36
1 The Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* Department of Statistics, Dibrugarh University Dibrugarh-786004, India *Corresponding Author. Email: [email protected] (21 August 21, 2016) Abstract In this paper we propose a new family of distribution considering Generalized Marshal-Olkin distribution as the base line distribution in the Beta-G family of Construction. The new family includes Beta-G (Eugene et al. 2002 and Jones, 2004) and GMOE (Jayakumar and Mathew, 2008) families as particular cases. Probability density function (pdf) and the cumulative distribution function (cdf) are expressed as mixture of the Marshal-Olkin (Marshal and Olkin, 1997) distribution. Series expansions of pdf of the order statistics are also obtained. Moments, moment generating function, Rényi entropies, quantile power series, random sample generation and asymptotes are also investigated. Parameter estimation by method of maximum likelihood and method of moment are also presented. Finally proposed model is compared to the Generalized Marshall-Olkin Kumaraswamy extended family (Handique and Chakraborty, 2015) by considering three data fitting examples with real life data sets. Key words: Beta Generated family, Generalized Marshall-Olkin family, Exponentiated family, AIC, BIC and Power weighted moments. 1. Introduction Here we briefly introduce the Beta-G (Eugene et al. 2002 and Jones, 2004) and Generalized Marshall-Olkin family (Jayakumar and Mathew, 2008) of distributions. 1.1 Some formulas and notations Here first we list some formulas to be used in the subsequent sections of this article. If T is a continuous random variable with pdf, ) (t f and cdf ] [ ) ( t T P t F , then its Survival function (sf): ) ( 1 ] [ ) ( t F t T P t F , Hazard rate function (hrf): ) ( / ) ( ) ( t F t f t h , Reverse hazard rate function (rhrf): ) ( / ) ( ) ( t F t f t r ,

The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

1

The Beta Generalized Marshall-Olkin-G Family of Distributions

Laba Handique and Subrata Chakraborty*

Department of Statistics, Dibrugarh University

Dibrugarh-786004, India

*Corresponding Author. Email: [email protected]

(21 August 21, 2016)

Abstract

In this paper we propose a new family of distribution considering Generalized Marshal-Olkin

distribution as the base line distribution in the Beta-G family of Construction. The new family

includes Beta-G (Eugene et al. 2002 and Jones, 2004) and GMOE (Jayakumar and Mathew, 2008)

families as particular cases. Probability density function (pdf) and the cumulative distribution

function (cdf) are expressed as mixture of the Marshal-Olkin (Marshal and Olkin, 1997) distribution.

Series expansions of pdf of the order statistics are also obtained. Moments, moment generating

function, Rényi entropies, quantile power series, random sample generation and asymptotes are also

investigated. Parameter estimation by method of maximum likelihood and method of moment are

also presented. Finally proposed model is compared to the Generalized Marshall-Olkin

Kumaraswamy extended family (Handique and Chakraborty, 2015) by considering three data fitting

examples with real life data sets.

Key words: Beta Generated family, Generalized Marshall-Olkin family, Exponentiated family, AIC,

BIC and Power weighted moments.

1. Introduction

Here we briefly introduce the Beta-G (Eugene et al. 2002 and Jones, 2004) and Generalized

Marshall-Olkin family (Jayakumar and Mathew, 2008) of distributions.

1.1 Some formulas and notations

Here first we list some formulas to be used in the subsequent sections of this article.

If T is a continuous random variable with pdf, )(tf and cdf ][)( tTPtF , then its

Survival function (sf): )(1][)( tFtTPtF ,

Hazard rate function (hrf): )(/)()( tFtfth ,

Reverse hazard rate function (rhrf): )(/)()( tFtftr ,

Page 2: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

2

Cumulative hazard rate function (chrf): )]([log)( tFtH ,

th),,( rqp Power Weighted Moment (PWM): dttftFtFt rqprqp )(])(1[])([,,

,

Rényi entropy:

dttfI R )(log)1()( 1 .

1.2 Beta-G family of distributions

The cdf of beta-G (Eugene et al. 2002 and Jones 2004) family of distribution is

)(tF BG )(

11 )1(),(

1 tF

o

nm vdvvnmB ),(

),()(

nmBnmB tF ),()( nmI tF (1)

Where t

nmt dxxxnmBnmI

0

111 )1(),(),( denotes the incomplete beta function ratio.

The pdf corresponding to (1) is

)(tf BG 11 )](1[)()(),(

1 nm tFtFtfnmB

11 )()()(),(

1 nm tFtFtfnmB

(2)

Where dttFdtf )()( .

sf: ),(1)( )( nmItF tFBG

),(),(),( )(

nmBnmBnmB tF

hrf: )()()( tFtfth BGBGBG ),(),(

)()()()(

11

nmBnmBtFtFtf

tF

nm

rhrf: )()()( tFtftr BGBGBG ),(

)()()()(

11

nmBtFtFtf

tF

nm

chrf: )(tH

),(),(),(

log )(

nmBnmBnmB tF

Some of the well known beta generated families are the Beta-generated (beta-G) family (Eugene

et al., 2002; Jones 2004), beta extended G family (Cordeiro et al., 2012), Kumaraswamy beta

generalized family (Pescim et al., 2012), beta generalized weibull distribution (Singla et al., 2012),

beta generalized Rayleigh distribution (Cordeiro et al., 2013), beta extended half normal

distribution (Cordeiro et al., 2014), beta log-logistic distribution (Lemonte, 2014) beta generalized

inverse Weibull distribution (Baharith et al., 2014), beta Marshall-Olkin family of distribution

(Alizadeh et al., 2015) and beta generated Kumaraswamy-G family of distribution (Handique and

Chakraborty 2016a) among others.

1.3 Generalized Marshall-Olkin Extended ( GMOE ) family of distributions

Jayakumar and Mathew (2008) proposed a generalization of the Marshall and Olkin (1997) family of

distributions by using the Lehman second alternative (Lehmann 1953) to obtain the sf )(tF GMO of

the GMOE family of distributions by exponentiation the sf of MOE family of distributions as

Page 3: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

3

)(tF GMO

0;0;,)(1

)( ttG

tG (3)

where 0, t ( 1 ) and 0 is an additional shape parameter. When ,1

)()( tFtF MOGMO and for ,1 )()( tFtF GMO . The cdf and pdf of the GMOE distribution

are respectively

)(tF GMO

)(1

)(1tG

tG (4)

and )(tf GMO

2

1

)](1[)(

)(1)(

tGtg

tGtG

1

1

)](1[)()(

tGtGtg (5)

Reliability measures like the hrf, rhrf and chrf associated with (1) are

)()()(

tFtfth GMO

GMOGMO

)(1)(

)](1[)()(

1

1

tGtG

tGtGtg

)(1

1)()(

tGtGtg

)(1)(

tGth

)()()(

tFtftr GMO

GMOGMO

)(1)(1

)](1[)()(

1

1

tGtG

tGtGtg

])()}(1[{)](1[)()( 1

tGtGtGtGtg

)](1[)()](1[)()(

1

1

tGtGtGtGtg

)(tH GMO

)(1

)(log)(1

)(logtG

tGtG

tG

Where )(tg , )(tG , )(tG and )(th are respectively the pdf, cdf, sf and hrf of the baseline distribution.

We denote the family of distribution with pdf (3) as ),,,(GMOE ba which for 1 , reduces

to ),,(MOE ba .

Some of the notable distributions derived Marshall-Olkin Extended exponential distribution

(Marshall and Olkin, 1997), Marshall-Olkin Extended uniform distribution (Krishna, 2011; Jose and

Krishna 2011), Marshall-Olkin Extended power log normal distribution (Gui, 2013a), Marshall-

Olkin Extended log logistic distribution (Gui, 2013b), Marshall-Olkin Extended Esscher transformed

Laplace distribution (George and George, 2013), Marshall-Olkin Kumaraswamy-G familuy of

distribution (Handique and Chakraborty, 2015a), Generalized Marshall-Olkin Kumaraswamy-G

family of distribution (Handique and Chakraborty 2015b) and Kumaraswamy Generalized Marshall-

Olkin family of distribution (Handique and Chakraborty 2016b).

Page 4: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

4

In this article we propose a family of Beta generated distribution by considering the

Generalized Marshall-Olkin family (Jayakumar and Mathew, 2008) as the base line distribution in

the Beta-G family (Eugene et al. 2002 and Jones, 2004). This new family referred to as the Beta

Generalized Marshall-Olkin family of distribution is investigated for some its general properties.

The rest of this article is organized in seven sections. In section 2 the new family is introduced along

with its physical basis. Important special cases of the family along with their shape and main

reliability characteristics are presented in the next section. In section 4 we discuss some general

results of the proposed family. Different methods of estimation of parameters along with three

comparative data modelling applications are presented in section 5. The article ends with a

conclusion in section 6 followed by an appendix to derive asymptotic confidence bounds.

