles are observer-dependent

• black hole thermodynamics

• not background independent

• no preferred vacuum state

• Wald: Essential ideas of QFT better identified in

curved space than in Minkowski space!

• Answer: algebraic approach

Page 9: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Canonical Quantum Gravity

• Bergmann, Dirac: constraint algebra

• Arnowitt, Deser, Misner: new variables (hab, πab)

• Ashtekar: New Variables (Aai, e a

i)

polynomial constraints

• Wheeler, DeWitt: formal field equation (WDW)

• time is frozen (Kuchar: time map)

• Salisbury: time-dependent gauge (Bergmann-Komar)

Page 10: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Loop Quantum Gravity

• Jacobson, Smolin: Loop-like solutions of WDW

• spatial discreteness natural

• background independent!

• no ultraviolet divergences

• possible control of singularities

• explains black hole entropy

• frozen time? (Rovelli: “partial observables”)

• Lorentz invariance?

• semiclassical limit?

• scattering amplitudes?

Page 11: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Supergravity

• Kaluza-Klein theory for gravity: 11-dimensional

• covariant: QFT of metric fluctuations

• particle physics approach

• DeWitt, Feynman: Feynman rules for GR

• ’t Hooft, Veltman, Deser, van Niuewenhuizen:

non-renormalizable

• supergravity: renormalizable extension?

Page 12: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

String Theory

ΠµΠµ = 0 Πµ∂µθ = 0

• covariant: natural successor to supergravity

• supersymmetry: 3, 4, 6, 10 dimensions

• explains black hole entropy

• “GR at low energies”

• “GR at low energies”

• no supersymmetric particles yet!

• not (yet) background independent

• too many Calabi-Yau spaces

Page 13: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Twistors

Zα = (ωA, πA′) [Zα, Zβ ] = ~ δαβ

• combinatorics of null angular momentum

• complex numbers crucial to quantum mechanics

• complex numbers describe null directions

• non-locality: local info encoded in global fields

Wilczek: “... at present twistor ideas appear more as the

desire for a physical theory than the embodiment of one.”

Page 14: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Index

Other

• Finkelstein: chronons; Clifford statistics

• Sorkin: causal sets

• Connes: noncommutative geometry

• Hawking: sum over histories; wave function of universe

• Penrose: gravity-induced quantum state reduction

Page 15: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Status

• Are there any observable consequences to a quantum

theory of gravity?

Major: Some constraints, primarily from particleproduction rates at astrophysical energy scales,which are sensitive to Planck scale modificationsin dispersion relations.

• Burgess: no crisis: details of QG open, but effective

theory of gravity known.

Page 16: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

What’s Missing?

• Gravity really is different.

• The essence of relativity is the lightcone structure.

• We need a revolutionary idea.

Page 17: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Start

Vectors

x =

0

B

B

@

t

x

y

z

1

C

C

A

←→ X =

t + z x − iy

x + iy t − z

!

X† = X

T

= X

−det(X) = −t2 + x2 + y2 + z2

X = tI + xσx + yσy + zσz (Pauli matrices)

SO(3, 1) ≈ SL(2, C)

Page 18: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Clifford Algebras

Baylis: Classical relativistic physics in Clifford’s geometricalgebra has a spinorial formulation that is closelyrelated to the standard quantum formalism. Thealgebraic use of spinors and projectors, together withthe bilinear relations of spinors to observed currents,gives quantum-mechanical form to many classicalresults, and the clear geometric content of the algebramakes it an illuminating probe of thequantum/classical interface.

Page 19: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Division Algebras

Real Numbers:

R

Complex Numbers:

C = R + Ri

Quaternions:

H = C + Cj

k

j i

Octonions:

O = H + Hℓ

k

lj i

il

kl

jl

Page 20: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

More Vectors

SO(5, 1) ≈ SL(2, H)

SO(9, 1) ≈ SL(2, O)

K = R, C, H, O 7−→

X =

(p a

a m

)(p, m ∈ R; a ∈ K)

dim K + 2 = 3, 4, 6, 10 spacetime dimensions

supersymmetry

Page 21: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Spinors

(Penrose, not Dirac)

v =

(b

c

)

vv† =

|b|2 bc

cb |c|2

!

det(vv†) = 0

(spinor)2 = null vector

Page 22: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Spinors

• Twistors:

ωA, πA′ are complex spinors.

• String Theory:

θ is a division algebra spinor;

Π = θθ† − θ†θ.

• Loop Quantum Gravity:

Aai is spin connection

Projections of higher-dimensional

null vectors are null or timelike!

3 generations of leptons?

Page 23: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Start

Jordan Algebras

X =

p a b

a m c

b c n

X ◦ Y =1

2(XY + YX )

Exceptional quantum mechanics:

(X ◦ Y) ◦ X 2 = X ◦`

Y ◦ X 2´

P. Jordan, J. von Neumann, and E. Wigner, On an Algebraic

Generalization of the Quantum Mechanical Formalism, Ann.

Math. 35, 29–64 (1934).

Page 24: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

“Superspinors”

X =

(Π θ

θ† φ

)

Cayley/Moufang plane:

OP2 = {X 2 = X , trX = 1}

= {X = ψψ†, ψ

†ψ = 1, ψ ∈ H

3}

det(MXM†) = detX =⇒ M ∈ E6

SO(3, 1) × U(1) × SU(2) × SU(3) ⊂ E6

Where’s gravity?? “Jordan” Spin Foam?

Page 25: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Start Close Exit

All Roads Lead to Quantum Gravity

The current theories are on the right track.

(But do they know it?)

THE END

Page 26: The Border Between Relativity and Quantum Theorypeople.oregonstate.edu/~drayt/talks/HGR7pub.pdfClifford Algebras Baylis: Classical relativistic physics in Clifford’s geometric

Octonion References

Corinne A. Manogue and Tevian Dray, Dimensional

Reduction, Mod. Phys. Lett. A14, 93–97 (1999).

Corinne A. Manogue and Tevian Dray, Octonionic Mobius

Transformations, Mod. Phys. Lett. A14, 1243–1255 (1999).

Tevian Dray and Corinne A. Manogue, The Exceptional

Jordan Eigenvalue Problem, Internat. J. Theoret. Phys. 38,

2901–2916 (1999).

Tevian Dray and Corinne A. Manogue, Quaternionic Spin,

in Clifford Algebras and their Applications in

Mathematical Physics, eds. RafaÃl AbÃlamowicz and

Bertfried Fauser, Birkhauser, Boston, 2000, pp. 29–46.

http://www.math.oregonstate.edu/~tevian