2. New Generalization: Beta Generalized Marshall-Olkin-G ( GBGMO ) family of

distributions

Here we propose a new Beta extended family by considering the cdf and pdf of GMO (Jayakumar

and Mathew, 2008) distribution in (4) and (5) as the )(and)( tFtf respectively in the Beta

formulation in (2) and call it GBGMO distribution. The pdf of GBGMO is given by

)(tf BGMOG

11

1

1

)(1)(

)(1)(1

)](1[)()(

),(1

nm

tGtG

tGtG

tGtGtg

nmB

(6)

, 0,0,,0,0 nmbat

Similarly substituting from equation (4) in (1) we get the cdf of GBGMO respectively as

)(tF BGMOG ),()(1

)(1nmI

tGtG

(7)

The sf, hrf, rhrf and chrf of GBGMO distribution are respectively given by

sf: )(tF BGMOG ),(1)(1

)(1nmI

tGtG

hrf :

)8()(1

)()(1

)(1

]),(1[)](1[)()(

),(1)(

11

)(1)(

1

1

1

nm

tGtG

BGMOG

tGtG

tGtG

nmItGtGtg

nmBth

rhrf :

Page 5: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

5

)9()(1

)()(1

)(1

]),([)](1[)()(

),(1)(

11

)(1)(1

1

1

nm

tGtG

BGMOG

tGtG

tGtG

nmItGtGtg

nmBtr

chrf: ]),(1[log)()(1

)(1nmItH

tGtG

BGMOG

Remark: The ),n,(m,BGMO G reduces to

(i) )n,(m,BMO (Alizadeh et al., 2015) for 1 ; (ii) ),(GMO ,(Jayakumar and

Mathew, 2008) if 1 nm ; (iii) )(MO (Marshall and Olkin, 1997) when

1 nm ; and (iv) n)(m,B (Eugene et al., 2002; Jones 2004) for 1 .

2.1 Genesis of the distribution

If m and n are both integers, then the probability distribution takes the same form as the order

statistics of the random variable T .

Proof: Let 121 ...,, nmTTT be a sequence of i.i.d. random variables with cdf batG ])(1[1 . Then

the pdf of the thm order statistics )(mT is given by

11

)1(1

)](1[)()(

]})(1)([{]})(1)({1[!])1[(!)1(

!)1(

tGtGtg

tGtGtGtGmnmm

nm mnmm

11

11

)](1[)()(

]})(1)([{]})(1)({1[)()(

)(

tGtGtg

tGtGtGtGnm

nm nm

11

11

)](1[)()(

]})(1)([{]})(1)({1[),(

1

tGtGtg

tGtGtGtGnmB

nm

2.2 Shape of the density function

Here we have plotted the pdf of the GBGMO for some choices of the distribution G and parameter

values to study the variety of shapes assumed by the family.

Page 6: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

6

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-E

X

Den

sity

m=0.6,n=2,=2,=0.5,=0.9m=1.3,n=1.9,=1.6,=0.6,=0.1m=3.5,n=2,=0.5,=1.6,=0.5m=19.5,n=1.9,=0.9,=1.6,=0.6m=19.5,n=1.9,=0.9,=1.6,=0.5m=2.9,n=2.2,=2.5,=0.5,=0.5

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-W

X

Den

sity

m=1,n=2,=1.5,=2.1,=0.9,=0.6m=13,n=3.5,=2.5,=0.6,=0.5,=0.5m=50,n=8.5,=2.2,=0.89,=0.5,=0.5m=0.05,n=0.45,=1.4,=1.5,=0.5,=0.5m=0.2,n=0.4,=3.5,=1.5,=0.5,=0.4m=40,n=9.5,=2.5,=0.5,=0.5,=0.5

(a) (b)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-L

X

Den

sity

m=8.2,n=1.9,=5.55,=3.5,=0.48,=0.8m=7.2,n=1.9,=5.45,=3.1,=0.42,=0.7m=5,n=1.56,=2.5,=0.5,=0.5,=0.5m=5.2,n=1.56,=4.5,=2.5,=0.5,=0.5m=8.2,n=1.9,=5.55,=3.2,=0.45,=0.6m=1,n=3.5,=2.5,=0.5,=0.5,=0.5

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-Fr

X

Den

sity

m=0.1,n=2.5,=1.4,=3.5,=0.5,=0.5m=0.3,n=2.1,=1.3,=4.5,=0.5,=0.5m=0.23,n=4.45,=1.3,=4.5,=0.5,=0.5m=0.26,n=3.35,=1.4,=4.5,=0.3,=0.5m=0.05,n=2.5,=1.2,=4.5,=0.5,=0.5m=0.2,n=2.5,=1.3,=4.5,=0.5,=0.5

(c) (d)

Fig 1: Density plots (a) EBGMO , (b) WBGMO , (c) LBGMO and (d) FrBGMO

Distributions:

Page 7: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

7

0.0 0.5 1.0 1.5 2.0 2.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

BGMO-E

X

h(x)

m=0.05,n=1.9,=1.6,=0.9,=0.7m=23.5,n=1.99,=0.58,=1.6,=0.5m=0.04,n=1.99,=0.58,=1.6,=0.5m=19.5,n=1.84,=0.9,=2.8,=0.9m=15.5,n=1.9,=0.8,=1.6,=0.5m=0.89,n=2.78,=0.48,=1.5,=0.5

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-W

X

h(x)

m=0.01,n=0.65,=1,=1.9,=0.9,=0.8m=0.08,n=0.3,=2.1,=1.83,=0.8,=0.7m=0.04,n=0.25,=1.7,=2,=0.8,=1.8m=0.05,n=0.45,=1.5,=1.8,=0.8,=0.8m=0.08,n=0.15,=2,=2.2,=0.8,=1.8m=0.02,n=0.65,=0.9,=1.9,=0.9,=0.8

(a) (b)

0 1 2 3 4

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-L

X

h(x)

m=2,n=0.35,=2.5,=5.5,=2.9,=1.9m=7.2,n=1.9,=5.45,=3.1,=0.42,=0.7m=5,n=1.56,=2.5,=0.5,=0.5,=0.5m=4,n=1.56,=4.5,=2.5,=0.5,=0.5m=4.2,n=1.99,=6.55,=9.2,=0.45,=0.6m=0.5,n=3.8,=0.19,=3.5,=0.6,=0.9

0 1 2 3 4 5 6 7

0.0

0.5

1.0

1.5

2.0

2.5

BGMO-Fr

X

h(x)

m=0.6,n=1.9,=0.25,=5.5,=0.8,=0.9m=0.99,n=2.5,=3,=3.5,=0.5,=0.5m=5.23,n=4.65,=2.3,=6.7,=0.5,=0.5m=1.9,n=2.5,=3,=3.5,=0.63,=0.7m=0.3,n=1.8,=0.2,=3.5,=0.5,=0.8m=7.23,n=4.95,=2.3,=6.7,=0.41,=0.5

(c) (d) Fig 2: Hazard plots plots (a) EBGMO , (b) WBGMO , (c) LBGMO and (d) FrBGMO

Distributions:

From the plots in figure 1 and 2 it can be seen that the family is very flexible and can offer

many different types of shapes of density and hazard rate function including the bath tub shaped free

hazard.

3. Some special GBGMO distributions

Some special cases of the GBGMO family of distributions are presented in this section.

3.1 The BGMO exponential ( EBGMO ) distribution

Let the base line distribution be exponential with parameter ,0 0,):( tetg t

and ,1):( tetG 0t then for the EBGMO model we get the pdf and cdf respectively as:

Page 8: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

8

)(tf BGMOE

11

1

1

111

]1[][

),(1

n

t

tm

t

t

t

tt

ee

ee

eee

nmB

and )(tF BGMOE ),(1

1

nmIt

t

ee

sf: )(tF BGMOE ),(11

1

nmIt

t

ee

hrf :

11

11

1

1

111

]),(1[]1[][

),(1)(

n

t

tm

t

t

ee

t

ttBGMOE

ee

ee

nmIeee

nmBth

t

t

rhrf :

11

11

1

1

111

]),([]1[][

),(1)(

n

t

tm

t

t

ee

t

ttBGMOE

ee

ee

nmIeee

nmBtr

t

t

chrf: ]),(1[log)(1

1

nmItHt

t

ee

BGMOE

3.2 The BGMO Lomax ( LBGMO ) distribution

Considering the Lomax distribution (Ghitany et al. 2007) with pdf and cdf given

by 0,)](1[)(),:( )1( tttg , and ,])(1[1),:( ttG 0 and 0 the

pdf and cdf of the LBGMO distribution are given by

11

1

1)1(

])(1[1])(1[

])(1[1])(1[1

]])(1[1[]])(1[[)](1[)(

),(1)(

nm

BGMOL

tt

tt

ttt

nmBtf

and )(tF BGMOL ),(])(1[1

])(1[1

nmIt

t

sf: )(tF BGMOL ),(1)](1[1

)](1[1nmI

tt

Page 9: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

9

hrf : )(thBGMOL

11

)](1[1)](1[

1

1

)1()1(

)](1[1)](1[

)](1[1)](1[1

),(11

])}(1{1[)](1[)](1[)(

),(1

nm

tt

tt

tt

nmIttt

nmB

rhrf: )(tr BGMOL

11

)](1[1)](1[

1

1

)1()1(

)](1[1)](1[

)](1[1)](1[1

),(1

])}(1{1[)](1[)](1[)(

),(1

nm

tt

tt

tt

nmIttt

nmB

chrf: ]),(1[log)()](1[1

)](1[1

nmItHt

t

BGMOL

3.3 The BGMO Weibull ( WBGMO ) distribution

Considering the Weibull distribution (Ghitany et al. 2005, Zhang and Xie 2007) with parameters

0 and 0 having pdf and cdf tettg 1)( and

tetG 1)( respectively we get

the pdf and cdf of WBGMO distribution as

)(tf BGMOW

11

1

11

111

]1[][

),(1

n

t

tm

t

t

t

tt

ee

ee

eeet

nmB

and )(tF BGMOW ),(

11

nmIt

t

e

e

sf: )(tF BGMOW ),(1

11

nmIt

t

e

e

hrf: )(thBGMOW

11

11

1

11

111

),(11

]1[][

),(1

n

t

tm

t

t

e

e

t

tt

ee

ee

nmIeeet

nmBt

t

Page 10: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

10

rhrf:

11

11

1

11

111

),(1

]1[][

),(1)(

n

t

tm

t

t

e

e

t

ttBGMOW

ee

ee

nmIeeet

nmBtr

t

t

chrf: ]),(1[log)(

11

nmItHt

t

e

e

BGMOW

3.4 The BGMO Frechet ( FrBGMO ) distribution

Suppose the base line distribution is the Frechet distribution (Krishna et al., 2013) with pdf and cdf

given by )()1()( tettg and 0,)( )( tetG t respectively, and then the

corresponding pdf and cdf of FrBGMO distribution becomes

1

)(

)(1

)(

)(

1)(

1)()()1(

]1[1]1[

]1[1]1[1

]]1[1[]1[

),(1)(

n

t

tm

t

t

t

ttBGMOFr

ee

ee

eeet

nmBtf

and )(tF BGMOFr ),(

]1[1

]1[1

)(

)(nmI

t

t

e

e

sf: )(tF BGMOFr ),(1

]1[1

]1[1

)(

)(nmI

t

t

e

e

hrf : )(thBGMOFr

1

)(

)(1

)(

)(

]1[1

]1[1

1)(

1)()()1(

]1[1]1[

]1[1]1[1

),(11

]]1[1[]1[

),(1

)(

)(

n

t

tm

t

t

e

e

t

tt

ee

ee

nmIeeet

nmBt

t

rhrf : )(trBGMOFr

Page 11: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

11

1

)(

)(1

)(

)(

]1[1

]1[1

1)(

1)()()1(

]1[1]1[

]1[1]1[1

),(1

]]1[1[]1[

),(1

)(

)(

n

t

tm

t

t

e

e

t

tt

ee

ee

nmIeeet

nmBt

t

chrf: ]),(1[log)(

]1[1

]1[1

)(

)(nmItH

t

t

e

e

BGMOFr

3.5 The BGMO Gompertz ( GoBGMO ) distribution

Next by taking the Gompertz distribution (Gieser et al. 1998) with pdf and cdf )1(

)(

tet eetg

and 0,0,0,1)()1(

tetGte

respectively, we get the pdf and cdf of

GoBGMO distribution as

)(tf BGMOGo

1

)1(

)1(1

)1(

)1(

1)1(

1)1()1(

111

]1[

][),(

1

n

e

em

e

e

e

eet

t

t

t

t

t

tt

e

e

e

e

e

eeenmB

and )(tF BGMOGo ),(

)1(

)1(

1

1

nmI

te

te

e

e

sf: )(tF BGMOGo ),(1

)1(

)1(

1

1

nmI

te

te

e

e

hrf: )(thBGMOGo

1

)1(

)1(

1

)1(

)1(

1

1

1)1(

1)1()1(

111

),(11

]1[

][),(

1

)1(

)1(

n

e

em

e

e

e

e

e

eet

t

t

t

t

te

te

t

tt

e

e

e

e

nmIe

eeenmB

rhrf: )(tr BGMOGo

Page 12: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

12

1

)1(

)1(1

)1(

)1(

1

1

1)1(

1)1()1(

111

),(1

]1[

][),(

1

)1(

)1(

n

e

em

e

e

e

e

e

eet

t

t

t

t

te

te

t

tt

e

e

e

e

nmIe

eeenmB

chrf: ]),(1[log)(

)1(

)1(

1

1

nmItH

te

te

e

e

BGMOGo

3.6 The BGMO Extended Weibull ( EWBGMO ) distribution

The pdf and the cdf of the extended Weibull (EW) distributions of Gurvich et al. (1997) is given by

),:( tg ):()]:(exp[ tztZ and ),:( tG )]:(exp[1 tZ , 0, RDt

where ):( tZ is a non-negative monotonically increasing function which depends on the parameter

vector . and ):( tz is the derivative of ):( tZ .

By considering EW as the base line distribution we derive pdf and cdf of the EWBGMO as

11

1

1

)]:(exp[1)]:(exp[

)]:(exp[1)]:(exp[1

}]):(exp{1[])}:(exp{[):()]:(exp[

),(1)(

nm

BGMOEW

tZtZ

tZtZ

tZtZtztZ

nmBtf

and )(tF BGMOEW ),()]:(exp[1

)]:(exp[1

nmItZ

tZ

Important models can be seen as particular cases with different choices of ):( tZ :

(i) ):( tZ = t : exponential distribution.

(ii) ):( tZ = 2t : Rayleigh (Burr type-X) distribution.

(iii) ):( tZ = )(log kt : Pareto distribution

(iv) ):( tZ = ]1)([exp1 t : Gompertz distribution.

sf: )(tF BGMOEW ),(1)]:(exp[1

)]:(exp[1

nmItZ

tZ

Page 13: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

13

hrf: )(thBGMOEW

11

)]:(exp[1)]:(exp[1

1

1

)]:(exp[1)]:(exp[

)]:(exp[1)]:(exp[1

),(11

}]):(exp{1[])}:(exp{[):()]:(exp[

),(1

nm

tZtZ

tZtZ

tZtZ

nmItZtZtztZ

nmB

rhrf: )(tr BGMOEW

11

)]:(exp[1)]:(exp[1

1

1

)]:(exp[1)]:(exp[

)]:(exp[1)]:(exp[1

),(11

}]):(exp{1[])}:(exp{[):()]:(exp[

),(1

nm

tZtZ

tZtZ

tZtZ

nmItZtZtztZ

nmB

chrf: ]),(1[log)()]:(exp[1

)]:(exp[1

nmItHtZ

tZBGMOEW

3.7 The BGMO Extended Modified Weibull ( EMWBGMO ) distribution

The modified Weibull (MW) distribution (Sarhan and Zaindin 2013) with cdf and pdf is given by

),,;( tG ][exp1 tt , 0,0,,0,0 t and

),,;( tg ][exp)( 1 ttt respectively.

The corresponding pdf and cdf of EMWBGMO are given by

11

1

11

][exp1][exp

][exp1][exp1

}]]{exp1[]}{exp[][exp)(

),(1)(

nm

BGMOEMW

tttt

tttt

ttttttt

nmBtf

and )(tF BGMOEMW ),(][exp1

][exp1

nmItt

tt

sf: )(tF BGMOEMW ),(1][exp1

][exp1

nmItt

tt

hrf : )(thBGMOEMW

Page 14: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

14

11

][exp1][exp

1

1

11

][exp1][exp

][exp1][exp1

),(11

}]]{exp1[]}{exp[][exp)(

),(1

nm

tttt

tttt

tttt

nmIttttttt

nmB

rhrf: )(tr BGMOEMW

11

][exp1][exp1

1

11

][exp1][exp

][exp1][exp1

),(1

}]]{exp1[]}{exp[][exp)(

),(1

nm

tttt

tttt

tttt

nmIttttttt

nmB

chrf: ]),(1[log)(][exp1

][exp1

nmItHtt

tt

BGMOEMW

3.8 The BGMO Extended Exponentiated Pareto ( EEPBGMO ) distribution

The pdf and cdf of the exponentiated Pareto distribution, of Nadarajah (2005), are given respectively

by 1)1( ])(1[)( kkk ttktg and ])(1[)( kttG , x and 0,, k . Thus the

pdf and the cdf of EEPBGMO distribution are given by

11

1

11)1(

]})(1{1[1]})(1{1[

]})(1{1[1]})(1{1[1

]]})(1{1[1[]})(1{1[])(1[

),(1)(

n

k

km

k

k

k

kkkkBGMOEEP

tt

tt

ttttk

nmBtf

and )(tF BGMOEEP ),(]})(1{1[1

]})(1{1[1

nmIk

k

tt

sf: )(tF BGMOEEP ),(1]})(1{1[1

]})(1{1[1

nmIk

k

tt

hrf: )(thBGMOEEP

11

]})(1{1[1]})(1{1[

1

1

11)1(

]})(1{1[1]})(1{1[

]})(1{1[1]})(1{1[1

),(11

]]})(1{1[1[]})(1{1[])(1[

),(1

n

k

km

k

k

tt

k

kkkk

tt

tt

nmIttttk

nmBk

k

Page 15: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

15

rhrf: )(tr BGMOEEP

11

]})(1{1[1]})(1{1[1

1

11)1(

]})(1{1[1]})(1{1[

]})(1{1[1]})(1{1[1

),(1

]]})(1{1[1[]})(1{1[])(1[

),(1

n

k

km

k

k

tt

k

kkkk

tt

tt

nmIttttk

nmBk

k

chrf: ]),(1[log)(]})(1{1[1

]})(1{1[1

nmItHk

k

tt

BGMOEEP

4. General results for the Beta Generalized Marshall-Olkin ( GBGMO ) family of

distributions

In this section we derive some general results for the proposed GBGMO family.

4.1 Expansions

By using binomial expansion in (6), we obtain

),,,;( nmtf BGMOG

11

1

1

)(1)(

)(1)(1

)](1[)()(

),(1

nm

tGtG

tGtG

tGtGtg

nmB

111

2 )(1)(

)(1)(1

)](1[)(

)](1[)(

),(

nm

tGtG

tGtG

tGtG

tGtg

nmB

)1(11 ]),([])},({1[)],([),(),(

nMOmMOMOMO tFtFtFtfnmB

)1(1 ])},({1[)],([),(),(

mMOnMOMO tFtFtfnmB

jMOjm

j

nMOMO tFj

mtFtf

nmB )];([)1(

1)],([),(

),(

1

0

1

1)(1

0)];([)1(

1),(

),(

njMO

m

j

jMO tFj

mtf

nmB

1)(1

0)];([),(

njMOm

jj

MO tFtf (10)

)(1

0)];([

)(njMO

m

j

j tFdtd

nj

Page 16: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

16

)(1

0)];([ njMO

m

jj tFdtd

(11)

)))]((;([1

0njtF

dtd MO

m

jj

)))((;(1

0njtf MO

m

jj

(12)

Where

jm

njnmB

j

j

1)(),(

)1( 1

and )( njjj

Alternatively, we can expand the pdf as

1)(1

0)];([),(

njMOm

jj

MO tFtf

lMOnj

l

lm

jj

MO tFl

njtf ]);([)1(

1)(),(

1)(

0

1

0

lMOnj

ll

MO tFtf ]);([),(1)(

0

(13)

11)(

0]);([

1

lMOnj

l

l tFdtd

l

11)(

0]);([

lMO

nj

ll tFdtd

Where

lnj

j

ljl

1)()1(

0

and

lnj

l j

ljl

1)()1(

11

0

We can expand the cdf as (see “Incomplete Beta Function” From Math World—A Wolfram Web

Resource. http://mathworld. Wolfram.com/ Incomplete Beta Function. html)

)14()(

)1(1)(!)1(!

!)1()1(

symbol. Pochhammer a is(x)Where)(!

)1(),(),;(

0

0

n0

n

n

na

n

n

na

n

n

naz

znan

bz

znanbn

bz

znan

bzbaBbazB

)(tF BGMOG ),()(1

)(1nmI

tGtG

Using (14) in (7) we have

Page 17: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

17

ii

i

m

tGtG

imin

tGtG

nmB

)(1)(1

)()1(1

)(1)(1

),(1

0

iMOi

i

mMO tFimi

ntF

nmB]}),({1[

)()1(1

]}),({1[),(

10

imMO

i

i

tFi

nimnmB

]}),({1[

1)(),(

)1(0

jMOj

ji

i

tFj

imi

nimnmB

]),([)1(1

)(),()1(

00

kMOj

k

k

ji

ji

tFk

jj

imi

nimnmB

]),([)1(1

)(),()1(

00,

kMO

ji

kjij

ktF

kj

jim

in

imnmB]),([

1)(),(

)1(0, 0

By exchanging the indices j and k in the sum symbol, we have

),,,;( nmtF BGMO kMO

ki

kji

kjtF

kj

jim

in

imnmB]),([

1)(),(

)1(0,

and then

),,,;( nmtF BGMO kMO

kk tF ),(

0

(15)

Where

kj

jim

in

imnmBi kj

kji

k

0

1)(),(

)1(

Similarly an expansion for the cdf of GBGMO can be derives as

),,,;( nmtF BGMOG ),(]),([1

nmItF MO

pnmMOpMOnm

mptFtF

pnm

1

1

]),([]}),({1[1

pnmMOqMOqp

q

nm

mptFtF

qp

pnm

1

0

1

]),([}),({)1(1

)1(1

0)],([

1)1( qpnmMO

nm

mp

p

q

q tFpnm

qp

rMOrqpnm

r

nm

mp

p

q

q tFr

qpnmpnm

qp

)],([)1()1(1

)1()1(

0

1

0

rMOnm

mp

p

q

rqqpnm

rtF

rqpnm

pnm

qp

)],([)1(1

)1(1

0

)1(

0

Page 18: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

18

rMOnm

mp

p

qrqp

qpnm

rtF )],([

1

0,,

)1(

0

(16)

Where

rqpnm

pnm

qprq

rqp

)1(1)1(,,

4.2 Order statistics

Suppose nTTT ...,, 21 is a random sample from any GBGMO distribution. Let nrT : denote the thr

order statistics. The pdf of nrT : can be expressed as

)(: tf nrrnBGMOGrBGMOGBGMOG tFtFtf

rnrn

)}(1{)()(

!)(!)1(! 1

1

0)()()1(

!)(!)1(!

rjBGMOGBGMOG

rn

j

j tFtfj

rnrnr

n

Now using the general expansion of the GBGMO distribution pdf and cdf we get the pdf of the thr order statistics for of the GBGMO is given by

1

0

1)(

00:

),(

]);([),()1(!)(!)1(

!)(

rj

kMO

kk

lMOnj

ll

MOrn

j

jnr

tF

tFtfj

rnrnr

ntf

Where kl and defined in above

Now

0,1

1

0]),([),(

k

kMOkrj

rjkMO

kk tFdtF

Where

k

cckrjckrj dkrjc

kd

1,1

0,1 ])([1

(Nadarajah et. al 2015)

Therefore the density function of the thr order statistics of GBGMO distribution can be

expressed as

0,1

1)(

00:

]),([

]);([),()1(!)(!)1(

!)(

k

kMOkrj

lMOnj

ll

MOrn

j

jnr

tFd

tFtfj

rnrnr

ntf

lk

k

MOkrjl

nj

l

MOrn

j

j tFdtfj

rnrnr

n0

,1

1)(

00]),([),()1(

!)(!)1(!

lk

k

MOkl

nj

l

MO tFtf

0,

1)(

0

]),([),(

(17)

Page 19: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

19

Where krjl

rn

j

jkl d

jrn

rnrn

,10

, )1(!)(!)1(

!

and krjl d ,1and defined above.

4.3 Probability weighted moments

The probability weighted moments (PWMs), first proposed by Greenwood et al. (1979), are

expectations of certain functions of a random variable whose mean exists. The thrqp ),,( PWM of T

is defined by

dttftFtFt rqprqp )()](1[)(,,

From equations (10) and (13) the ths moment of T can be written either as

dtnmtftTE BGMOGss ),,,;()(

dttftFt MOnjMOsm

jj ),()];([ 1)(

1

0

dttGtgtGtGt njsm

jj ])](1[)([)](1)([ 21)(

1

0

1)(,0,

1

0

njs

m

jj

or dttftFtTE MOlMOsnj

ll

s ),(]);([)(1)(

0

dttGtgtGtGt lsnj

ll ])](1[)([)](1)([ 2

1)(

0

0,,

1)(

0ls

nj

ll

Where dttGtgtGtGtGtGt rqprqp ])](1[)([)](1)([)](1)([ 2

,,

is the PWM of )(M O distribution.

Therefore the moments of the ),,,;(G-BGMO nmt can be expresses in terms of the PWMs

of )(M O (Marshall and Olkin, 1997). The PWM method can generally be used for estimating

parameters quantiles of generalized distributions. These moments have low variance and no severe

biases, and they compare favourably with estimators obtained by maximum likelihood.

Page 20: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

20

Proceeding as above we can derive ths moment of the thr order statistic ,:nrT in a random

sample of size n from GBGMO on using equation (17) as

)( ;nrsTE

0

0,,,

1)(

0 klkskl

nj

l

Where j , l and kl , defined in above

4.5 Moment generating function

The moment generating function of GBGMO family can be easily expressed in terms of those of

the exponentiated MO (Marshall and Olkin, 1997) distribution using the results of section 4.1. For

example using equation (11) it can be seen that

dttFdtdedtnmtfeeEsM

m

j

njMOj

stBGMOstsTT

1

0

)()];([),,,;(][)(

)()];([1

0

)(1

0sMdttF

dtde X

m

jj

njMOstm

jj

Where )(sM X is the mgf of a MO (Marshall and Olkin, 1997) distribution.

4.6 Renyi Entropy

The entropy of a random variable is a measure of uncertainty variation and has been used in various

situations in science and engineering. The Rényi entropy is defined by

dttfI R )(log)1()( 1

where 0 and 1 For furthers details, see Song (2001). Using binomial expansion in (6) we

can write ),,,;( nmtf BGMOG

111

2 )(1)(

)(1)(1

)](1[)(

)](1[)(

),(

nm

tGtG

tGtG

tGtG

tGtg

nmB

)1()1()1( ]),([])},({1[)],([),(),(

nMOmMOMOMO tFtFtFtfnmB

)1()1( ])},({1[)],([),(),(

mMOnMOMO tFtFtfnmB

jMOjm

j

nMOMO tFj

mtFtf

nmB

)];([)1()1(

)],([),(),(

)1(

0

)1(

)1()1(

0)];([)1(

)1(),(

),(

njMOj

m

j

MO tFj

mtf

nmB

Page 21: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

21

Thus the Rényi entropy of T can be obtained as

dttFtfZI njMOMOm

jjR

)1()1(

0

1 )];([),(log)1()(

Where jj j

mnmB

Z )1()1(

),(

4.7 Quantile power series and random sample generation

The quantile function T, let )()( 1 uFuQt , can be obtained by inverting (7). Let )(, uQz nm be

the beta quantile function. Then,

])}(1{1[1

])}(1{1[)( 1

1

,

,

uQ

uQQuQt

nm

nmG

It is possible to obtain an expansion for )(, uQ nm in the Wolfram website as

It is possible to obtain an expansion for )(, uQ nm as

0

, )(i

miinm ueuQz

(see “Power series” From MathWorld--A Wolfram Web Resource.

http://mathworld.wolfram.com/PowerSeries.html)

Where im

i dnmBme 1]),([ and )1()1(,1,0 210 mnddd ,

)2()1(2

)453()1(2

2

3

mm

nmmnmnd

..].)3()2()1(3[]18)4731(

)43033()58()2()16([)1(3

22344

mmmnn

mnnmnnmnmnd

The Bowley skewness (Kenney and Keeping 1962) measures and Moors kurtosis (Moors

1988) measure are robust and less sensitive to outliers and exist even for distributions without

moments. For GBGMO family these measures are given by

)41()43()21(2)41()43(

QQQQQB

and )82()86(

)85()87()81()83(QQ

QQQQM

For example, let the G be exponential distribution with parameter ,0 having pdf and cdf as

0,):( tetg t and ,1):( tetG respectively. Then the thp quantile is obtained as

]1[log)/1( p . Therefore, the thp quantile pt , of EBGMO is given by

Page 22: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

22

])}(1{1[1

])}(1{1[1log1

1

1

,

,

pQ

pQt

nm

nmp

4.8 Asymptotes

Here we investigate the asymptotic shapes of the proposed family following the method followed in

Alizadeh et al., (2015).

Proposition 1. The asymptotes of equations (6), (7) and (8) as 0t are given by

1]}1{1[),()(~)( m

nmBtgtf

as 0)( tG

m

mnmBtF ]}1{1[

),(1~)( as 0)( tG

1]}1{1[),()(~)( m

nmBtgth

as 0)( tG

Proposition 2. The asymptotes of equations (6), (7) and (8) as t are given by

),(

)()(~)(1

nmBtGtgtf

nn as t

),(

)]([~)(1nmBn

tGtFn

as t

1)()(~)( tGtgth as t

5. Estimation

5.1 Maximum likelihood method

The model parameters of the GBGMO distribution can be estimated by maximum likelihood. Let T

ntttt ),...,( 21 be a random sample of size n from GBGMO with parameter vector TTnm ),,,,( βθ , where T

q ),...,( 21 β corresponds to the parameter vector of the baseline distribution G. Then the log-likelihood function for θ is given by

)(θ )],(log[)],([log)1(]),([logloglog00

nmBrtGtgrrr

ii

r

ii

ββ

)18(]]}),(1{),([[log)1(

]]}),(1{),([1[log)1()],(1[log)1(

0

00

r

iii

r

iii

r

ii

tGtGn

tGtGmtG

ββ

βββ

This log-likelihood function can not be solved analytically because of its complex form but it can be

maximized numerically by employing global optimization methods available with software’s like R,

SAS, Mathematica or by solving the nonlinear likelihood equations obtained by differentiating (18).

Page 23: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

23

By taking the partial derivatives of the log-likelihood function with respect to

,,,nm and β components of the score vector

Tnm TUUUUUU ),,,,(

θ can be obtained as follows:

r

iiim tGtGnmrmr

mU

0]]}),(1{),([1[log)()( ββ

r

iiin tGtGbnmrnr

nU

0]]}),(1{),([[log)()( ββ

U

r

ii

r

ii tGtGrr

00)],(1[log)],([loglog ββ

r

i ii

iiii

r

i ii

iiii

tGtGtGtGtGtGn

tGtGtGtGtGtGm

0

0

]}),(1{),([]}),(1{),([log]}),(1{),([)1(

]}),(1{),([1}]),(1{),([log]}),(1{),([)1(

ββββββ

ββββββ

U

r

i i

i

tGtGr

0 ),(1),()1(β

β

r

i iii

ii

tGtGtGtGtGm

0 )],(1[])},({)},(1{[),(),()1(

βββββ

r

i i

i

tGtGn

0 ),(1),()1(1β

β

β

U

r

i i

ir

i i

i

tGtG

tgtg

0

)(

0

)(

),(),()1(

),(),(

ββ

ββ ββ

r

i i

i

tGtG

0

)(

),(1),()1(βββ

r

i iii

ii

tGtGtGtGtGm

0

)(1

)],(1[])},({)},(1{[),(),()1(

βββββ β

r

i ii

i

tGtGtGn

0

)(

),()],(1[),()1(

ββββ

Where (.) is the digamma function.

5.2 Asymptotic standard error and confidence interval for the mles:

The asymptotic variance-covariance matrix of the MLEs of parameters can obtained by inverting the

Fisher information matrix )(I θ which can be derived using the second partial derivatives of the log-

likelihood function with respect to each parameter. The thji elements of )(I θn are given by

qjilEji

ji

3,,2,1,,)(I2

θ

The exact evaluation of the above expectations may be cumbersome. In practice one can estimate

)(I θn by the observed Fisher’s information matrix )ˆ(I θn is defined as:

Page 24: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

24

qjil

jiji

3,,2,1,,)(Iˆ

2

θθ

θ

Using the general theory of MLEs under some regularity conditions on the parameters as n the

asymptotic distribution of )ˆ( θθ n is ),0( nk VN where )(I)( 1 θ njjn vV . The asymptotic

behaviour remains valid if nV is replaced by )ˆ(Iˆ 1 θnV . This result can be used to provide large

sample standard errors and also construct confidence intervals for the model parameters. Thus an

approximate standard error and %100)2/1( confidence interval for the mle of jth parameter j are

respectively given by jjv and jjj vZ ˆˆ2/ , where 2/Z is the 2/ point of standard normal

distribution.

As an illustration on the MLE method its large sample standard errors, confidence interval in

the case of ),,,,( nmEBGMO is discussed in an appendix.

5.3 Real life applications

In this subsection, we consider fitting of three real data sets to show that the proposed GBGMO

distribution can be a better model than GGMOKw (Handique and Chakraborty, 2015) by taking

as Weibull distribution as G. We have estimated the parameters by numerical maximization of

loglikelihood function and provided their standard errors and 95% confidence intervals using large

sample approach (see appendix).

In order to compare the distributions, we have considered known criteria like AIC (Akaike

Information Criterion), BIC (Bayesian Information Criterion), CAIC (Consistent Akaike Information

Criterion) and HQIC (Hannan-Quinn Information Criterion). It may be noted that lkAIC 22 ;

lnkBIC 2)(log ; 1)1(2

knkkAICCAIC ; and lnkHQIC 2)]([loglog2

where k is the number of parameters in the statistical model, n the sample size and l is the

maximized value of the log-likelihood function under the considered model. In these applications

method of maximum likelihood will be used to obtain the estimate of parameters.

Example I:

The following data set gives the time to failure )10( 3 h of turbocharger of one type of engine given in

Xu et al. (2003).

{1.6, 2.0, 2.6, 3.0, 3.5, 3.9, 4.5, 4.6, 4.8, 5.0, 5.1, 5.3, 5.4, 5.6, 5.8, 6.0, 6.0, 6.1, 6.3, 6.5, 6.5, 6.7, 7.0,

7.1, 7.3, 7.3, 7.3, 7.7, 7.7, 7.8, 7.9, 8.0, 8.1, 8.3, 8.4, 8.4, 8.5, 8.7, 8.8, 9.0}

Page 25: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

25

Table 1: MLEs, standard errors and 95% confidence intervals (in parentheses) and

the AIC, BIC, CAIC and HQIC values for the data set.

Parameters WGMOKw WBGMO

a

1.178 (0.017)

(1.14, 1.21)

1.187 (0.702)

(-0.19, 2.56)

b 0.291

(0.209) (-0.12, 0.70)

2.057 (2.240)

(-2.33, 6.45)

0.617 (0.002)

(0.61, 0.62)

0.009 (0.006)

(-0.00276, 0.02)

1.855 (0.003)

(1.85, 1.86)

4.194 (0.668)

(2.88, 5.50)

1.619 (0.977)

(-0.29, 3.53)

0.047 (0.108)

(-0.16, 0.26)

0.178 (0.144)

(-0.10, 0.46)

0.017 (0.016)

(-0.01, 0.05) log-likelihood( maxl ) -90.99 -80.38

AIC 193.98 172.76 BIC 204.11 182.89

CAIC 196.53 175.31 HQIC 197.65 176.43

Estimated pdf's

X

Den

sity

0 2 4 6 8 10

0.00

0.05

0.10

0.15

0.20

0.25

BGMO-W GMOKw-W

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

Estimated cdf's

X

cdf

BGMO-W GMOKw-W

(a) (b)

Fig: 3 Plots of the observed (a) histogram and estimated pdf’s and (b) estimated cdf’s for the

GBGMO and GGMOKw for example I.

Page 26: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

26

Example II:

The following data is about 346 nicotine measurements made from several brands of cigarettes in

1998. The data have been collected by the Federal Trade Commission which is an independent

agency of the US government, whose main mission is the promotion of consumer protection. [http:

//www.ftc.gov/ reports/tobacco or http: // pw1.netcom.com/ rdavis2/ smoke. html.]

{1.3, 1.0, 1.2, 0.9, 1.1, 0.8, 0.5, 1.0, 0.7, 0.5, 1.7, 1.1, 0.8, 0.5, 1.2, 0.8, 1.1, 0.9, 1.2, 0.9, 0.8, 0.6, 0.3,

0.8, 0.6, 0.4, 1.1, 1.1, 0.2, 0.8, 0.5, 1.1, 0.1, 0.8, 1.7, 1.0, 0.8, 1.0, 0.8, 1.0, 0.2, 0.8, 0.4, 1.0, 0.2, 0.8,

1.4, 0.8, 0.5, 1.1, 0.9, 1.3, 0.9, 0.4, 1.4, 0.9, 0.5, 1.7, 0.9, 0.8, 0.8, 1.2, 0.9, 0.8, 0.5, 1.0, 0.6, 0.1, 0.2,

0.5, 0.1, 0.1, 0.9, 0.6, 0.9, 0.6, 1.2, 1.5, 1.1, 1.4, 1.2, 1.7, 1.4, 1.0, 0.7, 0.4, 0.9, 0.7, 0.8, 0.7, 0.4, 0.9,

0.6, 0.4, 1.2, 2.0, 0.7, 0.5, 0.9, 0.5, 0.9, 0.7, 0.9, 0.7, 0.4, 1.0, 0.7, 0.9, 0.7, 0.5, 1.3, 0.9, 0.8, 1.0, 0.7,

0.7, 0.6, 0.8, 1.1, 0.9, 0.9, 0.8, 0.8, 0.7, 0.7, 0.4, 0.5, 0.4, 0.9, 0.9, 0.7, 1.0, 1.0, 0.7, 1.3, 1.0, 1.1, 1.1,

0.9, 1.1, 0.8, 1.0, 0.7, 1.6, 0.8, 0.6, 0.8, 0.6, 1.2, 0.9, 0.6, 0.8, 1.0, 0.5, 0.8, 1.0, 1.1, 0.8, 0.8, 0.5, 1.1,

0.8, 0.9, 1.1, 0.8, 1.2, 1.1, 1.2, 1.1, 1.2, 0.2, 0.5, 0.7, 0.2, 0.5, 0.6, 0.1, 0.4, 0.6, 0.2, 0.5, 1.1, 0.8, 0.6,

1.1, 0.9, 0.6, 0.3, 0.9, 0.8, 0.8, 0.6, 0.4, 1.2, 1.3, 1.0, 0.6, 1.2, 0.9, 1.2, 0.9, 0.5, 0.8, 1.0, 0.7, 0.9, 1.0,

0.1, 0.2, 0.1, 0.1, 1.1, 1.0, 1.1, 0.7, 1.1, 0.7, 1.8, 1.2, 0.9, 1.7, 1.2, 1.3, 1.2, 0.9, 0.7, 0.7, 1.2, 1.0, 0.9,

1.6, 0.8, 0.8, 1.1, 1.1, 0.8, 0.6, 1.0, 0.8, 1.1, 0.8, 0.5, 1.5, 1.1, 0.8, 0.6, 1.1, 0.8, 1.1, 0.8, 1.5, 1.1, 0.8,

0.4, 1.0, 0.8, 1.4, 0.9, 0.9, 1.0, 0.9, 1.3, 0.8, 1.0, 0.5, 1.0, 0.7, 0.5, 1.4, 1.2, 0.9, 1.1, 0.9, 1.1, 1.0, 0.9,

1.2, 0.9, 1.2, 0.9, 0.5, 0.9, 0.7, 0.3, 1.0, 0.6, 1.0, 0.9, 1.0, 1.1, 0.8, 0.5, 1.1, 0.8, 1.2, 0.8, 0.5, 1.5, 1.5,

1.0, 0.8, 1.0, 0.5, 1.7, 0.3, 0.6, 0.6, 0.4, 0.5, 0.5, 0.7, 0.4, 0.5, 0.8, 0.5, 1.3, 0.9, 1.3, 0.9, 0.5, 1.2, 0.9,

1.1, 0.9, 0.5, 0.7, 0.5, 1.1, 1.1, 0.5, 0.8, 0.6, 1.2, 0.8, 0.4, 1.3, 0.8, 0.5, 1.2, 0.7, 0.5, 0.9, 1.3, 0.8, 1.2,

0.9}

Page 27: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

27

Table 2: MLEs, standard errors and 95% confidence intervals (in parentheses) and

the AIC, BIC, CAIC and HQIC values for the nicotine measurements data.

Parameters WGMOKw WBGMO

a

0.765 (0.025)

(0.72, 0.81)

0.866 (0.159)

(0.55, 1.18)

b 2.139

(0.774) (0.62, 3.66)

0.329 (0.167)

(0.00168, 0.66)

4.271 (0.018)

(4.24, 4.31)

2.131 (1.182)

(-0.19, 4.45)

2.919 (0.013)

(2.89, 2.94)

2.223 (0.725)

(0.80, 3.64)

1.097 (0.309)

(0.49, 1.70)

3.285 (3.901)

(-4.36, 10.93)

0.114 (0.042)

(0.03, 0.19)

2.635 (1.310)

(0.07, 5.20) log-likelihood( maxl ) -111.75 -109.28

AIC 235.50 230.56 BIC 258.58 253.64

CAIC 235.75 230.80 HQIC 244.69 239.76

Estimated pdf's

X

Den

sity

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

BGMO-W GMOKw-W

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Estimated cdf's

X

cdf

BGMO-W GMOKw-W

(a) (b)

Fig: 4 Plots of the observed (a) histogram and estimated pdf’s and (b) estimated cdf’s for the

GBGMO and GGMOKw for example II.

Page 28: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

28

Example III:

This data set consists of 100 observations of breaking stress of carbon fibres (in Gba) given by

Nichols and Padgett (2006).

{3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.40, 3.15, 2.67,3.31, 2.81, 0.98, 5.56,

5.08, 0.39, 1.57, 3.19, 4.90, 2.93, 2.85, 2.77, 2.76, 1.73, 2.48, 3.68, 1.08, 3.22, 3.75, 3.22, 2.56, 2.17,

4.91, 1.59, 1.18, 2.48, 2.03, 1.69, 2.43, 3.39, 3.56, 2.83, 3.68, 2.00, 3.51, 0.85, 1.61, 3.28, 2.95, 2.81,

3.15, 1.92, 1.84, 1.22, 2.17, 1.61, 2.12, 3.09, 2.97, 4.20, 2.35, 1.41, 1.59, 1.12, 1.69, 2.79, 1.89, 1.87,

3.39, 3.33, 2.55, 3.68, 3.19, 1.71, 1.25, 4.70, 2.88, 2.96, 2.55, 2.59, 2.97, 1.57, 2.17, 4.38, 2.03, 2.82,

2.53, 3.31, 2.38, 1.36, 0.81, 1.17, 1.84, 1.80, 2.05, 3.65}.

Table 3: MLEs, standard errors and 95% confidence intervals (in parentheses) and

the AIC, BIC, CAIC and HQIC values for the breaking stress of carbon fibres data.

Parameters WGMOKw WBGMO

a

1.015 (0.071)

(0.88, 1.15)

1.458 (1.123)

(-0.74, 3.66)

b 0.385

(0.168) (0.06, 0.71)

0.734 (1.810)

(-2.81, 4.28)

0.803 (0.003)

(0.79, 0.81)

0.598 (1.496)

(-2.33, 3.53)

2.222 (0.004)

(2.21, 2.23)

2.439 (0.779)

(0.91, 3.97)

1.482 (0.440)

(0.62, 2.34)

0.685 (1.150)

(-1.57, 2.94)

0.345 (0.169)

(0.01, 0.68)

0.201 (0.573)

(-0.92, 1.32) log-likelihood( maxl ) 142.63 -141.29

AIC 297.26 294.58 BIC 312.89 310.21

CAIC 298.16 295.48 HQIC 303.59 300.92

Page 29: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

29

Estimated pdf's

X

Den

sity

0 1 2 3 4 5 6

0.0

0.1

0.2

0.3

0.4

0.5

BGMO-W GMOKw-W

0 1 2 3 4 5 6

0.0

0.2

0.4

0.6

0.8

1.0

Estimated cdf's

X

cdf

BGMO-W GMOKw-W

(a) (b)

Fig: 5 Plots of the observed (a) histogram and estimated pdf’s and (b) estimated cdf’s for the

GBGMO and GGMOKw for example III.

In Tables 1, 2 and 3 the MLEs, se’s (in parentheses) and 95% confidence intervals (in parentheses)

of the parameters for the fitted distributions along with AIC, BIC, CAIC and HQIC values are

presented for example I, II, and III respectively. In the entire examples considered here based on the

lowest values of the AIC, BIC, CAIC and HQIC, the WBGMO distribution turns out to be a

better distribution than WGMOKw distribution. A visual comparison of the closeness of the fitted

densities with the observed histogram of the data for example I, II, and III are presented in the

figures 3, 4, and 5 respectively. These plots indicate that the proposed distributions provide a closer

fit to these data.

6. Conclusion

Beta Generalized Marshall-Olkin family of distributions is introduced and some of its important

properties are studied. The maximum likelihood and moment method for estimating the parameters

are also discussed. Application of three real life data fitting shows good result in favour of the

proposed family when compared to Generalized Marshall-Olkin Kumaraswamy extended family of

distributions. It is therefore expected that this family of distribution will be an important addition to

the existing literature on distribution.

Appendix: Maximum likelihood estimation for EBGMO

The pdf of the EBGMO distribution is given by

)(tf BGMOE

11

1

1

111

]1[][

),(1

n

t

tm

t

t

t

tt

ee

ee

eee

nmB

Page 30: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

30

For a random sample of size n from this distribution, the log-likelihood function for the parameter

vector Tnm ),,,,( θ is given by

)(θ )],(log[)(log)1(logloglog00

nmBretrrrr

i

tr

ii

i

r

i

tt

r

i

ttr

i

t

ii

iii

een

eeme

0

00

]}1{[log)1(

]]}1{[1[log)1(]1[log)1(

The components of the score vector Tnm ),,,,( θ are

r

i

ttm

ii eenmrmrm

U0

]]}1{[1[log)()(

r

i

ttn

ii eenmrnrn

U0

]}1{[log)()(

U

r

i

tr

i

t ii eerr00

]1[log][loglog

r

itt

tttt

ii

iiii

eeeeeem

0 ]}1{[1}]1{[log]}1{[)1(

r

itt

tttt

ii

iiii

eeeeeen

0 ]}1{[]}1{[log]}1{[)1(

U

r

it

t

i

i

eer

0 1)1(

r

ittt

tt

iii

ii

eeeeem

0 ]1[]}{}1{[]1[][)1(

r

it

t

i

i

een

0 11)1(1

U

r

it

tr

it

tr

ii i

i

i

i

ee

eetr

000 1)1(

1)1(

r

ittt

t

iii

i

eeeem

0 ]1[]}{}1{[][)1(

r

itt

t

ii

i

eeen

0 ]1[)1(

The asymptotic variance covariance matrix for mles of the unknown parameters θ ),,,,( nm

of EBGMO ),,,,( nm distribution is estimated by

Page 31: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

31

)ˆ(I 1n θ

)λ(var)α,λ(cov)θ,λ(cov)ˆ,λ(cov)ˆ,λ(cov

)λ,α(cov)α(var)θ,α(cov)ˆ,α(cov)ˆ,α(cov

)λ,θ(cov)α,θ(cov)θ(var)ˆ,θ(cov)ˆ,θ(cov

)λ,ˆ(cov)α,ˆ(cov)θ,ˆ(cov)ˆ(var)ˆ,ˆ(cov

)λ,ˆ(cov)α,ˆ(cov)θ,ˆ(cov)ˆ,ˆ(cov)ˆ(var

nm

nm

nm

nnnnmn

mmmnmm

Where the elements of the information matrix θθ

θθIˆ

2

n)()ˆ(ˆ

ji

l

can be derived using

the following second partial derivatives:

2

2

m )()( nmrmr

2

2

n )()( nmrnr

2

2

θ

2θr

r

itt

tttt

ii

iiii

eeeeeem

02θλλ

2λλθ2λλ

]]}α1{α[1[}]α1{α[log]}α1{α[)1(

r

itt

tttt

ii

iiii

eeeeeem

0θλλ

2λλθλλ

]}α1{α[1}]α1{α[log]}α1{α[)1(

2

2

α

r

it

t

i

i

eer

02λ

λ2

2 )α1()1θ(

αθ

r

i

ti

tti

ttt

beteeteeen

iiiiii

0

2λλ23λλ3λλ }α1{α2-}α1{α2-]α1[)1(θ

r

i

ti

tti

t

beteeten

iiii

0

λλ2λλ2 }α1{α}α1{α-)1(θ

r

i

ti

tti

ttt

beteeteeen

iiiiii

02

λλ2λλ2λλ }α1{α}α1{α-]α1[)1(θ

r

itt

tttttt

ii

iiiiii

ee

eeeeeem

0θλλ

2λλ23λλ31-θλλ

]}α1{α[1

}α1{2-}α1{α2]}α1{α[θ)1(

r

itt

tttttt

ii

iiiiii

eeeeeeeem

02θλλ

2λλ2λλ22-θ2λλ2

]]}α1{α[1[}α1{}α1{α]}α1{α[θ)1(

r

itt

tttttt

ii

iiiiii

eeeeeeeem

0θλλ

2λλ2λλ22-θλλ

]}α1{α[1}α1{}α1{α]}α1{α[1)-(θθ)1(

Page 32: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

32

2

2

2λr

r

iti

t

ti

t

i

i

i

i

ete

ete

2λ22

α1λα

]α1[λα)1θ(

r

i

ti

tti

ti

beteetetn

iiii

0

λλ2λλ2 }α1{}α1{αα-α)1(θ

r

i

ti

tti

ti

tt

beteeteteen

iiiiii

0

λλ2λλ2λλ }α1{}α1{αα-]α1[)1(θ

r

i

ti

t

ti

tti

t

itt

bete

eteetetee

nii

iiii

ii

0

λ2λ

2λ2λ23λ2λ32λλ

}α1{α

}α1{αα3}α1{αα2-]α1[

)1(θ

r

itt

ttti

ttt

ii

iiiiii

eeeeeteeem

02θλλ

2λλ2λλ22-θ2λλ2

]]}α1{α[1[}α1{α}α1{αα-]}α1{α[θ)1(

r

itt

ttti

ttt

ii

iiiiii

eeeeeteeem

0θλλ

2λλ2λλ22-θλλ

]}α1{α[1}α1{α}α1{αα-]}α1{α[1)-(θθ)1(

r

itt

ti

t

ti

tti

ttt

ii

ii

iiii

ii

eeete

eteeteee

m0

θλλ

λ2λ

2λ2λ23λ2λ321-θλλ

]}α1{α[1}α1{α

}α1{αα3}α1{αα2-]}α1{α[θ

)1(

nm2 )( nmr

θ

2

m

r

itt

tttt

ii

iiii

eeeeee

0θλλ

λλθλλ

]}α1{α[1}]α1{α[log]}α1{α[

αm2

r

itt

tttttt

ii

iiiiii

eeeeeeee

0θλλ

λλ2λλ21-θλλ

]}α1{α[1]}α1{α[]}α1{α[]}α1{α[ θ

m2

r

itt

ti

tti

ttt

ii

iiiiii

eeeteeteee

0θλλ

λλ2λλ21-θλλ

]}α1{α[1]}α1{α[]}α1{αα[]}α1{α[ θ

θ

2

n ]}α1{α[log λλ

0

ii ti

tr

iete

α

2

n

r

i

tttttt

beeeeee iiiiii

0

λλ2λλ2λλ }α1{}α1{α-]α1[θ

Page 33: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

33

λ

2

n

r

i

ti

tti

ttt

beteeteee iiiiii

0

λλ2λλ2λλ }α1{α}α1{αα-]α1[θ

αθ

2

αr

r

it

t

i

i

ee

λ

α1

r

i

tttttt

beeeeeen

iiiiii

0

λλ2λλ2λλ }α1{}α1{α-]α1[)1(

r

itt

tttttt

ii

iiiiii

eeeeeeeem

0θλλ

λλ2λλ21-θλλ

]}α1{α[1}α1{}α1{α-]}α1{α[)1(

r

itt

tttttttt

ii

iiiiiiii

eeeeeeeeee

02θλλ

λλλλ2λλ21-θ2λλ

]]}α1{α[1[}]α1{log[}α1{}α1{α-]}α1{α[m)-θ(1

r

itt

tttttttt

ii

iiiiiiii

eeeeeeeeee

0θλλ

λλλλ2λλ21-θλλ

]}α1{α[1}]α1{log[}α1{}α1{α-]}α1{α[m)-θ(1

λθ

2

r

iit

0]}α1{α[log λλ

0

ii ti

tr

iete

r

i

ti

tti

ttt

beteeteeen

iiiiii

0

λλ2λλ2λλ }α1{α}α1{αα-]α1[)1(

r

itt

ttti

ttt

ii

iiiiii

eeeeeteeem

0θλλ

λλ2λλ21-θλλ

]}α1{α[1}α1{}α1{αα-]}α1{α[)1(

r

itt

ttti

ti

tttt

ii

iiiiiiii

eeeeeteteeee

02θλλ

λλλλ2λλ21-θ2λλ

]]}α1{α[1[}]α1{log[}α1{}α1{αα-]}α1{α[m)-θ(1

r

itt

ttti

tti

ttt

ii

iiiiiiii

eeeeeteeteee

0θλλ

λλλλ2λλ21-θλλ

]}α1{α[1}]α1{log[}α1{}α1{αα-]}α1{α[m)-θ(1

2

r

it

it

ti

t

i

i

i

i

ete

ete

λ

λ2

α1]α1[α)1θ(

r

i

tttti

beeeetn

iiii

0

λλ2λλ2 }α1{}α1{α-)1(θ

r

i

tttti

tt

beeeeteen

iiiiii

0

λλ2λλ2λλ }α1{}α1{α-]α1[)1(θ

Page 34: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

34

r

i

ti

tti

t

ti

tti

ttt

beteete

eteeteee

niiii

iiii

ii

0

λλ2λλ2

2λλ23λλ3λλ

}α1{}α1{α2

}α1{α}α1{αα2]α1[

)1(θ

r

itt

ti

tti

t

ti

tti

ttt

ii

iiii

iiii

ii

ee

eteete

eteeteee

m0 θλλ

λλ2λλ2

2λλ23λλ31θλλ

)}α1(α{1

}α1{}α1{α2

}α1{α}α1{αα2)}α1(α{θ

)1(

r

itt

ti

tti

t

tttttt

ii

iiii

iiiiii

ee

eteete

eeeeee

m0 2θλλ

λλ2λλ2

λλ2λλ22θ2λλ2

])}α1(α{1[

})α1{α}α1{αα(

})α1{}α1{α()}α1(α{θ

)1(

r

itt

ti

tti

t

tttttt

ii

iiii

iiiiii

ee

eteete

eeeeee

m0 θλλ

λλ2λλ2

λλ2λλ22θλλ

)}α1(α{1

})α1{α}α1{αα(

})α1{}α1{α()}α1(α{1)-θ(θ

)1(

Where (.) is the derivative of the digamma function.

References

1. Alizadeh M., Tahir M.H., Cordeiro G.M., Zubair M. and Hamedani G.G. (2015). The

Kumaraswamy Marshal-Olkin family of distributions. Journal of the Egyptian Mathematical

Society, in press.

2. Bornemann, Folkmar and Weisstein, Eric W. “Power series” From MathWorld-A Wolfram

Web Resource. http://mathworld.wolfram.com/PowerSeries.html.

3. Barreto-Souza W., Lemonte A.J. and Cordeiro G.M. (2013). General results for Marshall and

Olkin's family of distributions. An Acad Bras Cienc 85: 3-21.

4. Baharith L.A., Mousa S.A., Atallah M.A. and Elgyar S.H. (2014). The beta generalized

inverse Weibull distribution. British J Math Comput Sci 4: 252-270.

5. Cordeiro G.M., Silva G.O. and Ortega E.M.M. (2012a). The beta extended Weibull

distribution. J Probab Stat Sci 10: 15-40.

6. Cordeiro G.M., Cristino C.T., Hashimoto E.M. and Ortega E.M.M. (2013b). The beta

generalized Rayleigh distribution with applications to lifetime data. Stat Pap 54: 133-161.

7. Cordeiro G.M., Silva G.O., Pescim R.R. and Ortega E.M.M. (2014c). General properties for

the beta extended half-normal distribution. J Stat Comput Simul 84: 881-901.

8. Eugene N., Lee C. and Famoye F. (2002). Beta-normal distribution and its applications.

Commun Statist Theor Meth 31: 497-512.

Page 35: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

35

9. George D. and George S. (2013). Marshall-Olkin Esscher transformed Laplace distribution

and processes. Braz J Probab Statist 27: 162-184.

10. Ghitany M.E., Al-Awadhi F.A. and Alkhalfan L.A. (2007). Marshall-Olkin extended Lomax

distribution and its application to censored data. Commun Stat Theory Method 36: 1855-

1866.

11. Ghitany M.E., Al-Hussaini E.K. and Al-Jarallah R.A. (2005). Marshall-Olkin extended

Weibull distribution and its application to censored data. J Appl Stat 32: 1025-1034.

12. Gieser P.W., Chang M.N., Rao P.V., Shuster J.J. and Pullen J. (1998). Modelling cure rates

using the Gompertz model with covariate information. Stat Med 17(8):831–839.

13. Greenwood J.A., Landwehr J.M., Matalas N.C. and Wallis J.R. (1979). Probability weighted

moments: definition and relation to parameters of several distributions expressable in inverse

form. Water Resour Res 15: 1049-1054.

14. Gui W. (2013a) . A Marshall-Olkin power log-normal distribution and its applications to

survival data. Int J Statist Probab 2: 63-72.

15. Gui W. (2013b). Marshall-Olkin extended log-logistic distribution and its application in

minification processes. Appl Math Sci 7: 3947-3961.

16. Gurvich M., DiBenedetto A. and Ranade S. (1997). A new statistical distribution for

characterizing the random strength of brittle materials. J. Mater. Sci. 32: 2559-2564.

17. Handique L. and Chakraborty S. (2015a). The Marshall-Olkin-Kumaraswamy-G family of

distributions. arXiv:1509.08108 [math.ST].

18. Handique L. and Chakraborty S. (2015b). The Generalized Marshall-Olkin-Kumaraswamy-G

family of distributions. arXiv:1510.08401 [math.ST].

19. Handique L. and Chakraborty S. (2016). Beta generated Kumaraswamy-G and other new

families of distributions. arXiv:1603.00634 [math.ST] , Under Review.

20. Handique L. and Chakraborty S. (2016b). The Kumaraswamy Generalized Marshall-Olkin

family of distributions.

21. Jones M.C. (2004). Families of distributions arising from the distributions of order statistics.

Test 13: 1-43.

22. Kenney J.F., Keeping and E.S. (1962). Mathematics of Statistics, Part 1. Van Nostrand, New

Jersey, 3rd edition.

23. Krishna E., Jose K.K. and Risti´c M. (2013). Applications of Marshal-Olkin Fréchet

distribution. Comm. Stat. Simulat. Comput. 42: 76–89.

24. Lehmann E.L. (1953). The power of rank tests. Ann Math Statist 24: 23-43.

25. Lemonte A.J. (2014). The beta log-logistic distribution. Braz J Probab Statist 28: 313-332.

Page 36: The Beta Generalized Marshall-Olkin-G Family of DistributionsThe Beta Generalized Marshall-Olkin-G Family of Distributions Laba Handique and Subrata Chakraborty* ... This new family

36

26. Marshall A. and Olkin I. (1997). A new method for adding a parameter to a family of

distributions with applications to the exponential and Weibull families. Biometrika 84: 641-

652.

27. Mead M.E., Afify A.Z., Hamedani G.G. and Ghosh I. (2016). The Beta Exponential Frechet

Distribution with Applications, to appear in Austrian Journal of Statistics.

28. Moors J.J.A. (1988). A quantile alternative for kurtosis. The Statistician 37: 25–32.

29. Nadarajah S. (2005). Exponentiated Pareto distributions. Statistics 39: 255-260.

30. Nadarajah S., Cordeiro G.M. and Ortega E.M.M. (2015). The Zografos-Balakrishnan–G

family of distributions: mathematical properties and applications, Commun. Stat. Theory

Methods 44:186-215.

31. Nichols M.D. and Padgett W.J.A. (2006). A bootstrap control chart for Weibull percentiles.

Quality and Reliability Engineering International, v. 22: 141-151.

32. Pescim R.R., Cordeiro G.M., Demetrio C.G.B., Ortega E.M.M. and Nadarajah S. (2012). The

new class of Kummer beta generalized distributions. SORT 36: 153-180.

33. Sarhan A.M. and Apaloo J. (2013). Exponentiated modified Weibull extension distribution.

Reliab Eng Syst Safety 112: 137-144.

34. Singla N., Jain K. and Sharma S.K. (2012). The beta generalized Weibull distribution:

Properties and applications. Reliab Eng Syst Safety 102: 5-15.

35. Song K.S. (2001). Rényi information, loglikelihood and an intrinsic distribution measure.

EM J Stat Plan Infer 93: 51-69.

36. Weisstein, Eric W. “Incomplete Beta Function” From MathWorld-A Wolfram Web

Resource. http://mathworld.Wolfram.com/IncompleteBetaFunction.html.

37. Xu, K., Xie, M., Tang, L.C. and Ho, S.L. (2003). Application of neural networks in

forecasting engine systems reliability. Applied Soft Computing, 2(4): 255-268.

38. Zhang T. and Xie M. (2007). Failure data analysis with extended Weibull distribution.

Communication in Statistics – Simulation and Computation 36: 579-592.